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Abstract: Canopy base height (CBH) is a key parameter used in forest-fire modeling,
particularly crown fires. However, estimating CBH is a challenging task, because normally,
it is difficult to measure it in the field. This has led to the use of simple estimators (e.g.,
the average of individual trees in a plot) for modeling CBH. In this paper, we propose a
method for estimating CBH from airborne light detection and ranging (LiDAR) data. We
also compare the performance of several estimators (Lorey’s mean, the arithmetic mean
and the 40th and 50th percentiles) used to estimate CBH at the plot level. The method
we propose uses a moving voxel to estimate the height of the gaps (in the LiDAR point
cloud) below tree crowns and uses this information for modeling CBH. The advantage of
this approach is that it is more tolerant to variations in LiDAR data (e.g., due to season)
and tree species, because it works directly with the height information in the data. Our
approach gave better results when compared to standard percentile-based LiDAR metrics
commonly used in modeling CBH. Using Lorey’s mean, the arithmetic mean and the 40th
and 50th percentiles as CBH estimators at the plot level, the highest and lowest values for root
mean square error (RMSE) and root mean square error for cross-validation (RMSEcv) and R2
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for our method were 1.74/2.40, 2.69/3.90 and 0.46/0.71, respectively, while with traditional
LiDAR-based metrics, the results were 1.92/2.48, 3.34/5.51 and 0.44/0.65. Moreover, the use
of Lorey’s mean as a CBH estimator at the plot level resulted in models with better predictive
value based on the leave-one-out cross-validation (LOOCV) results used to compute the
RMSEcv values.

Keywords: canopy base height; CBH; forest fire; LiDAR; moving voxel

1. Introduction

The last two decades have seen an increasing trend in forest fire frequency and the amount of land
burned [1]. Extreme drought and the accumulation of fuels are the two major factors responsible for
this increase [2–5]. For example, in the European region alone, the number of forest fires taking
place annually is estimated to be 65,000, burning approximately half a million ha of forest [3]. Most
of these fires (about 85%) take place in the Mediterranean region alone (mostly Portugal, Spain and
Greece) [3–7]. Similarly, forest fires burn an average of 3.7 million ha of forest in the U.S. each year [1].

Forest fires can have a number of catastrophic consequences, including human casualties, destruction
of property and forest assets, financial implications (fire suppression and post-fire rehabilitation costs),
as well as ecological impacts. For example, in 2003, large forest fires in the districts of Castelo
Branco, Portalegre and Santerm in Portugal led to the death of 21 people and damages estimated at
over one billion euros [6,7], with more than one thousand people wounded. In another example, large
forest fires in Greece led to the deaths of 80 people in 2007 and burned 1710 buildings. The estimated
damage caused by these fires was 1.5 billion euros [8]. Forest fires also ravage boreal forests. Recently
(summer 2014), large forest fires (the largest witnessed in four decades) raged in central Sweden, leaving
at least one person dead and burning around 37,000 ha of forest [9,10].

Forest fires also play an important role in global carbon dynamics [11–13] by releasing a large amount
of carbon dioxide (CO2) gas into the atmosphere. Accumulation of CO2 gas in the Earth’s atmosphere
contributes significantly to climate change [14,15]. As forest fires can cause serious damage and have
other undesirable consequences, it is important that proper proactive measures be taken in order to:
(1) minimize the risk of such disasters happening; and (2) be able to predict the behavior of fires when
they break out.

Minimizing the risk of forest fire disasters is commonly done through fuel treatment practices, such
as thinning or prescribed fires, so as to reduce the amount of fuel accumulated over time [16]. Since
less fuel will be available to burn when fire breaks out, the intensity of the fire, as well as its rate of
spread will be greatly minimized [17,18]. This will not only make the task of containing the fire less
challenging, but it will also make the fire less destructive. In addition, being able to predict the behavior
of fire (e.g., intensity and rate of spread) is important for fire managers, because it will enable them
to make informed decisions in fire suppression (e.g., mobilization and allocation of resources). To this
end, fire behavior and growth simulation models, such as FARSITE(see [19]), are indispensable for fire
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managers. These models combine spatial and temporal information on topography, fuels and weather
with existing models for surface fire, crown fire, spotting, post-frontal combustion and fire acceleration
into a two-dimensional fire growth model [19].

