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Abstract: Information on foliar macronutrients is required in order to understand plant 

physiological and ecosystem processes such as photosynthesis, nutrient cycling, respiration 

and cell wall formation. The ability to measure, model and map foliar macronutrients 

(nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg)) at the 

forest canopy level provides information on the spatial patterns of ecosystem processes (e.g., 

carbon exchange) and provides insight on forest condition and stress. Imaging spectroscopy 

(IS) has been used particularly for modeling N, using airborne and satellite imagery mostly 

in temperate and tropical forests. However, there has been very little research conducted at 

these scales to model P, K, Ca, and Mg and few studies have focused on boreal forests. We 

report results of a study of macronutrient modeling using spaceborne IS and airborne light 
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detection and ranging (LiDAR) data for a mixedwood boreal forest canopy in northern 

Ontario, Canada. Models incorporating Hyperion data explained approximately 90% of the 

variation in canopy concentrations of N, P, and Mg; whereas the inclusion of LiDAR data 

significantly improved the prediction of canopy concentration of Ca (R2 = 0.80). The 

combined used of IS and LiDAR data significantly improved the prediction accuracy of 

canopy Ca and K concentration but decreased the prediction accuracy of canopy P 

concentration. The results indicate that the variability of macronutrient concentration due to 

interspecific and functional type differences at the site provides the basis for the relationship 

observed between the remote sensing measurements (i.e., IS and LiDAR) and macronutrient 

concentration. Crown closure and canopy height are the structural metrics that establish the 

connection between macronutrient concentration and IS and LiDAR data, respectively. The 

spatial distribution of macronutrient concentration at the canopy scale mimics functional 

type distribution at the site. The ability to predict canopy N, P, K, Ca and Mg in this study 

using only IS, only LiDAR or their combination demonstrates the excellent potential for 

mapping these macronutrients at canopy scales across larger geographic areas into the next 

decade with the launch of new IS satellite missions and by using spaceborne LiDAR data. 

Keywords: imaging spectroscopy; Hyperion; LiDAR; macronutrients; mixedwood boreal 

forest; partial least squares regression; species composition; functional types 

 

1. Introduction 

Macronutrients (nitrogen (N), phosphorus (P), potassium (K), calcium (Ca) and magnesium (Mg)) 

are required for plant physiological and ecosystem processes. For example, N is an important  

constituent of the chlorophyll molecule and the carbon-fixing enzyme ribulose-1, 5-bis-phosphate 

carboxylase/oxygenase and is thus directly related to photosynthesis [1]. Foliar N is also related to 

primary production and decomposition [2,3]. P is a component of nucleic acids, lipid membranes, sugar 

phosphates and ATP, which all have important roles in photosynthesis and respiration [1]. N and P are 

the major growth-limiting nutrients for plants worldwide [4]. Mg, like N, is also a constituent of the 

chlorophyll molecule and is directly related to photosynthesis [1]. K has a number of important roles in 

photosynthesis and respiration, including translocation of photosynthates into sink organs, maintenance 

of turgor pressure, activation of enzymes, N metabolism and reducing excess uptake of ions such as Na 

and Fe in saline and flooded soils [5,6]. Ca is required for cell division and cell wall synthesis, and light 

stimulates its uptake into chloroplasts where it is critical to the function of photosystem I [1,7]. 

The ability to measure, model and map foliar macronutrients at the canopy level allows us to examine 

these as proxies for assessing forest condition and stress, as well as ecosystem processes such as forest 

nutrient cycling and carbon (C) exchange (photosynthesis and net primary production (NPP)). 

Photosynthesis and NPP are of critical interest for the assessment of C fixation where forests function as 

sinks for C in the biosphere, given that global atmospheric carbon dioxide concentrations have been 

increasing at accelerating rates over the last several decades [8]. Macronutrients, in particular N, have been 

used as proxies for C exchange, or as parameters in ecosystem models. For example, canopy N 
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concentration was used to estimate the NPP of temperate forest ecosystems coupled with field 

measurements and IS data by Smith et al. [3] and as a parameter in the PnET-II forest process model [9]. 

Thus, spatially-explicit landscape and regional inputs of foliar N concentration have the potential to 

improve the accuracy of ecosystem models. 

A substantial portion of the published work regarding the prediction of nutrients at the canopy scale 

has focused on N. Although most canopy level studies have been conducted using airborne IS data, a 

few have examined satellite IS data. For example, Coops et al. [10] examined the utility of Hyperion IS 

data to predict N in eucalyptus forest canopies while Smith et al. [11] and Townsend et al. [12] compared 

the effectiveness of AVIRIS and Hyperion IS data to predict N concentration in temperate forest 

canopies. Canopy scale analysis to predict N from airborne IS data has been conducted in  

temperate [13–16] and tropical [17–20] forest ecosystems. Work in the boreal forest has been more 

limited. Ollinger et al. [21] and Knyazikhin et al. [22] did include a boreal coniferous forest site  

(i.e., Howland Forest, ME) in their studies examining N concentration across multiple ecosystems in the 

US, but more work is clearly needed in this biome.  

