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Abstract: This paper presents a new assessment method for alleviating urban heat  

island (UHI) effects by using an urban land surface moisture (ULSM) index. With the  

aid of Landsat 8 OLI/TIRS data, the land surface temperature (LST) was retrieved by a  

mono-window algorithm, and ULSM was extracted by tasselled cap transformation. 

Polynomial regression and buffer analysis were used to analyze the effects of ULSM on the 

LST, and the alleviation effect of ULSM was compared with three vegetation indices, GVI, 

SAVI, and FVC, by using the methods of grey relational analysis and Taylor skill 

calculation. The results indicate that when the ULSM value is greater than the value of an 

extreme point, the LST declines with the increasing ULSM value. Areas with a high ULSM 

value have an obvious reducing effect on the temperature of their surrounding areas within 

150 m. Grey relational degrees and Taylor skill scores between ULSM and the LST are 
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0.8765 and 0.9378, respectively, which are higher than the results for the three vegetation 

indices GVI, SAVI, and FVC. The reducing effect of the ULSM index on environmental 

temperatures is significant, and ULSM can be considered to be a new and more effective 

index to estimate UHI alleviation effects for urban areas. 

Keywords: urban land surface moisture; land surface temperature; UHI alleviation; tasselled 

cap transformation; Landsat 8 

 

1. Introduction 

Rapid urban expansion due to large scale land use/cover change [1] and the conversion of water 

bodies, vegetation and low-lying areas to urban land have caused extensive and varied environmental 

degradation [2]. Urban development has always been accompanied by the process of replacing natural 

vegetation with non-transpiring and non-evaporating impervious surfaces [3]. Significant differences in 

mean surface temperatures were found between land cover types [4]. Impervious surfaces in urban areas 

will not only absorb and accumulate more solar radiation and heat but also impede long-wave sky 

radiation loss [5,6], which will cause the phenomenon defined as the urban heat island (UHI) effect, 

where atmospheric and land surface temperatures (LST) in urban areas are higher than in surrounding 

rural areas [6–8]. Traditionally, meteorological station networks and mobile measurements of the urban 

canopy layer have been the most commonly used methods to monitor UHI [9]. Recently, with the 

development of remote sensing (RS) technology, remote sensing data, such as surface radiative 

temperatures derived from remote imagery thermal bands, are increasingly used to analyze the quantity, 

time and space distribution of UHI [10]. 

Because the urban heat island effect has a large negative influence on climate, ecology and human 

living environments in urban and surrounding areas, research that focuses on the alleviation effects of 

UHI have great significance. The relationship between LST and biophysical parameters indicates that 

the persistent loss of green space favors an increase in the detectable heat exchange, which is a driver of 

the UHI effect [11]. Much research has found that vegetation transpiration can relieve the UHI  

effect [9]. The relationship between NDVI (Normalized Difference Vegetation Index) [12–16] and LST 

indicates that vegetation is important in urban heat reduction [9]. FVC (Fractional Vegetation  

Coverage) is also a key parameter in thermal remote-sensing analysis from which surface emissivity  

can be estimated [17–19], and it is an indicator of the LST, with which it has a negative linear  

relationship [19,20]. In addition, SAVI (Soil Adjusted Vegetation Index) [21] and GVI (Green 

Vegetation Index) [22] have also been shown to have a negative relationship with LST. In addition to 

vegetation, water bodies are also important factors in reducing the UHI effect. Generally, the presence 

of water bodies is not the dominant factor for reducing the UHI effect in urban areas; however, it is the 

most direct and effective factor for reducing environmental temperatures [23]. 

Water content is one of the main factors that impact photosynthesis and vegetation biomass.  

The water content can reach 40-80% in a vegetation canopy [24]. Therefore, the land surface water 

content, or land surface moisture, can be used as an important parameter for extracting land surface 

vegetation information. Studies have found that indices, such as SRWI (Simple Ratio Water Index) [25], 
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WI (Wetness Index) [26], and NDWI (Normalized Difference Water Index) [27], can be used to extract 

the vegetation water content. For the Landsat 8 satellite, shortwave infrared bands 6 and 7 are the most 

sensitive to soil and vegetation moisture [28]. The third component (Wetness) of tasseled cap 

transformation can also be used to extract the water content of soil and vegetation; however, little 

research has focused on this index. In urban areas, a higher moisture content is a common feature of 

vegetation and water bodies, and land surface moisture can be considered to be a common index to 

extract areas that make a contribution to cooling the environment. The research purposes of this paper 

were mainly focused on validating the alleviation effect of ULSM on UHI and exploring the contribution 

level of ULSM in comparison with common vegetation indices. 

2. Materials and Methods 

2.1. Study Area 

Xu Zhou is in the northwest of China’s Jiangsu province and is located between 116°22′ and 118°40′ 

east longitude and 33°43′ and 34°58′ north latitude. It is located at the junction of the Jiangsu, Shandong, 

Henan and Anhui provinces and is a very important water and land traffic hub in China, which has been 

called the “crossroads” of the economic ties between north and south China [29]. Xuzhou is the second 

largest city in Jiangsu province, as well as the node city with the strongest agglomeration and radiation 

force in the north of the Yangtze River delta, and it is an important growth pole. Xuzhou is in the warm 

semi-humid climate zone. Because it is narrow from west to east and is influenced by the ocean 

differently, east Xuzhou has a warm humid monsoon climate, while the west has a warm semi-humid 

climate that is strongly influenced by the southeast monsoon. Its annual sunshine duration is 2284 to 

2495 hours, sunshine rate is 52% to 57%, annual average temperature is 14 °C, annual average frost free 

period is 200 to 220 days, and annual average precipitation is 800 to 930 millimeters, with precipitation 

in the rainy season accounting for 56% of the annual total participation. The climate of this area provides 

a very good environment for crops. 