To successfully model the behavior of forest fires or minimize their risk, however, good knowledge of
the spatial distribution of fuels in a particular area is required [20]. On the one hand, fire managers need to
know areas with excessive fuel loads, so that they can arrange resources for thinning and prescribed fires;
on the other hand, to benefit from fire behavior simulation tools, such as FARSITE, several data layers
pertaining to the fuel characteristics (metrics) in a particular area are needed [19]. Examples of these
metrics include canopy bulk density (CBD), canopy height (CH) and canopy base height (CBH) [21–23].
CBD refers to the amount of fuel per unit volume (measured in kg/m3). CH is the highest height at which
the canopy fuel density is greater than a critical threshold (normally 0.011 kg/m3), and CBH refers to the
lowest height at which canopy bulk density exceeds a threshold of 0.011 kg/m3 [21].

CBH describes the minimum amount of fuel required to propagate the fire from the surface fuel
layer to the canopy fuel layer and therefore plays a role as the most important factor in crown fire
initiation [23,24]. Crown fires are special in that they spread several times faster than surface fires,
and they burn more severely and with larger flames, making them more destructive and difficult to
control. Additionally, they can occur in a variety of forest types [25,26]. As a consequence, there has
been an increasing amount of literature on modeling CBH in recent years. Much of this literature is
based on current state-of-the-art remote sensing technologies, particularly light detection and ranging
(LiDAR) [27,28]. Unlike passive remote sensing technologies, such as aerial photographs, LiDAR is an
active remote sensing technology capable of penetrating forest canopies and providing 3D information
about the canopy structure [29].

In a study conducted by [23], for example, CBH was estimated for loblolly pine forests at the plot
level using both allometric equations and a software package known as CrownMass/FMAPlus. Unlike
many studies, this study used Lorey’s mean to estimate CBH at the plot level for a total of 50 sample
plots. Lorey’s mean is a weighted mean, which uses tree basal area as a weighting factor; thus, bigger
trees contribute more to the mean [30]. In this study, the difference in CBH estimated using the two
methods was relatively small (1.5 m), with Lorey’s mean giving a higher CBH estimate. In another
study, [31] used a data fusion (LiDAR and imagery) approach for estimating CBH and other canopy fuel
parameters. This study investigated which remote sensing dataset (LiDAR or imagery) could estimate
CBH more accurately and whether the fusion of the two could produce more accurate CBH estimates.
The results of this study showed that LiDAR alone provides more accurate CBH estimates (R2 = 0.78,
RMSE = 1.63 m) compared to imagery (R2 = 0.31, RMSE= 3.60 m), whereas fusion of the two led to a
small improvement in performance (R2 = 0.84, RMSE = 1.44 m).

LiDAR was also successfully used to estimate CBH in the studies by [21,22]. In the former study,
LiDAR metrics and field-measured fuel metrics were used to build regression models for predicting CBH
to develop maps for critical canopy fuel parameters, including CBH. The regression model for predicting
CBH developed in this study had R2 and RMSE values of 0.77 and 3.9 m, respectively. In the latter study,
LiDAR data were partitioned into cells, and cluster analysis was performed on each classified vegetation
cell to discriminate between understory and overstorey layers. CBH was taken to be the first percentile
of the overstorey layer.
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Although LiDAR has been used in many studies to estimate CBH and other critical canopy fuel
parameters, two major limitations are consistently reported by these studies. One, most of the models
proposed in these studies are species specific (e.g., [21,23,31]), and two, many studies report challenges
in measuring canopy fuel parameters in the field. The consequence of the former is that regression
models built in those studies cannot be applied directly to forests with different species, i.e., they are
limited to the area sampled in the respective studies and are likely to give unreliable results when used
outside the sampled area. The consequence of the latter, on the other hand, is that there has not been
a standard way for measuring canopy fuel parameters in the field, and hence, different studies adopt
different approaches for measuring canopy parameters in the field, particularly CBH. Since measuring
CBH accurately in the field is quite a difficult task [32], common practice has been to use the arithmetic
mean or weighted (Lorey’s) mean of tree crown base heights (CrBH) in a plot (e.g., [23,31,33]), due to
the fact that these two quantities are easy to measure or calculate.

Despite these challenges, previous studies have shown that LiDAR has a high potential to estimate
crown fuel parameters with a high degree of accuracy. To this end, standardization of field measurement
practices is of great importance. This importance is due to role of field measurements in calibrating
regression models used to estimate CBH from LiDAR data. This paper seeks to address this challenge
by proposing new LiDAR metrics for estimating CBH. The proposed metrics are derived (measured)
directly from LiDAR height information. Unlike the common practice of using LiDAR height percentile
information, the proposed metrics are not percentile-based. In particular, this paper aims to: (1) develop
and test new LiDAR metrics for estimating CBH; and (2) use the developed metric as an independent
variable in regression models to compare the different independent variables used to estimate CBH in
the field, namely the arithmetic mean, Lorey’s mean and percentile scores.