Research examining the detection of P, K, Mg and Ca using IS data also has been more limited. The 

majority of studies have utilized field spectroradiometers to predict P in agricultural fields [23,24] and 

P and K in the foliage of giant sequoia and eucalyptus trees [25,26]. P, K, Mg and Ca concentrations 

have been examined in savannah grasses [27] as well as for willow, olive, grass and heather foliage [28]. 

At airborne scales, AVIRIS data were used to estimate area-integrated P concentrations in  

tropical forests of Hawaii [29] and African savannah using HyMap data [30]. Mirik et al. [31]  

found a statistically significant relationship between a simple ratio vegetation reflectivity index  

(1129 nm/469 nm) and P concentration on an area basis in the forage vegetation of Yellowstone National 

Park using PROBE-1 data. The small number of studies demonstrates that there is a clear need to 

investigate the utility of IS data for the estimation of P, K, Mg and Ca in forest canopies. To our 

knowledge, there is no study that investigates the utility of spaceborne IS data for the prediction of these 

macronutrients; hence there is a need to test the performance of spaceborne IS data for predicting these 

macronutrients at the canopy level. This is of interest to the scientific community because of the 

upcoming IS satellite missions such as the Hyperspectral Infrared Imager (HyspIRI) and the 

Environmental Mapping and Analysis Program (EnMAP), which will provide continuous global 

coverage with high fidelity IS data [32,33]. 

Conventionally, prediction of foliar chemicals using IS data has relied on the presence of absorption 

features associated with chemical constituents (e.g., pigments, N, cellulose, lignin, proteins) and water 

along the electromagnetic spectrum [34]. However, foliar biochemical estimation at the canopy level is 

plagued with several challenges. First, reflectance is attenuated and absorption features are masked due 

to presence of water in fresh foliage especially in the shortwave infrared (SWIR) [35]. Second, interior 

air-cell interfaces of fresh foliage randomly scatter light, which interferes with the signal from the subtle 

absorption features [36]. Third, reflectance data collected over vegetation canopies from airborne and 

spaceborne platforms are contaminated because of absorption and scattering of the atmosphere as 

radiation travels through it. Fourth, signal-to-noise ratios (SNR) for current spaceborne IS sensors is 

low. Fifth, the recorded signal is a mixture of background reflectance composed of soil, water  

and/or other cover types in environments with incomplete canopy cover. As a result, the spectral 

response of the vegetation canopy is a combination of the interactions between radiation and canopy 
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structure (e.g., leaf area index, foliage clumping and orientation), atmosphere, background reflectance,  

sun-target-sensor geometry and absorption features associated with foliar chemicals, which constitute 

only a small fraction of the spectral response [22,37,38]. Therefore, it is difficult to relate and clearly 

identify mechanisms linking spectral data, in particular spaceborne spectral data, to nutrient 

concentration at the canopy level. 

Progress has been made to address some of these problems. For example, atmospheric correction 

algorithms significantly reduce the impact of absorption and scattering. Transformations of the spectrum 

such as taking the first and second derivatives have been proposed to account for illumination and 

background effects [39,40]. Continuum removal was developed to enhance the absorption features along the 

spectrum by Kokaly and Clark (1999). This method has been used to estimate foliar chemical concentrations 

using spectra collected in the laboratory, field and from the canopy using airborne sensors [30,41–43]. 

Partial least squares (PLS) regression has become a commonly used method to relate IS data to foliar 

chemistry. PLS regression reduces the full spectrum to a smaller number of independent factors and 

takes into account the covariance between the response variable and the predictor variables during the 

dimensionality reduction process, which makes it superior to other methods like principal components 

analysis, which only takes into account the variance in the predictor variables [44,45]. This reduction 

process also helps avoid the problem of overfitting due to the presence of many more predictor variables 

(wavelengths) than dependent variables (chemical concentration), which is the case with IS data. In 

addition, it allows the full spectrum available after preprocessing to be utilized as opposed to specific 

bands or spectral regions to estimate chemical concentration. PLS regression has been used with IS data 

to estimate biochemical concentrations in plant canopies [18,46,47]. 

The species composition and deciduous and coniferous forest types, i.e., functional types, of the 

mixedwood boreal forest may provide an indirect method to model macronutrients at the canopy scale. 

Species composition exerts a major control on spatial patterns of foliar and canopy chemistry and has 

been shown across tropical, Mediterranean and temperate forests [18,46,48–50]. The mechanism that 

links species composition and canopy chemistry is based on the concept of the ‘global leaf economics 

spectrum’ [51]; i.e., plant traits that control key chemical, structural and physiological properties such 

as leaf mass per area (LMA), specific leaf area, leaf lifespan, photosynthesis, leaf N and P fall onto a 

spectrum across plant species, and species globally converge towards these functional traits [51,52]. 