To explore the effects of land surface moisture on the land surface temperature in the inner city, the 

built up area of Xuzhou city was chosen as the research area; the geographical position and borders of 

the research area are shown in Figure 1. 

2.2. Data Source 

In 13 February 2013, NASA successfully launched the Landsat 8 satellite. There are two main 

payloads in Landsat 8, the OLI (Operational Land Imager) and the TIRS (Thermal Infrared Sensor) [30]. 

The OLI includes nine bands, from band 1 to band 9; TIRS band 10 and band 11 provide the atmospheric 

rectification for the thermal infrared data [31,32]. The spatial resolution of the first nine bands is 30 m, 

except for band 8, which has a resolution of 15 m; the spatial resolution of band 10 and band 11 is  

100 m. For this research, four Landsat 8 OLI/TIRS images of the Xuzhou area in summer from 2013 to 

2014 were selected as the research data. The acquisition date and location information of the four images 

are shown in Table 1. 
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Figure 1. Location of Jiangsu in China, location of the Xuzhou urban area in Jiangsu, and 

location of the border of the Xuzhou urban area. 

The acquisition season of each image was spring or summer; the vegetation coverage was richer and 

the temperature was higher in these two seasons, which is advantageous for extracting land surface 

information and calculating the land surface temperature. Meanwhile, the definition and weather 

conditions for the four images are clear, sunny and cloudless. Because the atmospheric condition has 

little influence on the accuracy of the land surface temperature inversion, the four images are suitable  

as research data. 

Table 1. Acquisition date and location information of four Landsat 8 images of study area. 

Scene Landsat Scene ID Acquisition Date Path/Row 

1 LC81220362013141LGN01 21 May 2013 122/36 

2 LC81210362013246LGN00 3 September 2013 121/36 

3 LC81210362014121LGN00 1 May 2014 121/36 

4 LC81210362014265LGN00 22 September 2014 121/36 

2.3. Data Pre-Processing 

All of the OLI bands were first resampled to a resolution of 30 m. Because atmospheric scattering 

effects should be removed prior to analysis to extract land cover information efficiently from Landsat 8 

data, the method of DOS (Dark-Object Subtraction) atmospheric correction was used to correct the 

Landsat 8 OLI bands [33]. The Mono-window algorithm [34] was used for LST inversion; the influence 
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of the atmosphere was considered in the process of calculation, so there was no need for atmospheric 

correction for the TIRS bands [35]. Fifty pixels were chosen from vegetation and water bodies to 

calculate the average value of the spectral reflectance of each wavelength. Figure 2 shows the effect of 

DOS atmospheric correction. Geometric calibration of OLI and TIRS was then performed for the bands 

on scene 2, scene 3 and scene 4 by using scene 1 as a benchmark to ensure that the overall error would 

be controlled within 0.5 pixels. Then, the vector boundary of Xuzhou area was overlaid on the four 

images to mask the initial study area. Finally, to prepare for land surface temperature inversion retrieval, 

the land surface of the initial study area was classified as construction land, vegetation, or a water body. 

 

(a) 

 

(b) 

Figure 2. Comparison between spectral lines with and without atmospheric correction on  

21 May 2013. (a) Spectral lines of vegetation. The standard spectral line (Vegetation) was 

obtained from the ASTER Spectral Library; (b) Spectral lines of water. The standard 

Spectral Line (Water) was obtained from Yao [36]. 
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2.4. Land Surface Temperature Inversion 

The methods for the retrieval of LSTs from satellite TIR data can be broadly classified into three 

categories: single-channel methods, multi-channel methods (split-window algorithm, SWA), and  

multi-angle methods [30,37]. Recently, three different SWAs for LST retrieval from Landsat-8 TIR data 

have been proposed [38,39], and single-channel algorithms for LST retrieval have been adapted to 

Landsat 8 TIRS data [40]. Wang et al. [41] also proposed an improved mono-window algorithm [34,41] 

from Landsat 8 data. In comparison with other methods, the mono-window algorithm is simpler and 

only two atmospheric parameters were needed; therefore, the mono-window algorithm was used to 

calculate the land surface temperature (LST) for the Landsat 8 images The mono-window algorithm’s 

calculation formula is as follows [41]. 

𝑇𝑠 = {𝑎(1 − 𝐶 − 𝐷) + [𝑏(1 − 𝐶 − 𝐷) + 𝐶 + 𝐷]𝑇10 − 𝐷𝑇𝑎}/𝐶 (1) 

In the formula, Ts refers to the true land surface temperature; a and b are regression coefficients 

(within the temperature range of 0~70 °C, a = −70.1775, b = 0.4581); T10 refers to the brightness 

temperature (K) observed by the thermal infrared sensor (band 10) at the height of the satellite; Ta refers 

to the average atmospheric operative temperature; C and D are the intermediate variables. The following 

formulas are used to calculate C and D, respectively. 

𝐶 = ετ (2) 

𝐷 = (1 − τ)[1 + (1 − ε)τ] (3) 

In this formula, ε refers to the land surface emissivity and τ refers to the atmospheric transmittance. 

Therefore, the true land surface temperature could be computed as long as T10 (the brightness 

temperature observed by the thermal infrared sensor), Ta (the average atmospheric operative 

temperature), ε (land surface emissivity), and τ (atmospheric transmittance) had been determined. 