2. Material and Methods

2.1. Study Area

The study area is located about 340 m above sea level in Eastern Finland at the Koli Forest, which
belongs to the Lieksa municipality (about 63◦05′40′′N, 29◦48′31′′E) (see Figure 1). The area is known for
its white quartzite cliffs, steep topography and traditional landscapes. Over 70% of the region’s surface
area is forest land, and 20% is water. The forest is dominated by conifers (65% pine, 25% spruce, 7%
birch and 3% other species). The main tree species are Scots pine (Pinus sylvestris L.), and Norway
spruce (Picea abies (L.) Karst). The area is sparsely populated with a total area of 21,585 km2 and a
population of 175,000, which results in a population density of 9.8 inhabitants per square kilometer.
Figure 1 shows a map of Finland and the location of the study site. The forests in the study site feature
both natural and managed forests, with varying degrees of intensity. Conservation in the area is relatively
young and was imposed less than twenty years ago. Both forest classes contain undergrowth.

Forest fires in Finland are mostly caught early on, because the country is still populated densely
enough, and monitoring flights are frequent in the short hot season. However, as an example of
neighboring Sweden from 2014 shows, strong winds and canopy fires can still be a devastating condition
also in Finland.



Remote Sens. 2015, 7 8954

Figure 1. Map of Finland showing the location of the study area.

2.2. Experimental Data

Two kinds of experimental data were used in this study, namely LiDAR data and field data. The
following is a description of the data.

2.2.1. LiDAR Data

The LiDAR data used in this study were obtained free of charge from the National Land Survey
(NLS) of Finland (www.maanmittauslaitos.fi). The data were acquired in 2014 using an average flight
altitude of 2 km with a scan angle of ±20 degrees. The resulting average LiDAR pulse density was
0.5 pulses per square meter, with an offset of approximately 1.4 m between the measurements. The mean
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error for height was 15 cm at most, while the horizontal accuracy was 60 cm. The beam footprint at
ground level was 50 cm in diameter.

Information recorded for each LiDAR pulse includes the class of the pulse (ground or vegetation),
flight line number, time stamp of the outgoing pulse, X-, Y- and Z-coordinates, intensity and the
back-scattering order of the pulse. An automatic classification of the pulses into ground and vegetation
returns was performed, and the results were checked against a stereo model from aerial imagery by
the NLS.

LiDAR data used in the current article are of the same kind as the operational laser scanning of the
forests in Finland. In 2010, Finland decided to scan the entire country by airborne laser in ten year
cycles. The density chosen for this is roughly 0.5 returns per square meter. In the past, the scanners have
mostly used single pulse mode, but currently, multiple pulse mode is widely adopted. As the goal of the
current research is to calculate forest fire potential maps for the whole country, it has not been possible
to adjust scanning parameters, such as pulse density.

2.2.2. Field Data

Field measurements for crown fuels were collected in April 2014 for 26 circular plots equally
representing the dominant fuel types in the study area. Each plot covered an area of 256 m2

(radius = 9.03 m). A survey-grade Trimble GPS receiver was used to navigate to the plots and
to georeference plot centers, acquiring data for plot centers from an average of at least 100 Global
Navigation Satellite System (GNSS) locations.

Plot boundaries were measured using the Haglöff Vertex Laser Range Finder. The same instrument
was used to measure the height of each tree. The diameter at breast height (DBH) was measured for
all trees using a diameter tape. For each tree with a diameter at breast height (DBH) ≥ 8 cm in a plot,
the following properties were recorded: tree class, species, DBH, height, crown base height (CBH) and
crown class (dominant, co-dominant, intermediate and suppressed).

CBH was considered to be the distance between the ground and the lowest live branch in the crown
of a tree. Small isolated branches with leaves, separated from the main crown, were not considered as
indicating crown base height. The Haglöff vertex was used to measure CBH. The crown class of each
tree was recorded as described above. Table 1 presents a summary of the field plots used as ground data.

In addition to CBH measurements for individual trees in each plot, five pictures were taken from the
plot center facing in the four cardinal directions (N, S, E, W) and the sky. These photos were taken
to help as a visual aid later when analyzing and interpreting the experimental data. Figure 2 shows
examples of plot photos.