With particular reference to K, Ca and Mg, 55% to 66% of the variation in their concentrations were 

accounted for by species in lowland Bornean forests [50] and approximately, 23%, 50% and 47% and 

45%, 70% and 71% of the variance their concentrations were explained by species on lower fertility and 

higher fertility soils in the western Amazonian forests, respectively [53]. This is also likely to be the case 

in the mixedwood boreal forest, which contains deciduous and coniferous species and forest types. The 

canopy N:P ratio has been predicted and mapped based on the spatial variation generated by deciduous 

and coniferous forest types in a mixedwood boreal forest of northern Ontario [54]. 

LiDAR data have been used extensively to study boreal forest structure and physiology [55–59] as 

well as species identification [60]. The mixedwood boreal forest is structurally complex because the 

coniferous and deciduous species have different heights and canopy shapes. LiDAR can characterize 

this structural complexity since it provides information about the vertical and horizontal structure of the 

canopy [61]. If a covariate that establishes a link between the macronutrient concentration and LiDAR 

data can be identified, then it would be possible to predict macronutrients using LiDAR data. For 
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example, crown closure was identified as the canopy structural metric that made it possible to relate 

LiDAR data to canopy N:P ratio in the mixedwood boreal forest [54]. 

Given the importance of species and forest types in controlling forest structure and foliar/canopy 

chemistry, we hypothesize that canopy macronutrient concentrations for a mixedwood boreal forest in 

northern Ontario can be modeled using IS and LiDAR data. To test this hypothesis, we examine 

spaceborne IS and airborne LiDAR data. Our objectives are: (i) to evaluate the utility of spaceborne IS 

data to estimate canopy macronutrient (N, P, K, Ca and Mg) concentrations; and (ii) to determine the 

potential for LiDAR data to improve the estimation of canopy nutrients by incorporating canopy 

structural information. 

2. Materials and Methods 

2.1. Study Site 

This research was conducted at the mature mixedwood site at the Groundhog River Flux Station 

(GRFS); one of the stations of the Canadian Carbon Program (formerly the Fluxnet-Canada Research 

Network). The site is located approximately 80 km southwest of Timmins, Ontario, Canada (Figure 1a). 

A flux tower, 41 m tall with a 1 km footprint, is located at the site (Figure 1b,c). The site is representative 

of a mature boreal mixedwood forest with a patchy mixture of five primary tree species including 

trembling aspen (Po-Populus tremuloides Michx.), white birch (Bw-Betula papyrifera Marsh.),  

white spruce (Sw-Picea glauca [Moench] Voss), black spruce (Sb-Picea mariana [Mill.] B.S.P.),  

balsam fir (Fb-Abies balsamea [L.] Mill.), and distinct patches of northern white cedar (Cw-Thuja  

occidentalis [L.]). A total of 34 circular plots (11.3 m radius) were established using a stratified sampling 

scheme within the 1 km radius of the tower to capture the major species associations (Figure 1c). Field 

and remote sensing data used in this study were collected as part of the Canadian Carbon Program and 

the remote sensing and forest mensuration data have been used in previous studies [54,55,62]. 

2.2. Field Data 

Multiple foliage samples were collected from the upper sunlit portions of the canopy from five trees 

in each of six different sampling plots for all species except black spruce for which 13 trees were sampled 

in July 2005 (Figure 1c). The number of leaves collected from each tree ranged from 10 to 40 leaves for 

deciduous species, and 400–1500 needles for coniferous species. Samples were analyzed at the inorganic 

laboratory of the Ontario Forest Research Institute (Sault Ste. Marie, Ontario) to determine the foliar 

concentration of N, P, K, Ca and Mg. Total N in the foliage was determined through the conversion of 

all forms of N into N2 by dry combustion. The Kjeldahl method was used to extract the cations of P, K, 

Ca and Mg, which were measured using inductively coupled plasma-atomic emission spectroscopy. 

Average nutrient concentration for each species was calculated by averaging the results of the foliage 

samples. To scale the macronutrient concentration from leaf level to canopy level in each plot, the 

average nutrient concentration of a given species was multiplied by its species presence weighted by its 

biomass according to the formula below: 
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 . = .  (1)

where i represents a given species in plot, avg.nuti represents the average nutrient concentration for 

species i, and fi is the biomass fraction of species i within the plot which is calculated by dividing the 

total biomass of species i by the total biomass of all species within the plot. 

 

Figure 1. (a) Location of the Groundhog River Flux Station (GRFS). (b) Flux tower footprint 

at the mixedwood forest at the GRFS. (c) Plot layout and sample plot locations at the 

mixedwood forest site. Sw = white spruce (Picea glauca); Cw = northern white cedar (Thuja 

occidentalis); Sb = black spruce (Picea mariana); Bw = white birch (Betula papyrifera);  

Po = trembling aspen (Populus tremuloides); Fb = balsam fir (Abies balsamea). 