2.4.1. Brightness Temperature (T10) Inversion 

According to the mono-window algorithm, the original DN value of the thermal infrared band  

(band 10) should be converted to a radiation brightness value that could be used to retrieve the brightness 

temperature T10. The radiation brightness value formula of Landsat 8 is as follows. 

𝐿λ = 𝐿𝑚𝑖𝑛 + (
𝐿𝑚𝑎𝑥 − 𝐿𝑚𝑖𝑛

𝑄𝐶𝐴𝐿𝑚𝑎𝑥 − 𝑄𝐶𝐴𝐿𝑚𝑖𝑛
)(𝑄𝐶𝐴𝐿 − 𝑄𝐶𝐴𝐿𝑚𝑖𝑛) (4) 

In the formula, Lλ refers to the radiation brightness value; Lmax and Lmin refer to the maximum and 

minimum radiation brightness value observed by the thermal infrared sensor of Landsat 8; QCAL refers 

to the original DN value; QCALmax and QCALmin refer to the maximum and minimum original DN values. 

For band 10 of a Landsat 8 image, Lmax = 22.00180 mWcm−2sr−1μm−1, Lmin = 0.10033 mWcm−2sr−1μm−1, 

QCALmax = 65,535, and QCALmin = 1; these four values can be obtained from the image header files. 

After Lλ has been calculated, the brightness temperature T10 can be retrieved by using the  

following formula. 

𝑇10 = 𝐾2/ln⁡(1 + 𝐾1/𝐿λ) (5) 
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In the formula, K1 and K2 are preset constants; for band 10 of a Landsat 8 image K1 = 774.89,  

K2 = 1321.08. 

2.4.2. Average Atmospheric Temperature (Ta) Calculation 

Because the Xuzhou region is located in the mid-latitudes and the acquisition season for the four 

remote sensing images was spring or summer, according to the research of Qin [34], Ta can be calculated 

by using an average atmospheric temperature empirical formula in summer for a mid-latitude area.  

The empirical formula is as follows. 

𝑇𝑎 = 16.0110 + 0.92621𝑇0 (6) 

In the formula, T0 refers to the air temperature at the ground. According to the Xuzhou climate log 

data set from the China Meteorological Data Sharing Service System, the air temperatures of the ground 

when these four images were taken are shown in Table 2. 

Table 2. Atmospheric information of Xuzhou area. 

Satellite Transit Time 
Air Temperature 

of Ground T0 (K) 

Average Ground Vapor 

Pressure e (hpa) 

Atmospheric 

Transmittance e (τ) 

21 May 2013 299.25 17.7 0.6153 

03 September 2013 297.25 17.3 0.6242 

01 May 2014 296.05 17.8 0.6131 

22 September 2014 295.65 15.5 0.6645 

2.4.3. Land Surface Emissivity (ε) Calculation 

Land surface emissivity can be calculated by using different approaches than NDVI values [42,43]. 

NDVITHM [44] is an index that uses certain NDVI values (thresholds) to distinguish between pixels with 

soil cover (NDVI < NDVIs) and pixels with full vegetation cover (NDVI > NDVIv) [45]; for mixed 

pixels (NDVIs ≤ NDVI ≤ NDVIv), the three types of land cover type can be calculated by using the 

following three formulas [45,46], respectively. 

ε𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 = 𝑃𝑣𝑅𝑣ε𝑣 + (1 − 𝑃𝑣)𝑅𝑠ε𝑠 + 𝑑ε (7) 

ε𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = 𝑃𝑣𝑅𝑣ε𝑣 + (1 − 𝑃𝑣)𝑅𝑚ε𝑚 + 𝑑ε (8) 

ε𝑤𝑎𝑡𝑒𝑟 = 0.995 (9) 

In these formulas, εvegetation, εconstruction, and εwater refer to the land surface emissivity of vegetation, 

construction land and water bodies, respectively; Pv refers to the proportion of vegetation in mixed 

pixels; Rv, Rs, and Rm, respectively, represent the temperature ratio of vegetation, bare soil land, and 

construction land; and dε refers to the impact value of land surface emissivity, which is due to the 

interaction between vegetation and bare soil. For land surface coverage in which vegetation or bare soil 

area accounts for 100%, εv = 0.986 and εs = 0.972. For construction land, εm = 0.970. 

The proportion of vegetation in mixed pixels can be calculated by the following formula [45]. 

𝑃𝑣 = [(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑠)/(𝑁𝐷𝑉𝐼𝑣 − 𝑁𝐷𝑉𝐼𝑠)]
2 (10) 
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In these formulas, NDVI refers to the normalized difference vegetation index because there is no 

detailed regional vegetation and soil spectrum. According to the research of Jimenez-Munoz et al. [47], 

NDVIv = 0.50 and NDVIs = 0.15 can be used to estimate the NDVI value of vegetation and bare soil areas. 

Rv, Rs, and Rm can be calculated by the following formulas. 

𝑅𝑣 = 0.9332 + 0.0585𝑃𝑣 (11) 

𝑅𝑠 = 0.9902 + 0.1068𝑃𝑣 (12) 

𝑅𝑚 = 0.9886 + 0.1278𝑃𝑣 (13) 

dε can be estimated by Pv, with formulas as follows. 