2.3. Methods

The method for estimating CBH from LiDAR data proposed in this paper is based on the idea of
a moving voxel. A voxel, or volumetric pixel, is an analogy of a pixel in 3D. The use of the voxel in
estimating CBH and other forest properties from LiDAR data has been reported in several past studies. In
these studies, the emphasis had been to use the voxel to characterize the vertical structure of the canopy
by dividing the LiDAR data into vertical bins (voxels) and counting the number of LiDAR hits in each
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bin (e.g., [34,35]). This paper takes a different approach and uses a moving voxel to locate gaps in the
LiDAR point cloud (and hence, in the respective forest) and then estimates the height of these gaps from
the ground. This information is then used to derive LiDAR metrics, which are used to estimate CBH as
independent variables in a linear regression. The main assumption behind the method is that tree crowns
tend to block most of the LiDAR pulses falling on them, thus creating a partial gap underneath the crown
(see Figure 3). The idea is to use a moving voxel to locate gaps and estimate their height relative to the
ground. It turns out that, as will be shown in the next section, the heights of these gaps strongly correlate
with field-measured CBH values and are the basis for the LiDAR metrics used in estimating CBH in
this paper.

To estimate CBH from LiDAR data, three main steps are performed: (1) initialization and data
pre-processing; (2) searching for gaps and estimating their height (gap mapping); and (3) LiDAR metric
generation and CBH estimation.

Table 1. Summary of field plots used in this study. The mean value for canopy base height
(CBH) is based on live trees in each plot.

DBH Height CBH

Plot ID No. of Trees Min Max Mean Min Max Mean Min Max Mean

1 17 9.9 33.7 19.4 2.0 28.8 15.0 0.0 11.7 6.3
3 1 17.5 17.5 17.5 16.0 16.0 16.0 3.1 3.1 3.1
4 21 8.5 42.6 13.7 6.9 26.2 13.0 2.8 9.2 6.1
5 3 10.9 23.8 19.4 11.4 18.8 16.3 0.0 1.0 0.3
6 32 8.0 20.0 12.1 6.0 16.0 11.4 0.4 5.7 3.3
8 4 9.8 29.1 23.5 6.6 21.8 14.6 0.5 18.5 8.8
10 19 9.0 37.3 19.9 9.4 23.6 17.2 4.7 12.5 8.9
11 29 8.3 59.3 18.4 6.1 24.4 15.7 0.5 14.7 7.5
12 16 8.4 34.3 21.6 6.6 25.8 17.8 5.7 15.3 11.0
13 16 6.8 46.0 21.4 8.4 26.5 19.4 0.2 16.9 8.5
14 16 8.2 37.5 20.8 3.3 27.1 10.8 0.3 11.9 3.2
15 24 9.0 32.8 17.9 1.7 22.8 13.1 1.0 10.8 6.5
16 14 8.3 36.5 17.2 5.8 19.8 11.3 0.8 6.6 3.6
17 24 8.0 28.9 11.4 5.5 16.5 9.3 0.0 3.2 2.2
18 6 19.0 31.4 26.8 22.2 29.1 25.7 8.7 16.9 14.3
19 19 8.6 42.0 26.0 5.8 26.1 19.7 1.2 16.2 9.6
20 26 7.5 27.0 16.0 7.7 22.6 14.9 3.6 10.8 7.9
21 35 8.8 39.4 19.3 3.2 26.7 16.7 0.9 14.4 6.2
22 43 8.8 22.8 13.3 7.1 16.4 11.5 0.5 8.9 5.2
23 16 13.9 39.7 24.9 12.3 28.2 21.9 1.5 12.1 5.2
24 24 9.3 37.0 22.2 6.1 24.8 17.3 1.4 14.2 4.0
26 28 8.0 27.2 16.0 5.9 21.8 13.3 0.7 11.0 3.7
27 28 8.7 35.0 16.9 7.0 23.8 14.6 1.7 12.8 4.9
32 22 8.0 17.1 10.0 1.8 13.9 9.0 0.9 5.1 2.6
33 14 8.0 11.8 9.3 5.9 8.8 7.4 0.4 4.5 2.3
44 20 9.7 30.8 18.6 5.1 21.2 13.4 0.9 10.3 3.3
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(a) (b)

(c) (d)

Figure 2. Examples of photos from one of the sample plots: (a) north facing; (b) south
facing; (c) east facing; (d) sky facing.