Forest mensuration data were collected in 2003 and 2004 in accordance with Fluxnet-Canada 

protocols [63] (now known as the Canadian Carbon Program). Diameter at breast height (dbh), height 

to the top of the crown, crown width taken along two axes assuming an elliptical shape, and species were 

recorded for each tree with a dbh greater than 9 cm within each plot. Structural metrics describing canopy 

shape including crown closure (percentage of ground covered by tree crowns as viewed from above) and 
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height including average height (arithmetic mean of all tree heights), dominant height (maximum tree 

height), mean dominant height (mean height of the 100 largest trees ha−1), Lorey’s height (tree height 

weighted by basal area) and basal area were calculated for each plot from these measurements. Total 

aboveground biomass (kg·ha−1) for each plot was calculated summing the aboveground biomass of trees 

in the plot using the allometric equations developed for Ontario hardwoods and softwoods that 

incorporated dbh and tree height [64,65]. 

2.3. Remote Sensing Data 

Hyperion EO-1 data (400–2500 nm with 10 nm spectral resolution and 30 m spatial resolution) were 

collected for the GRFS in July 2005 to coincide with the foliar sample collection. Hyperion data have a 

lower SNR than airborne sensors; hence, they require significant preprocessing. First, bands that had no 

data or had very low SNR were omitted from the analysis (149 spectral bands across  

477–1346, 1487–1790 and 2032–2335 nm range were suitable for analysis). Second, scan lines that 

caused image striping were restored by taking the average of the adjacent lines. Subsequently, the data 

were atmospherically corrected using the fast line-of-sight atmospheric analysis of spectral hypercubes 

(FLAASH) program. FLAASH uses the MODTRAN4 radiation transfer code to convert radiance at the 

top of the atmosphere to reflectance at the surface pixel by pixel. Following atmospheric correction, 

geometric correction was completed using a 0.5 m resolution digital elevation model (DEM) generated 

from high-density (3–8 pulses m−2) discrete return LiDAR data with first and last returns. LiDAR data 

were collected at a flying altitude of 244 m in August, 2003 by Airborne 1 Corp. (El Segundo, CA, USA) 

using the ALTM 2050 (Optech Inc., Toronto, Ontario, Canada) with positional error of 13 cm in the x 

and y directions and less than 15 cm in the z direction [66] (Optech Inc, 2002). The final root-mean-

square error (RMSE) of the georectification was less than one third of a Hyperion pixel size, i.e., less 

than 10 m. Continuum-removed spectrum of Hyperion reflectance data were obtained for each plot. 

Metrics that characterize the vertical and horizontal canopy structure (e.g., percentiles of height, 

maximum height, mean, standard deviation (SD), and coefficient of variation (CV = SD/mean)) were 

derived from the same LiDAR data described above. Since raw LiDAR data are referenced to an ellipsoid 

or datum, they need to be converted to heights above the ground before relating them to forest 

mensuration data such as tree/canopy height. A DEM with 0.5 m resolution was generated from ground 

returns using spline interpolation and was validated using 29 independent survey-grade GPS  

z-coordinates (slope = 1.02, R2 = 0.99) [67]. Ground elevations for each LiDAR point derived from the 

DEM was subtracted from the corresponding first return LiDAR points to obtain height above ground 

of the canopy, i.e., canopy height model (CHM), from which the LiDAR metrics were calculated for 

each plot. 

2.4. Statistical Analysis 

Analysis of variance (ANOVA) was conducted to calculate the amount of variance explained by 

species and functional types in macronutrient concentrations. Multiple mean comparisons between 

species for each macronutrient were carried out by Tukey’s honest significance test. Principal component 

analysis (PCA) was used to observe the distribution of macronutrient concentrations across species. PCA 

results were displayed using principal components 1 and 2. 
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We used PLS regression to relate Hyperion continuum-removed spectrum to canopy macronutrient 

concentration at the plot level. PLS regression reduces the full spectrum to a smaller number of 

independent factors and takes into account the covariance between the response variable and the 

predictor variables during the dimensionality reduction process, which makes it superior to other 

methods like principal components analysis, which only takes into account the variance in the  

predictor variables [44,45]. It is an appropriate method to analyze IS data, which usually contains  

many more predictor variables (wavelengths) than dependent variables (macronutrient concentration). 

PLS regression has been used with IS data to estimate biochemical concentrations in plant  

canopies [18,42,47]. We first conducted PLS regression analysis only using Hyperion continuum-

removed spectrum. To test the contribution of LiDAR data to explain the variance in macronutrient 

concentration, we then carried out PLS regression analysis combining Hyperion and LiDAR data. 

Variables were standardized (i.e., mean-centered and scaled) prior to PLS regression analysis. We used 

the minimum predicted residual sum of squares (PRESS) RMSE criterion to decide on the number of 

factors selected for a given PLS model. PRESS RMSE is calculated by performing the leave-one-out 

cross-validation method where residuals are calculated by iteratively leaving one plot out of the analysis. 