𝑃𝑣 ≤ 0.5, 𝑑ε = 0.0038𝑃𝑣 (14) 

𝑃𝑣 > 0.5, 𝑑ε = 0.0038(1 − 𝑃𝑣) (15) 

According to Formulas (7) to (15), the calculation of land surface emissivity can be simplified  

as follows: 

𝑃𝑣 ≤ 0.5, ε𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 = −0.0461𝑃𝑣
2 + 0.0652𝑃𝑣 + 0.9625 (16) 

ε𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = −0.0663𝑃𝑣
2 + 0.0854𝑃𝑣 + 0.9589 (17) 

𝑃𝑣 > 0.5, ε𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛 = −0.0461𝑃𝑣
2 + 0.0576𝑃𝑣 + 0.9663 (18) 

ε𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛 = −0.0663𝑃𝑣
2 + 0.0778𝑃𝑣 + 0.9627 (19) 

2.4.4. Atmospheric Transmittance (τ) Calculation 

According to atmospheric transmittance estimating equations [41], under the precondition of a high 

temperature in summer, the relations between the atmospheric transmittance (τ) and atmospheric 

moisture content (ω) are as follows. 

0.2 < ω ≤ 1.6, τ = 0.9184 − 0.0725ω (20) 

1.6 < ω ≤ 4.4, τ = 1.0163 − 0.1330ω (21) 

Because this is a good linear relationship between atmospheric moisture content (ω) and ground vapor 

pressure (e) [48], the following empirical formula is used to calculate atmospheric moisture content. 

𝑊 = 𝑎0 + 𝑎1𝑒 (22) 

For the Xuzhou area, a0 = 0.0397 and a1 = 0.1681. According to the Xuzhou climate year data set 

from the China Meteorological Data Sharing Service System, the average ground vapor pressure of 2013 

and 2014 are shown in Table 2. 

Land surface temperature images from four periods from 2013 to 2014 were calculated using the 

mono-window algorithm. According to the results of the land use classification, the boundary of the 

urban area mainly covered by construction land was extracted. The boundary has already been shown in 

Figure 1. The vector boundary of the urban area was used to mask LST images; then, the temperature 

and geographic coordinate data for each pixel were exported. Finally, the land surface temperature data 

were obtained. The land surface temperature distribution is shown in Figure 3. 
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Figure 3. (a) Land surface temperature distribution on 21 May 2013; (b) 03 September 2013; 

(c) 01 May 2014; (d) 22 September 2014. 

2.5. Urban Land Surface Moisture Inversion 

Tasseled cap transformation (TCT) was first put forward by Kauth and Thomas in 1976 [49], it is a 

useful tool for compressing spectral data into a few bands associated with physical scene characteristics 

with minimal information loss [50]. The first study on calculating TCT for TM data was conducted by 

Crist and Cicone [51], who also derived the Landsat TM TCT index. After Landsat 8 had been 

successfully launched, there was little research on a TCT index for Landsat 8 OLI data until Baig [50] 

derived new TCT coefficients that were more representative of vegetation and other land cover types.  

In this research, the moisture component of TCT was needed to extract the index of urban land surface 

moisture. The moisture coefficients of TCT for Landsat 8 OLI data are shown in Table 3. 

Table 3. Moisture coefficients of TCT for Landsat 8 OLI data [50]. 

Component Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 

Wetness(Moisture) 0.1511 0.1973 0.3283 0.3407 −0.7117 −0.4559 

Greenness −0.2941 −0.243 −0.5424 0.7276 0.0713 −0.1608 
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For Landsat 8 images, the original DN value range of each band was from 1 to 65355. Because this 

would lead to the band math results being too high to be analyzed conveniently, the following formula 

was used to simplify the DN value range before tasseled cap transformation was performed. 

𝐷𝑁𝑛𝑒𝑤 = (
𝑄𝐶𝐴𝐿

𝑄𝐶𝐴𝐿𝑚𝑎𝑥 − 𝑄𝐶𝐴𝐿𝑚𝑖𝑛
) × 255 (23) 

After tasseled cap transformation was completed, the images of the moisture component were 

obtained and then masked with the vector boundary of the urban area, which was extracted in  

Chapter 2.3.5, to produce moisture images of the urban area. After the moisture and geographic coordinate 

data of each pixel were exported, the urban land surface moisture (ULSM) data were finally obtained. 

3. Results 

3.1. The Trend of the Influence of Urban Land Surface Moisture on the Land Surface Temperature 

To investigate the influence of urban land surface moisture on the land surface temperature, a 2D 

scatter diagram of the LST vs. ULSM was made for each period to reflect the relationship between the 

two indicators. Because water bodies have obvious effects on the LST, water bodies in LST and ULSM 

images were masked before a 2D scatter diagram was made. The results are shown in Figure 4. 

  

(a) (b) 

  

(c) (d) 

Figure 4. (a) 2D scatterplot of the LST vs. ULSM on 21 May 2013; (b) 03 September 2013; 

(c) 01 May 2014; (d) 22 September 2014. The blue curve is the fitting curve of polynomial 

fitting of degree 4. 
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The scatter diagrams show that when ULSM reaches a particular value, the land surface temperature 

increases with the increase of ULSM; the areas in which the ULSM value is greater than this particular 

value can be called the “Effective Moisture Area”. The definition of the “Effective Moisture Area” is 

that it is a region with a high ULSM value that can have an alleviation effect on its own land surface 

temperature. To extract the “Effective Moisture Area”, polynomial fitting was performed on scatterplots 

by using Matlab 2013b. Polynomial fitting of degree 4 was chosen as the best fit. The results of 

polynomial fitting are shown in Table 4, and the fitting curves are drawn in Figure 4. 

Table 4. The coefficient of polynomial fitting. 