(a) (b)

(c)

Figure 3. Illustration of how a partial gap is formed (marked with a G) below a tree crown
(a) in a LiDAR point cloud (b) due to most of LiDAR pulses being blocked by the crown
and the absence of reflecting objects between the crown and the ground; (c) shows a partial
gap formed below the canopy in a real LiDAR point cloud.
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2.3.1. Initialization and Data Pre-Processing

The initialization and data pre-processing step sets the stage for subsequent steps. In this step, the
LiDAR data are normalized, i.e., the elevation of every point is subtracted from the DTM of the area,
so that each point represents height (from the ground), and then, all points with a height of less than
0.5 m (considered ground points) are discarded. Next, parameters governing the operation of the method
are determined and initialized. These parameters include: voxel width, voxel height, step size and
point threshold. Voxel width specifies the width and length of the voxel (i.e., the base), while voxel
height specifies the height of the voxel. Step size specifies the distance (in meters) that the voxel moves
horizontally (in the x-y plane), while point threshold specifies the maximum allowed number of points
in a voxel to be considered a gap. Suitable values for these parameters for a given LiDAR point cloud are
determined by experimenting on the field and LiDAR data. Values of these parameters used in this study
were 8 m, 2 m, 1 m and 3 points for voxel width, voxel height, step size and point threshold, respectively.
The choice of voxel width is influenced by point spacing in the LiDAR point cloud. If the width is too
small relative to the point spacing, there will be too many false gaps, and if the width is too big, small
gaps will be missed. Similarly, voxel height and step size are chosen, such that both small and large gaps
are detected. Finally, if the point threshold is too small, very few gaps will be detected; if it is too high,
there will be a large number of false gaps.

2.3.2. Gap Mapping

In this step, gaps in the LiDAR point cloud are located, and their heights relative to the ground are
estimated. This is achieved by the use of a moving voxel in the search space. The search space is taken
to be the box enclosing the pre-processed LiDAR point cloud with its origin at the point (Eastingmin,
Northingmin, 0), where Eastingmin and Northingmin refer to the smallest easting and the smallest northing
values in the point cloud, respectively (marked as P1 and P2, respectively, in Figure 4). Two kinds of
movement are employed in the search space: (1) horizontal movement; and (2) vertical movement.
Horizontal voxel movement is used to detect gaps, while vertical voxel movement is used to estimate the
heights of the detected gaps.

Figure 4. Illustration of the search space and the horizontal (marked with a H) and vertical
(marked with a V) voxel movements.
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Horizontal Voxel Movement

The goal of the horizontal voxel movement is to locate gaps in the search space. Starting at the origin
of the search space, the voxel is first repeatedly moved along the x-axis (easting) using steps equal to the
step size. At each step, points enclosed in the voxel are counted. A gap is detected when two conditions
are met (see Figure 5): first, if the number of points in the voxel is less than or equal to the point threshold
and, second, when the number of all of the points above the voxel is greater than the point threshold (see
Figure 5a). The latter condition ensures that the gaps detected are not due to the absence of vegetation
in the corresponding locations (see Figure 5c). After a gap has been detected, the next step is to estimate
its height. This is achieved by using vertical voxel movement.

(a) (b) (c)

Figure 5. Detecting and estimating the height of a gap (side view): (a) a gap has been located
(the number of points in the voxel is less than or equal to the point threshold, which was 2
in this example); (b) the height of the gap (marked as h) is estimated by using vertical voxel
movement; (c) an example of a gap formed due to the absence of vegetation at a location.
The dashed boxes represent the position of the voxel before movement.

Vertical Voxel Movement

The aim of the vertical voxel movement is to estimate the heights of the gaps that have been detected.
To estimate the height of a gap, the voxel is repeatedly moved upwards in steps equal to the voxel height
until the number of points in the voxel exceeds the point threshold (see Figure 5). The height of the gap
is then given by voxel height×N .

The outcome of the gap mapping step is a gap height raster with cell size equal to the step size and
origin (top left corner) at (Eastingmin + voxel width

2
, Northingmax − voxel width

2
); note the starting point of

the voxel in Figure 4. Figure 6 shows a portion of the gap height raster. Note that to speed up processing,
searching for gaps can be confined to the space extending a few meters from the plot boundary, as shown
in Figure 7.
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Figure 6. A portion of the gap height raster with some of the sample plots superimposed.
The gap heights are in meters.

Figure 7. Speeding up processing by confining the search space (plan view). The arrows
indicate horizontal voxel movement.