PRESS RMSEs (hereafter called prediction RMSE) were reported on the plots showing model fits. For 

each macronutrient predictive model, standardized regression coefficients and variable importance of 

projection (VIP) values were calculated. The regression coefficients indicate the importance of each 

predictor variable for the prediction of the response variable. VIP shows the contribution of each 

independent variable to the model for both predictor and response variables. VIP values less than 0.8 

indicate insignificance in terms of variable contribution according to Wold’s criterion [68]. Thus, a small 

coefficient and VIP value for a predictor variable suggests that the given variable is not contributing to 

the PLS model. 

Canopy macronutrients and structure relationships were examined at the plot level to help identify 

suitable LiDAR metrics. Since most of these metrics were not normally distributed, non-parametric 

correlation test (i.e., Spearman’s test) was used. Predictive models of canopy level macronutrient 

concentration were generated from LiDAR metrics using multiple linear regression. Models containing a 

maximum of two variables were generated to avoid overfitting and multicollinearity was avoided by 

allowing a maximum variance inflation factor (VIF) of 5. The residuals were tested for normality using 

the Shapiro–Wilk test to satisfy the normality assumption of the F distribution, which is used to test for 

model significance. As in PLS models, model validation was performed by leave-one-out cross-validation 

and was reported as percent of the mean. 

2.5. Generation of Canopy Macronutrient Maps 

We generated maps to be able to visualize the spatial distribution of macronutrient concentration at 

the canopy scale at GRFS. The maps were generated by applying the standardized coefficients derived 

from the PLS regression models to the respective bands of the Hyperion image for each macronutrient.  
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3. Results 

3.1. Variation of Macronutrient Concentration by Species and Functional Type 

Foliar concentrations of N, P and Mg are higher for the deciduous species. Trembling aspen and white 

birch have significantly greater concentrations of these macronutrients than coniferous species. Black 

and white spruces have the lowest concentrations of these macronutrients. There is more overlap 

between the functional types for K and Ca foliar concentration and the difference in Ca concentration 

between functional types is insignificant (Figure 2). 

Figure 2. Boxplots of foliar macronutrient concentration: Units of concentration are %. n = 5 

for all species except black spruce (n = 13). Lowercase letters denote significant differences 

in macronutrient concentration among species (p ≤ 0.05). Po = trembling aspen; Bw = white 

birch; Fb = balsam fir; Sw = white spruce; Cw = white cedar; and Sb = black spruce. 
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The PCA results showed that 87% of the variance in macronutrient concentration could be explained 

by two principal components (Figure 3). The first component is an average of all macronutrients except 

Ca, which only has small contribution to the first component. The second component is dominated by 

Ca. It can be seen that coniferous species are clustered together at the lower end of principal component 

1 indicating lower concentrations of N, P, K and Mg. Deciduous species are grouped together at the 

higher end of component 1 indicating that they have greater concentrations of these four macronutrients. 

However, deciduous species are distinctly separated from each other along component 2. This indicates 

that Ca concentration of trembling aspen is greater than white birch. Indeed, white birch has the lowest 

Ca concentration among all species. Coniferous species tend to have a gradient of Ca concentration. 

 

Figure 3. Principal component analysis (PCA) of foliar macronutrient concentrations across 

species. Po = trembling aspen; Bw = white birch; Fb = balsam fir; Sw = white spruce;  

Cw = white cedar; and Sb = black spruce. 

 

Figure 4. Amount of variance explained by species and functional type in foliar 

macronutrient concentration. ns indicates insignificant difference (p > 0.5). 
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Species and functional types explain most of the variance in macronutrient concentration at the foliar 

level. Variance ranging from 67% to 97% was explained by species; the lowest for Ca and the highest for 

N. Functional type explained lower macronutrient variance than species. In particular, only 4% and 33% 

of the variance were explained by functional type for Ca (p = 0.23) and K concentration (Figure 4). 

3.2. Relationships between Canopy Structure and Macronutrients 

All of the macronutrients, with the exception of Ca, have significant correlation with crown closure, 

whereas Ca exhibits significant correlation with height, as do K and Mg (Table 1). 

Table 1. Spearman’s correlation coefficients between macronutrient concentration and 

canopy structural metrics. Units of concentration are %. (* and ** denote significance at  

p < 0.01 and p < 0.0001, respectively). 

 N P K Ca Mg 

Dominant Height (m) 0.34 0.33 0.48** 0.71* 0.47** 
Mean Dominant Height (m) 0.34 0.33 0.49** 0.70* 0.46** 

Lorey's Height (m) 0.42 0.41 0.52** 0.65* 0.51** 
Average Height (m) 0.32 0.30 0.41 0.48** 0.39 

Crown Closure 0.74* 0.74* 0.69* 0.18 0.76* 
Basal Area (m2·ha−1) 0.45** 0.46** 0.63* 0.56** 0.55** 

Biomass (kg·ha−1) 0.38 0.38 0.52** 0.48** 0.48** 

The relationship of macronutrients with basal area is stronger for K, Ca and Mg compared to N and 

P and there is no significant correlation between biomass and N and P (Table 1). When N and Ca 

concentration are plotted against crown closure and dominant height, the relationship of species 

composition and functional type with macronutrient concentration becomes clear (Figure 5). Low N 

levels are characteristic of plots dominated by black spruce and other coniferous species, whereas high 

N levels are characteristic of plots dominated by white birch, trembling aspen and their mixtures. On the 

other hand, white birch dominated plots represent the lowest end of the range for Ca concentration. The 

relationships of P, K and Mg with crown closure were very similar to that of N and crown closure. 