Coefficient 

Date 
a4(x

4) a3(x
3) a2(x

2) a1(x) a0 R2 

21 May 2013 −9.460 × 10−5 −0.008275 −0.2269 −2.0720 309.1 0.5129 

03 September 2013 −7.8330 × 10−7 −0.007263 −0.2017 −1.618 309.0 0.5006 

01 May 2014 −1.8850 × 10−4 −0.0002262 −0.1283 −1.519 303.1 0.5043 

22 September 2014 −7.5600 × 10−4 0.01293 −0.0685 −1.459 302.1 0.3599 

It can be seen from Figure 4 that all of the fitting curves in (a) to (d) begin to decline after a particular 

extreme value point has been reached. This extreme value point can be obtained by calculating the roots 

of the first derivative of the fitting curve function. Setting the first derivative function equal to 0 and 

solving for its roots, the x values of the extreme points of the fitting curves were derived and are shown 

in Table 5. 

Table 5. The x value of extreme value point. 

Date x Value of Extreme Point 

21 May 2013 −6.8903 

3 September 2013 −5.5328 

1 May 2014 −6.3189 

22 September 2014 −5.6224 

The areas in which pixel values were greater than the x value of the extreme point in the ULSM 

images, the “Effective Moisture Areas”, were extracted. This demonstrates that urban land surface 

moisture has a negative influence on land surface temperature within a certain range. 

3.2. The Effect of ULSM on the LST of Surrounding Areas 

3.2.1. “High Efficiency Moisture Areas” Extraction 

Because it was demonstrated that ULSM has a negative influence on the LST in the “Effective 

Moisture Area”, the effect of the influence of “Effective Moisture Area” on the land surface temperature 

of its surrounding areas was studied further. Because not all “Effective Moisture Areas” had significant 

effects on the land surface temperature in the surrounding areas, the average value of ULSM in the 

“Effective Moisture Areas” was calculated; then; the areas in which their ULSM value reached the 

average level were extracted (Table 6). These areas were defined as “High Efficiency Moisture Areas”. 
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Table 6. The average value of ULSM in “Effective Moisture Areas”. 

Date The Average Value of ULSM 

21 May 2013 −0.7009 

03 September 2013 0.0628 

01 May 2014 −0.3129 

22 September 2014 −0.6986 

A “High Efficiency Moisture Area” is a region in which the ULSM value is high enough to have 

obvious effects on the land surface temperatures of its surrounding areas within a certain radius.  

The difference between a “High Efficiency Moisture Area” and an “Effective Moisture Area” is that the 

former’s ULSM value is higher, which not only can reduce its own temperature but also has an 

alleviating effect on the temperature of the surrounding areas within a certain radius. To demonstrate  

the differences of land cover types between “High Efficiency Moisture Areas” and other areas,  

some typical areas were chosen on Google Earth. Figure 5 shows that the land cover types for  

“High Efficiency Moisture Areas” were mostly vegetation and water bodies, and the other areas were 

mostly construction land. 

 

Figure 5. Typical areas of “High Efficiency Moisture Areas” and other areas. The pictures 

were extracted from Google Earth, and the pictures were taken on 14 December 2014. 

To analyze the effects of the influence of “High Efficiency Moisture Areas” on the land surface 

temperatures of the surrounding areas, “High Efficiency Moisture Areas” were set as core areas and then 
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5 buffer zones were established outward every 30 m using ArcGIS. The buffer zones of “High Efficiency 

Moisture Areas” are shown in Figure 6. 

 

Figure 6. (a) Buffer zones of “High Efficiency Moisture Areas” on 21 May 2013;  

(b) 3 September 2013; (c) 1 May 2014; (d) 22 September 2014. 

3.2.2. The Regression Analysis between the Changes of LST and ULSM in “High Efficiency Moisture 

Areas” and Their Surrounding Areas 

To explore the changing situation of LST and ULSM in core areas and buffer zones, the vector data 

of the core areas and buffer zones were overlaid onto LST images and ULSM images; then, statistical 

analyses of average values of LST and ULSM were performed in the core areas and for each layer of the 

buffer zones. The results are shown in Figure 7. 

Two types of trends can be seen in Figure 7: (1) The ULSM average value of the core areas has the 

highest value, and the average value declines with increasing distance from the core region; (2) the LST 

average value of the core area has the lowest value, and the average value increases with increasing 

distance from the core region. It can be seen that the LST average value increases, whereas the ULSM 

average value declines. 
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To determine if ULSM value has a negative effect on the LST of the surrounding environment, the 

outer buffer layer’s ULSM average value was subtracted from the inner buffer layer’s ULSM average 

value from the core areas to the last layer of the buffer zones. The ULSM Declining value (ULSMD) of 

each of two adjacent layers was thus obtained. Then, the LST increasing (LSTI) value of each of two 

adjacent layers was calculated by using the same method. Finally, a 2D scatterplot of ULSMD and LSTI 

was made and linear fitting was performed, with the result shown in Figure 8. 

 

Figure 7. Average value of the land surface temperature and urban land surface moisture  

in core areas and in each layer of the buffer zones. The zero point on the x axis refers to a 

core area. 

 

Figure 8. Fitting curve of the LST increasing value vs. the ULSM declining value. 
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In Figure 8, the result of the linear fit between the LST increasing value and the ULSM declining 

value is that there is a significant positive correlation between the values of these two indices.  

Areas with higher ULSM values have a larger cooling effect on the surrounding areas. In addition, within 

a certain radius, the greater the difference of ULSM value between neighboring areas, the more obvious 

the LST change. 