Figure 8 shows the degree of correlation between the estimated gap heights and the field-measured
CBH values in 24 of the field plots. The plotted values for gap heights in each plot were obtained by
taking the highest gap height values corresponding to the number of plots and matching them to the
field-measured individual tree CBH values based on their magnitude (such that the highest goes with the
highest, etc.). Plots with ID numbers 3 and 5 do not appear in the figure, because no information could
be extracted from the LiDAR data corresponding to these plots. A possible reason for this anomaly is
the fewer number of trees present in the plots (see Table 1 and Figure 9) and consequently fewer LiDAR
points. Following this anomaly, subsequent analysis and results reported in the following sections are
based on only the 24 plots shown in Figure 8.
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Figure 8. Correlation between calculated gap heights (y-axis) and field-measured CBH
values (x-axis) for individual trees in 24 sample plots.
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(c) (d)

Figure 9. Examples of plots with anomalies: (a) Plot 3 east facing; (b) Plot 5 east facing;
(c) Plot 17 south facing; (d) Plot 6 sky facing. The low number of trees in these plots or the
lack of thereof led to very few LiDAR points in those plots.

2.3.3. LiDAR Metrics Generation and CBH Estimation

In this step, LiDAR metrics for use in CBH estimation (independent variables) are generated. These
metrics are then combined with field-measured CBH values to form a dataset used for estimating CBH
through linear regression.

LiDAR Metric Generation

To generate LiDAR metrics, the gap heights raster produced in the previous step is used. Points
corresponding to each field-measured plot are extracted from the raster by taking all of the points that
satisfy the equation:

R2 ≤ (X − r)2 + (Y − s)2

where R is the radius of each plot (9.03 m); r and s are the x- and y-coordinates of the center of the plot,
respectively; and X and Y are the easting and northing values of the points in the gap heights raster.
This is similar to placing a hypothetical cylinder of the same radius as the plots on the plot, such that the
axis of the cylinder passes through the plot center, and taking all of the points in the cylinder.

Because of a small value for the step size used while generating the gap heights raster, there will
be a high degree of duplication in the values extracted for each plot. Therefore, the next step is to
remove duplicates from the values. To remove duplicates, the values are sorted (in either descending or
ascending order) to bring equal values together into groups and picking one value from each group (see
Figure 10). After duplicates have been removed, the following metrics (percentiles) are computed from
the remaining values in each plot: g25, g50, g75 and g90. These metrics serve as independent variables for
estimating CBH.
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Figure 10. Removing duplicates from gap height values: (a) before duplicates are removed;
(b) after removing duplicates. Horizontal axes represent easting and northing.

CBH Estimation

To estimate CBH, several regression models were fitted. For the purpose of model fitting, several
variables representing CBH at the plot level were derived from the field data. These variables served as
dependent variables in regression models and include: (1) Lorey’s mean (LOR); (2) the arithmetic mean
(AVG); (3) the 40th percentile (P40); and (4) the 50th percentile (P50).

For comparison reasons, we fitted models using both the metrics introduced in this paper and
traditional percentile LiDAR metrics (the coefficient of variation (CV), percentage of first returns,
maximum height, mean height and the 25th, 50th, 75th and 90th percentiles) as independent variables.

Model fitting was done in the MATLABTMcomputing environment [36], whereby forward stepwise
regression was used to automatically select variables for each model. Variable selection was based on
the F-test. The minimum p-value for a variable to be removed was 0.1, while the maximum p-value
for a variable to be added was set to 0.05. Leave-one-out cross-validation (LOOCV) was used to
assess the predictive value of each regression model. For this purpose, the root mean squared error
for cross-validation (RMSEcv) was used.

3. Results

CBH estimation results obtained by using the LiDAR metrics introduced in this paper as independent
variables are shown in Table 2 and in Figure 11. Results obtained using traditional percentile LiDAR
metrics as independent variables are shown in Figure 12 and in Table 3. The CBH estimation results
using traditional percentile LiDAR metrics are based on [21]. In each case, the best model for each
dependent variable (i.e., LOR, AVG, P40 and P50) obtained using stepwise regression is shown. The
results shown in Table 3 were computed based on [21].
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Table 2. Regression models obtained using different dependent variables against the
proposed LiDAR metrics. LOR, Lorey’s mean; AVG, arithmetic mean; P40, 40th percentile.