 

(a) 

Figure 5. Cont. 
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(b) 

Figure 5. The relationship between (a) N concentration and crown closure, and (b) Ca 

concentration and dominant height at the plot level. Red line is the linear fit. Bf = balsam fir; 

Sb = black spruce; Po = trembling aspen; Bw = white birch; Cw = white cedar;  

mix1 = mixed deciduous; mix2 = mixed deciduous and conifer; and mix3 = mixed conifer. 

3.3. Predictive Models with IS Data 

PLS models derived using Hyperion data explained 91%, 93% and 86% of the variation in canopy N, 

P and Mg concentrations with four, five and four factors, respectively. On the other hand, only 8% and 

31% of the variation in canopy Ca and K concentrations were accounted for IS data with large prediction 

RMSEs (Figure 6). These graphs reflect the transition between functional types and species composition 

at GRFS. Basically, PLS analysis is capturing this functional type variation. Plots dominated by 

trembling aspen and mixtures of aspen and birch tend to cluster at the high end while plots dominated 

by black spruce and mixtures of the coniferous species tend to cluster at the low end of the range for N, 

P, K and Mg for the PLS models (Figure 6). Examination of the coefficients and VIP plots reveal that 

all portions of the spectrum, although with greater contributions by the visible and SWIR regions, 

contributed to explain the variance in concentrations of N, P and Mg (Figures 7 and 8). Only visible and 

SWIR regions of the spectrum contributed for predicting K and Ca concentrations and the coefficients 

for their predictive models were two orders of magnitude smaller than the coefficients of other 

macronutrients’ models (Figures 7 and 8). 
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Figure 6. Scatterplots of observed vs. predicted macronutrient concentrations. Left column 

shows PLS model fits using only IS data and right column shows PLS model fits using IS 

and LiDAR data together of N, P, K, Ca and Mg, respectively. Concentration units are %. 

RMSEs are leave-one-out cross validation errors of standardized data. Red line indicates the 

1:1 relationship. Fb = balsam fir; Sb = black spruce; Po = trembling aspen; Bw = white birch; 

Cw = white cedar; mix1 = mixed deciduous; mix2 = mixed deciduous and conifer; and  

mix3 = mixed conifer. 
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Figure 7. Standardized coefficients for the partial least squares (PLS) regression predictive 

models. Left column shows the coefficients for the models derived using only IS data and 

right column shows the coefficients for the models using IS and LiDAR data together for N, 

P, K, Ca and Mg, respectively. The black line in the right column graphs represents LiDAR 

data. The x-axis in the right column graphs represents the same 149 wavelengths in the left 

column graphs and additionally the LiDAR data. The red line indicates zero. 
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Figure 8. Variable importance of projection (VIP) values for the partial least squares (PLS) 

regression predictive models. Left column shows the values derived using only IS data and 

right column shows the values using IS and LiDAR data together for N, P, K, Ca and Mg, 

respectively. The black line in the right column graphs represents LiDAR data. The x-axis 

in the right column graphs represents the same 149 wavelengths in the left column graphs 

and additionally the LiDAR data. The red line indicates Wold’s criterion value of 0.8. 
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model was 10-fold greater than the PLS model and the prediction RMSE was the lowest among all of 

the macronutrients (Table 2). The reason Ca concentration is much better predicted with the LiDAR data 

is because dominant height follows a similar distribution across species to the foliar concentration of Ca. 

For instance, unlike the other macronutrients, white birch is at the lowest end of the Ca range instead of 

black spruce (Figure 5b). The amount of variance explained for K concentration more than doubled 

compared to the IS model (from 31% to 68%) with a single variable LiDAR model. Fiftieth percentile 

of height was consistently selected for all macronutrient predictive models and maximum height was 

selected in three of the models (Table 2).  

Table 2. Predictive models generated from LiDAR structural metrics using multiple linear 

regression. RMSEs are reported as percent of the mean. 