3.3. The LST Alleviation Effect Comparison with Several Commonly Used Indices 

3.3.1. Comparative Indicators Selection 

Previous studies have shown that vegetation has a very important effect on land surface temperatures 

in urban areas [12,14,20]. Latent heat exchange is higher in areas of urban regions with concentrated 

vegetation [52]. Studies have shown that the fractional vegetation cover (FVC) index [53], soil adjusted 

vegetation index (SAVI) [54] and Greenness vegetation index (GVI) [51] have a negative correlation 

relationship with the land surface temperature [21,22,55]. Therefore, the effect of the influence of 

ULSM, FVC, SAVI and GVI on the land surface temperature is a question that needs to be further 

studied. The equation for FVC is shown as formula 10 (PV), the equation for GVI is shown in Table 3 

(Greenness), and the algorithm for SAVI [21] is as follows. 

𝑆𝐴𝑉𝐼 =
ρ𝑛𝑖𝑟 − ρ𝑟𝑒𝑑

ρ𝑛𝑖𝑟 + ρ𝑟𝑒𝑑 + 𝐿
(1 + 𝐿) (24) 

where ρnir is near red band reflectance (band 5), ρred is red band reflectance (band 4) and L is an 

adjustment factor, set to minimum background effects (L = 0.5). 

Figure 9 shows that on the whole, GVI, SAVI and FVC decrease as the distance increases from the 

core areas. The value changes of GVI, SAVI and FVC compared with the changes of the land surface 

temperature in each layer of the buffer zones were basically the opposite. 

  

(a) (b) 

Figure 9. Cont. 
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(c) 

Figure 9. (a) GVI average value in the core areas and each layer of the buffer zones;  

(b) SAVI average value in the core areas and each layer of the buffer zones; (c) FVC average 

value in the core areas and each layer of the buffer zones. The zero points on the x axis refers 

to core areas. 

3.3.2. Indices Normalized and Univariate Linear Regression Analysis 

After the GVI, SAVI and FVC average values of the core areas and each layer of the buffer zones 

were extracted, the declining value of these three indices in each layer were calculated using the inner 

average value minus the outer average value in turn from the core areas to the last layer of the buffer 

zones. To compare the influence of the four indices on the land surface temperatures of the surrounding 

areas, normalized processing was used to eliminate the influence of the magnitude order. For instance, 

normalized processing of the SAVI declining value was as follows. 

𝑆𝐴𝑉𝐼𝐷𝑁 =
𝑆𝐴𝑉𝐼𝐷 − 𝑆𝐴𝑉𝐼𝐷𝑚𝑖𝑛

𝑆𝐴𝑉𝐼𝐷𝑚𝑎𝑥 − 𝑆𝐴𝑉𝐼𝐷𝑚𝑖𝑛
 (25) 

SAVID is the declining value of SAVI, SAVIDN is the normalized processing value of SAVID, 

SAVIDMIN is the minimum value of SAVID and SAVIDMAX is the minimum value of SAVID. The 

normalized processing declining value of ULSM, GVI, SAVI, and FVC and the increasing value of LST 

are shown in Table 7. 

Table 7. The normalized processing value of ULSMD, GVID, SAVID, FVCD and LSTI.  

C refers to core area, Li (i = 1,2,3,4,5) refer to each layer of buffer zones. 

Index 
21 May 2013 03 September 2013 

C-L1 L1-L2 L2-L3 L3-L4 L4-L5 C-L1 L1-L2 L2-L3 L3-L4 L4-L5 

ULSMDN 0.9274 0.4549 0.1303 0.0121 0.0473 0.8956 0.4340 0.1253 0.0582 0.0019 

GVIDN 0.7923 0.7452 0.2729 0.0975 0.1350 0.7319 1.0000 0.3620 0.1822 0.0000 

SAVIDN 0.9207 0.7970 0.2640 0.0990 0.1237 0.5966 1.0000 0.3456 0.1718 0.0000 

FVCDN 1.0000 0.4240 0.1257 0.0645 0.0680 0.9605 0.6231 0.1853 0.0960 0.0000 

LSTIN 1.0000 0.3048 0.1382 0.0075 0.0485 0.7290 0.3086 0.1564 0.0814 0.0000 
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Table 7. Cont. 

Index 
01 May 2014 22 September 2014 

C-L1 L1-L2 L2-L3 L3-L4 L4-L5 C-L1 L1-L2 L2-L3 L3-L4 L4-L5 

ULSMDN 1.0000 0.4129 0.0971 0.0463 0.0000 0.7473 0.3324 0.1091 0.0618 0.0286 

GVIDN 0.7463 0.7175 0.2576 0.1445 0.0431 0.1951 0.2691 0.1907 0.1578 0.0869 

SAVIDN 0.5781 0.7439 0.2583 0.1439 0.0392 0.3146 0.0920 0.1058 0.1224 0.0734 

FVCDN 0.8599 0.3868 0.1235 0.0772 0.0288 0.1631 0.1381 0.0696 0.0664 0.0490 

LSTIN 0.8840 0.2858 0.1342 0.0681 0.0007 0.6386 0.1961 0.1004 0.0592 0.0182 

Univariate linear regression analysis was used between LSTIN and ULSMN, GVIN, SAVIN, and 

FVCDN. The results of the regression analysis are shown in Figure 10 and Table 8. 

  

(a) (b) 

  

(c) (d) 

Figure 10. (a) Linear regression between LSTIN and ULSMDN; (b) Linear regression 

between LSTIN and GVIDN; (c) Linear regression between LSTIN and SAVIDN; (d) Linear 

regression between LSTIN and FVCDN. 
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Table 8. Result of regression analysis between LSTIN and ULSMDN, GVIDN, SAVIDN, FVCDN. 