Variable CBH RMSE (m) RMSEcv (m) R2 p-value

LOR (0.60)g75 + 0.79 2.40 2.69 0.46 0.0003
AVG (1.05)g25 − (1.47)g50 + (1.06)g75 + 0.40 2.04 3.66 0.61 0.0003
P40 (1.28)g25 − (1.97)g50 + (1.98)g75 − (0.69)g90 + 1.20 1.74 3.36 0.75 0.00002
P50 (1.16)g25 − (1.82)g50 + (2.09)g75 − (0.75)g90 + 1.16 2.01 3.90 0.71 0.00006
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Figure 11. Plots showing a comparison between measured and estimated CBH for the
proposed LiDAR metrics: (a) LOR; (b) AVG; (c) P40; (d) P50. The diagonal line shows
a 1:1 relationship.

Table 3. Regression models obtained using different dependent variables against traditional
percentile LiDAR metrics.

Variable CBH
RMSE
(m)

RMSEcv

(m)
R2 p-value

LOR (0.56)h50 − 0.31 1.92 3.34 0.65 0.002
AVG (0.44)h50 − 0.07 2.31 3.51 0.44 0.0004
P40 (1.62)h50 − (1.19)h75 + 2.56 2.48 5.15 0.44 0.002
P50 (1.80)h50 − (1.26)h75 + 2.29 2.38 4.98 0.55 0.0002
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Figure 12. Plots showing a comparison between measured and estimated CBH for traditional
percentile LiDAR metrics: (a) LOR; (b) AVG; (c) P40; (d) P50. The diagonal line shows a
1:1 relationship.

3.1. Effect of Voxel Width and Point Threshold

To study how the different dependent variables perform under various voxel dimensions and point
thresholds, the effect of voxel dimensions was studied by varying the value of voxel width from 1 to
10 m, while keeping the point threshold and voxel height constant at three points and 2 m, respectively,
and observing how the model RMSE for each dependent variable was affected. Similarly, The effect of
point threshold was studied by varying the value of point threshold from 1–10 points. Figure 13 shows
the effect of voxel width and point threshold on the model RMSE on the four dependent variables.

Results in Figure 13 show that LOR outperformed the other variables in both cases with lower and
more consistent RMSE values in both cases. In the case of voxel width (Figure 13a), the best (more
consistent) values for RMSE are obtained in the 5–8-m range. Outside this range, the RMSE values
vary greatly among the variables. This behavior can be explained by the effect very large/very small
voxels have. The effect of a large voxel for a given point threshold is that legitimate gaps will not be
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detected (false negatives), while the effect of a small voxel is that illegitimate gaps will be detected (false
positives). For the LiDAR data used in this study, suitable values of voxel width are in the range 5–10 m.
On the other hand, all four variable are affected in a similar manner with changes in point threshold
(Figure 13b). Suitable values for point threshold in this case are those in the range of 3–6 points. These
results further demonstrate the suitability of LOR for representing CBH at the plot level.
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Figure 13. The effect of voxel width (a) and point threshold (b) on the model RMSE on the
four dependent variables.

4. Discussion

Comparison of the four dependent variables (LOR, AVG, P40 and P50) showed that LOR gave the
simplest model in either case (using traditional percentile LiDAR metrics and the proposed metrics) (see
Tables 2 and 3). Furthermore, in both cases, the LOR-based model had the smallest RMSEcv, which was
very close to the corresponding RMSE value. This implies that, in both cases, the LOR-based models
have better predictive value over models based on the other dependent variables. This observation is in
agreement with results reported in previous studies (e.g., [23]). This observation further supports the
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robustness of Lorey’s mean in CBH estimation over the commonly-used arithmetic mean. However,
Lorey’s mean should be used with caution due to its tendency to be affected by big trees. This fact
implies that in some cases, the CBH estimates obtained using Lorey’s mean may be higher than the
actual CBH, that is the minimum canopy bulk density required for the propagation of a surface fire to
the crown could be reached at a lower height than that estimated using Lorey’s mean.

With the exception of LOR, the remaining dependent variables gave more or less similar results in
both cases, with higher RMSE and less consistent RMSEcv values being evident with models based
on the traditional percentile LiDAR metrics. This similarity can be explained by the high degree of
correlation among the variables, as shown in Figure 14. This observation implies that the use of different
field estimates for CBH due to the lack of standardized field methods for estimating CBH does not have
a profound effect on the final CBH estimation results. Despite this fact, LOR and AVG should be used
with caution, because the former tends to be biased towards big trees, while the latter is susceptible
to outliers. Point-cloud based voxels can also be seen as another way of defining CBH in a relatively
objective way.
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Figure 14. Comparison of the four dependent variables used in estimating CBH: (a) LOR
vs. AVG; (b) LOR vs. P40; (c) LOR vs. P50; (d) P40 vs. AVG; (e) P40 vs. P50; (f) P50 vs.
AVG. r represents the coefficient of correlation between the variables.