Nutrient LiDAR Metric R2 
Adjusted 

R2 
Residuals 
Shapiro 

Prediction 
RMSE 

N 50th perc. ht., max. ht. 0.71 0.69 0.97         0.37 19.5 
P 50th perc. ht., max. ht. 0.65 0.63 0.96         0.30 12.9 
K 50th perc. ht. 0.68 0.67 0.97         0.45 13.9 
Ca 50th perc. ht., cv. 0.80 0.79 0.98         0.75 9.4 
Mg 50th perc. ht., max. ht. 0.77 0.76 0.96         0.32 13.8 

3.5. Predictive Models with IS and LiDAR Data 

Combination of IS and LiDAR in the PLS regression analysis further improved the prediction 

accuracy for N, K, Ca and Mg compared to models derived from only using IS and only using LiDAR 

data. For these macronutrients, the amount of variance explained increased and the prediction RMSEs 

decreased (Figure 6). However, prediction accuracy for P decreased when IS and LiDAR data were 

combined in the PLS regression analysis compared to models derived from only using IS and only using 

LiDAR data. Amount of variance decreased from 95% to 43% with increase in prediction RMSE to 1.01 

from 0.84 compared to the IS models (Figure 6). Most of the LiDAR metrics contribute to explain 

variance in macronutrient concentrations though it is most evident in Ca and K predictions where model 

coefficients increased by one- to two-fold compared to the IS only models and there are sharp increases 

in the VIP values (Figures 7 and 8). On the other hand, model coefficients decreased by two-fold and 

the contribution of NIR portion decreased for P prediction (Figures 7 and 8). 

3.6. Spatial Distribution of Canopy Macronutrient Concentration 

The general pattern of spatial distribution of macronutrients at the canopy of GRFS mixedwood forest 

is very similar (Figure 9). This pattern basically reflects the functional type distribution at the site. The 

areas that are low in the concentration of macronutrients are dominated by black spruce and mix of other 

coniferous species. Likewise, the areas that have high concentrations of macronutrients are dominated 

by deciduous species. The pattern appears to be slightly less evident for Ca and K for which the very 

low concentration areas to the north and west are diminished in size (Figure 9). 
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Figure 9. Spatial distribution of macronutrient concentration at canopy level at Groundhog 

River Flux Station (GRFS). Units of concentration are %. Maps are generated from partial 

least squares (PLS) regression models using Hyperion data. 

4. Discussion 

Foliar macronutrient concentrations vary by species composition and functional types at GRFS, 

which agrees well with similar studies conducted in different ecosystems. McNeil et al. [48] showed that 

93% of the spatial variation in foliar N was explained by species composition in temperate mixedwood 

forests of the Adirondack Park, New York. Similarly, 58% of the variation in foliar N was accounted for 

by plant community type in a Mediterranean ecosystem in California [46]. Species composition 
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explained 66%, 60%, 63%, 57% and 60% of the variation in foliar N, P, K, Ca and Mg, respectively, in 

a lowland tropical forest in Borneo [50]. In Amazonian tropical forests, species composition explained 

78%, 38% and 28% of the variation in foliar N, P and Ca, respectively [18]. Asner et al. [49] also 

determined that species were the major factor causing chemical variance in Australian tropical forests. 

Site characteristics including soil quality, slope, aspect, and elevation also contribute to chemical 

variation, which we did not account for in our study. However, from our observations we know that pure 

black spruce patches are found on the boggy, low-nutrient sections of the site and thus reflect the soil 

quality indirectly. Since the GRFS site has minimal elevation gradients, it is unlikely that site 

characteristics will contribute much to the variation in foliar macronutrients at the site. 

Our estimates of N, P and Mg using spaceborne Hyperion data are better than the few other studies 

that were conducted using spectroradiometer and airborne data whereas our estimates Ca and K are 

worse. For example, canopy P concentration in African savannah grass was predicted with an R2 of  

0.63 and RMSE of 28% using airborne IS data [30]. The simple ratio vegetation index  

(1129 nm/462 nm) calculated from airborne IS data was correlated with P (R2 = 0.65) in the forage 

vegetation canopy composed of grasses, sedges, forbs, sagebrush and willow in Yellowstone National 

Park [31]. Predictive models with R2 values of 0.73, 0.67, 0.77, 0.17 and 0.33 for N, Ca, Mg, P and K, 

respectively, were reported for greenhouse-grown tropical grass canopies using the continuum removal 

technique in the 550–750 nm range using spectroradiometer data [43]. One reason for the difference 

between the amount of variance explained in Ca concentration between our study and this study may be 

related to the low correlations of Ca with other macronutrients in our dataset compared to theirs where 

Ca exhibited very significant correlations with N and Mg. In a previous study using spectroradiometer 

data and the continuum removal technique, the authors successfully modeled N, Ca, Mg, P and K 

concentrations (i.e., R2 values of 0.70, 0.50, 0.68, 0.80 and 0.64, respectively) for a canopy of five grass 

species [27]. Meanwhile, Ferwerda and Skidmore [28] modeled N, Ca, Mg, P and K (R2 values of 0.76, 

0.65, 0.56, 0.85 and 0.73, respectively) from reflectance collected from olive, heather, willow and 

mopane leaf samples using stepwise regression where up to four bands were included in the models. In 

the studies cited so far, the prediction accuracy for Ca is consistently better than reported here. In addition 

to the correlation between macronutrients, this may be a result of the macronutrients having significant 

relationships with crown closure at GRFS. Crown closure reflects the amount of green foliage in the 

canopy and directly controls the spectral response collected over the canopy. Crown closure was 

identified as the biophysical variable linking spectral data to canopy N:P ratio over two seasons at the 

same site [54] and it was also found to be controlling the spectral response in jack pine stands of northern 

Ontario, Canada [69]. 