Index Correlation Coefficient Regression Equation RMSE P-Value 

LSTIN vs. ULSMDN 0.9790 y1 = 0.8804 x1 − 0.0027 0.0642 6.99 × 10−14 < 0.05 

LSTIN vs. GVIDN 0.7031 y2 = 0.7035 x2 + 0.0073 0.2240 5.44 × 10−4 < 0.05 

LSTIN vs. SAVIDN 0.6921 y3 = 0.6725 x3 + 0.0297 0.2274 7.21 × 10−4 < 0.05 

LSTIN vs. FVCDN 0.8939 y4 = 0.8430 x4 + 0.0256 0.1412 1.09 × 10−7 < 0.05 

It can be seen from Figure 10 and Table 8 that these four indices all have significant linear positive 

correlation with LSTIN within the confidence interval of 95%. In addition, LSTIN and ULSMDN have 

the best fitting effect with the highest correlation coefficient value of 0.9790 and the lowest RMSE value 

of 0.0642. On the other hand, LSTIN and SAVIDN have a poor fitting effect, with a lowest correlation 

coefficient value of 0.6921 and a highest RMSE value of 0.2274 compared with the other three indices. 

The univariate regression analysis reveals that the change of ULSM has a high correlation with the 

change of the land surface temperature in the surrounding areas. 

3.3.3. Grey Relational and Taylor Skill Analysis 

The fact that the declining value of ULSM had a higher correlation with the increasing value  

of the land surface temperature cannot statistically prove that the ULSM is more important than other 

indices of GVI, SAVI and FVC. Therefore, grey relational analysis was chosen for multi-factor 

correlation analysis. 

Grey relational analysis was first put forward by Julong Deng [56]. It is applied to measure the 

correlation degree between different factors based on similarity in the developing trends of these factors. 

Because the increasing value of the LST and the declining value of ULSM, GVI, SAVI and FVC have 

linear positive relationships, grey relational analysis was thought to be very suitable for calculating the 

various influence degrees of ULSM, GVI, SAVI, and FVC on land surface temperature changes. 

According to the regression equation in Table 6, the LSTIN predicted values (y1, y2, y3, y4) were 

calculated through ULSMDN (x1), GVIDN (x2), SAVIDN (x3) and FVCDN (x4), and then, 20 predicted 

data points for each index were exported in the order of time and buffer hierarchy (Figure 11). 

The variation trend of the ULSMDN predicted value was closest to the variation trend of the LSTI 

normalized index compared to the predicted value of the other three indices. In the theory of grey 

relational analysis, the correlation degree is in essence the difference of the geometric shape between 

different curves. Thus, the difference between different curves can be used to measure the relation 

degree. For instance, in Figure 11, for x = 1, when the values of y0(1), y1(1), y2(1), y3(1), and y4(1) are 

obtained, the difference between y0(1) and yi(1) (i = 1,2,3,4) can be described as the difference between 

curve 0 and curve i at x = 1. For a standard data array y0 with several comparison data arrays y1, y2, …, 

yn, the association coefficient ξ (yi) between the standard data array and each comparison data array in 

each moment (that is, each calibration on the x axis) can be calculated by the following formula. 

ξ(𝑘) =
|𝑦0(𝑘) − 𝑦𝑖(𝑘)| + ρ |𝑦0(𝑘) − 𝑦𝑖(𝑘)|𝑖⁡𝑘⁡

𝑚𝑎𝑥𝑚𝑎𝑥
𝑖⁡𝑘⁡

𝑚𝑖𝑛𝑚𝑖𝑛

|𝑦0(𝑘) − 𝑦𝑖(𝑘)| + ρ |𝑦0(𝑘) − 𝑦𝑖(𝑘)|𝑖⁡𝑘⁡
𝑚𝑎𝑥𝑚𝑎𝑥  (26) 

  



Remote Sens. 2015, 7 10755 

 

 

 

Figure 11. Change trends of the LSTIN predicted value and the LSTIN observation value. 

This formula gives the association coefficient of yi for y0 in k moment. y0(k) refers to LSTIN; yi(k)  

(i = 1,2,3,4) refers to the predicted value of LSTIN calculated by ULSMDN, GVIDN, SAVIDN and 

FVCDN; k refers to each point in the curve (k = 1,2,3,…,20); and ρ refers to the resolution coefficient, 

generally chosen as ρ = 0.5. The association coefficient of each data array in each moment has been 

shown in Table 9. 

Table 9. The association coefficient of each data array. 

k ξ1(k) ξ2(k) ξ3(k) ξ4(k) 

1 0.5711 0.3626 0.4136 0.6541 

2 0.7277 0.5223 0.4872 0.7605 

3 0.9057 0.8032 0.7830 0.9763 

4 0.9999 0.7846 0.7369 0.7741 

5 0.9641 0.8229 0.7948 0.8788 

6 0.8144 0.5453 0.4539 0.7000 

7 0.7786 0.3812 0.3863 0.5055 

8 0.8366 0.7019 0.7016 0.9079 

9 0.8841 0.8219 0.7961 0.9087 

10 0.9975 0.9730 0.8942 0.9071 

11 0.9766 0.4133 0.3472 0.6505 

12 0.7684 0.5228 0.5038 0.7903 

13 0.8289 0.8213 0.7827 0.9843 

14 0.8929 0.8597 0.8105 0.9175 

15 0.9882 0.8715 0.8184 0.8348 

16 0.9386 0.3339 0.3840 0.3426 

17 0.7260 0.9998 0.7038 0.8221 

18 0.9738 0.8592 1.0000 0.9409 

19 0.9721 0.8085 0.8254 0.9180 

20 0.9846 0.8326  0.8036 0.8362 

Average 0.8765 0.7021 0.6714 0.8005 
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Finally, the relation degrees were derived by calculating the average value of the association 

coefficients of each data array. The performance of four types of predicted results are presented in an 

adjusted Taylor diagram (Figure 12). 