Observed vs. predicted graphs of PLS models reflect the transition between functional types and 

species composition at GRFS. Basically, PLS analysis is capturing this functional type variation. The 

relationship between LiDAR and macronutrients is also based on the canopy biophysical variables, 

which display a gradient across functional types. The reason Ca concentration is much better predicted 

with the LiDAR data is because dominant height follows a similar distribution across species to the foliar 

concentration of Ca. This is clearly visible in the observed Ca vs. dominant height graph across plots. 

For instance, unlike the other macronutrients, white birch is at the lowest end of the Ca range instead of 

black spruce (Figure 5b). 
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Spatial distribution of canopy macronutrient concentration at GRFS mimics the functional type 

variation and thus, the spatial patterns of macronutrients are driven by the functional types’ distribution 

at the site. Forest type variation was also found to be the underlying factor in explaining the observed 

spatial patterns of canopy N:P ratio at this site [54]. 

The combination of IS and LiDAR data improved the prediction accuracy of N, K, Ca and Mg with 

very significant improvements especially for Ca and K. This is very important because information on 

the spatial distribution of these macronutrients at the canopy scale will allow researchers and forest 

managers to assess forest condition and stress and use this information to relate it to ecosystem processes 

such as forest nutrient cycling and C exchange. 

The ability to predict N, P and Mg concentration at the canopy scale using spaceborne IS data is very 

encouraging as it demonstrates the potential for mapping these macronutrients at the canopy scale across 

large geographic areas at lower cost. This study is a precursor to the feasibility of canopy scale 

macronutrient mapping across large regions of forest harvesting in the mixedwood boreal forest, which 

is not too far given the planned satellite IS missions to be launched within this decade such as  

NASA’s HyspIRI and ESA’s EnMAP. The data from these sensors will have higher SNR, and temporal 

and spatial resolution than currently available making it more likely to have success at 

predicting macronutrients. 

We used airborne LiDAR and spaceborne IS data (i.e., Hyperion) in this study. Both have limited 

geographic coverage since availability is based on user request. LiDAR data are costly to acquire. 

Hyperion data have low SNR, require significant preprocessing. These factors limit their widespread use 

by researchers. Given the cost disadvantage and geographic limitation of airborne LiDAR data, 

spaceborne LiDAR data such as Geoscience Laser Altimeter System (GLAS) should be tested to predict 

macronutrients. This study was conducted at one site representing the mixedwood boreal forest. It 

remains to be seen whether some canopy structural metrics can be identified linking foliar chemistry and 

remote sensing data in other ecosystems as well. Despite being collected two years prior to foliage 

sampling, the LiDAR data to macronutrients relationship is still strong because the canopy structure and 

height do not change substantially over that time period. 

One unexpected result of the study was the decrease in the prediction accuracy of P when IS and 

LiDAR data were combined. This is perplexing given the fact that P can actually be predicted with 

moderate accuracy (R2 = 0.63, prediction RMSE = 13%) using LiDAR data and with very high accuracy 

with IS data alone (R2 = 0.93, standardized prediction RMSE = 0.84). This needs to be tested in other 

studies to see whether similar results are obtained. 

Currently, scientific community is limited by the quality and continuous availability of IS data. There 

will be big strides in the field of canopy chemistry research if high quality and continuous IS data become 

available along with improvements in the methods to analyze spaceborne LiDAR data. 

5. Conclusions 

This study has examined the utility of spaceborne IS and airborne LiDAR data for modeling canopy 

macronutrient (N, P, K, Mg and Ca) concentrations in a mixedwood boreal forest. The mechanism that 

underlies the relationship between IS and LiDAR data and macronutrient concentration is the variation 

in macronutrient concentrations generated by interspecific and functional type differences at the site. 
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Specifically, crown closure and canopy height are the structural metrics that determine the relationship 

between macronutrient concentration and IS and LiDAR data, respectively. Spaceborne IS  

(i.e., Hyperion) data accounted for 91%, 93% and 86% of the variation in canopy N, P and Mg 

concentration, respectively. Combination of IS and airborne LiDAR data significantly improved the 

prediction accuracy of canopy Ca and K concentration but decreased the prediction accuracy of canopy 

P concentration. Using only LiDAR data, variance ranging from 65% to 80% in macronutrient 

concentration could be explained. The spatial distribution of macronutrient concentration at the canopy 

scale mimics functional type distribution at the site. The ability to predict canopy macronutrients using 

only IS, only LiDAR or their combination demonstrates the potential for mapping these macronutrients 

at the canopy scale across larger geographic areas with the availability of high quality, spatially and 

temporally continuous IS data such as HyspIRI and EnMAP planned to be launched within this decade 

and by using spaceborne LiDAR data such as GLAS. Studies testing spaceborne IS and LiDAR data 

should be conducted to predict macronutrients and other biochemicals in other ecosystems. 
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