 

Figure 12. Performance of the predicted values calculated by four indices (the statistics in 

the Taylor diagram); an ideal model would have a standard deviation ratio (σnorm) of 1.0 and 

a correlation coefficient of 1.0 (REF is the reference point). 

In this research, the Taylor diagram was adjusted by changing the correlation coefficient axis into a 

grey relation degree axis. A single point indicates the grey relation degree (Rd = ξ) and the ratio of the 

standard deviations (σ) between the prediction (σp) and the observation (σo) (σnorm = σp/σo). An ideal 

model would have a standard deviation ratio of 1.0 and a grey relation degree of 1.0, i.e., the reference 

point (REF) on the x axis [57]. Taylor skill (S) is a single value summary of a Taylor diagram where 

unity indicates perfect agreement with observations. Traditionally, skill scores have been defined to vary 

from 0 (least skillful) to 1 (most skillful), each point for any arbitrary data group [58,59] can be scored 

as follows: 

𝑆 =
2(1 + 𝑅𝑑)

(𝜎𝑛𝑜𝑟𝑚 + 1/𝜎𝑛𝑜𝑟𝑚)
2
 (27) 

The calculation results of ξ, σnorm, and S are shown in Table 10. 

Table 10. The association coefficient of each data array. 

Indicator y1 y2 y3 y4 

σnorm (σp/σo) 0.9790 0.7031 0.6921 0.8939 

Rd (ξ) 0.8765 0.7021 0.6714 0.8005 

Taylor skill (S) 0.9378 0.7536 0.7320 0.8890 
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4. Discussion 

In polynomial regressions, before the ULSM values reached the inflection value, the LST showed no 

obvious relationship with ULSM. This phenomenon is due to the urban land cover type of an impervious 

surface area (ISA) [3,60]. In comparison with vegetation, soil and water, the ULSM value of ISA is 

lowest because there is scarcely any water content in ISA, and ISA has a positive effect on the LST [61]; 

therefore, the ULSM index that was extracted from ISA pixels has no effect on the LST. 

For the linear regression between four indices change values and LST change values, the change 

value of the common vegetation indices GVI, SAVI and FVC showed a good fit with the LST increasing 

value (LSTI), especially the declining value of FVC. This is consistent with Gao [21], Ma [22], and Xu’s 

research conclusions [55]. However, the ULSM declining value (ULSMD) showed the best simulating 

effect with LSTI, with the highest correlation coefficient of 0.9790 and the lowest root-mean-square 

error of 0.0642. The order of the grey relation degrees was ξ1 > ξ4 > ξ2 > ξ3, which means that the 

predicted value of LSTI calculated from the value of ULSMD has the highest relation degree with the 

observations of LSTI. The order of Taylor skill was also S1 > S4 > S2 > S3. In comparison with the other 

three vegetation prediction models, the ULSM prediction model is most skillful. 

Whether from the results of the regression analysis with the land surface temperature or from the 

prediction results of the land surface temperature change values, the simulation effect of ULSM was 

better in comparison with the other three vegetation indices. Therefore, ULSM might be a better index 

for reflecting land surface temperature changes in urban areas. 

There was another notable result, that of the three vegetation indices, FVC showed a better 

performance in the land surface temperature simulation. The correlation coefficient, the grey relation 

degree and Taylor skill values between the FVC declining value and LST increasing value were 0.8939, 

0.8005, and 0.8890. Those values were significantly higher than the results of GVI and SAVI, so FVC 

is also an effective index for indicating land surface temperature change. 

Finally, it can be concluded that the areas (vegetation or water bodies) that have the power to reduce 

UHI effects can be comprehensively extracted by using the ULSM index, and the reduction can also be 

expressed by the value of ULSM. In addition, the simulation result for urban land surface temperature 

regulation effects obtained by using the ULSM index is better than that achieved by using common 

vegetation indices. 

5. Conclusions 

As a new index for indicating the alleviation effects of urban heat islands, the urban land surface 

moisture (ULSM) index extracted from Landsat 8 images has shown good correlation with land surface 

temperatures. Comparisons with GVI, SAVI and FVC have been carried out based on regression analysis 

and buffer analysis, showing the following characteristics of ULSM. (1) In a particular urban area, 

ULSM has no obvious effect on the land surface temperature unless its value has reached an inflection 

point; when the ULSM value is above the value of an inflection point, it will have a significant regulating 

effect on the land surface temperature; (2) When a region’s ULSM value reaches the average level above 

the inflection point, ULSM can also have an obvious temperature lowering effect on the region’s 

surrounding areas within a particular radius. Therefore, the change of the ULSM value can be an 
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indicator of the land surface temperature change; (3) Comparing the temperature lowering effects of 

ULSM with the other three common vegetation indices, FVC, SAVI, and GVI, the grey correlation 

degrees and Taylor skill scores demonstrate that the lowering effect of ULSM on the environmental 

temperature is most obvious and that the contribution of ULSM to the alleviation effects of urban heat 

islands is more significant. 

This study of urban land surface moisture suggests that ULSM can be an effective index for exploring 

alleviation mechanisms for urban heat islands. One future research direction is studying the cooling 

effect of ULSM over a longer time scale and a broader regional scale. Other worthwhile future research 

should to develop a more accurate algorithm for extracting land surface moisture information in different 

urban areas. 
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