The lowest degree of correlation is seen between P40 and LOR (0.88) (Figure 14b), while the rest of
the variable pairs exhibit higher correlation values of over 0.9. With this high level of correlation, it is
expected that models based on either of these pairs of variables exhibit a high degree of similarity. In this
respect, the two models based on the proposed metrics that used AVG and P50 as independent variables
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(Table 2) exhibited a higher degree of agreement compared to similar models using traditional percentile
LiDAR metrics (see Table 3).

Performance of the models based on the traditional percentile LiDAR metrics (see Table 3) compares
well with results obtained in previous studies (e.g., [21,34]), although there are significant differences
in the number and type of independent variables in the models. For example, [21] used the same
percentile LiDAR metrics for estimating CBH and obtained similar results (R2 = 0.77, RMSE = 3.9
and RMSEcv = 4.1), but some of the variables (coefficient of variation (CV) and percentage of first
returns (D)) did not appear in the regression models reported in this paper. A possible explanation for
this difference could be differences in the distribution (characteristics) of the LiDAR data used in the
two studies, which, in turn, is affected by tree species and the season of data collection, among other
factors. Conversely, models based on the proposed metric (see Table 2) gave better results based on
all four criteria (RMSE, RMSEcv, R2 and p-value). These models had smaller RMSEs, higher R2 and
smaller and more consistent RMSEcv values.

Although our results compare well with previous similar studies, the main limitation of this study
is the small number of field sample plots used (24 plots), which is one possible source of model
error. In contrast, previous studies have used significantly larger numbers of field sample plots
(e.g., [21] (101 plots); [34] (62 plots); [23] (50 plots)). In another example, [37] used the Sparse
Bayesian regression implemented in ArboLiDARTools [38] to build a linear model to estimate CBH
from cumulative percentile variables of the LiDAR point cloud and validated the results with laser
range-finding and a hypsometer on the ground in 250 sample plots. The RMSE of CBH estimated
from LiDAR was 1.03 m.

With more sample plots, and therefore more redundancy in the training data, we anticipate better
results also for the current method. Other possible sources of error include measurement error and
instrument error.

5. Conclusions

This paper has proposed new LiDAR-based metrics for estimating CBH. Several field-based plot-level
tree CBH variables, namely Lorey’s mean, arithmetic mean, the 40th and 50th percentiles, have been
compared in order to find if there are any significant differences in using one variable over another.

Results obtained in this paper showed that the use of Lorey’s mean to estimate CBH leads to a slight
improvement in accuracy compared to the other variables; no significant differences, however, were
found among the rest of the variables. The use of Lorey’s mean over the other variables, however,
will depend on the availability of the information required to compute Lorey’s mean, namely diameter at
breast height (DBH). This is because Lorey’s mean is a weighted average with the basal area of individual
trees as the weighting factor; therefore, bigger trees contribute more to the mean. However, since CBH
is the minimum amount of fuel required to propagate the fire from the surface fuel layer to the canopy
fuel layer, the use of Lorey’s mean has the potential to overestimate CBH due to the influence of bigger
trees. This means the minimum canopy bulk density required to propagate surface fires into the crown
can be reached at a lower height than the CBH obtained using Lorey’s mean. Therefore, based on this
fact, Lorey’s mean should be used with caution.
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The method for estimating CBH proposed in this paper gave better results (lower and more consistent
RMSE and RMSEcv values and higher R2 values) compared to the use of traditional percentile LiDAR
metrics, which have been widely used in previous studies. The main advantage of this method is that the
metrics used for estimating CBH are derived from the estimated heights of gaps below trees as directly
calculated from LiDAR data. The gap heights give an estimate of the distance of the lowest tree branches
from the ground and correlate strongly with field-measured CBH values of individual trees. Moreover, a
by-product of processing, which is a raster of gap heights, gives valuable information about the vertical
structure of the forest stand below the canopy, i.e., which areas are closed (contain ladder fuels) and,
hence, may need immediate attention (e.g., thinning), or identifying areas with low fuel volumes that
could be modified to create a fuel break with relatively little manual labor and cost. On the other hand,
the main limitation of the proposed method is that it is not suited for areas with pronounced understory
layers (e.g., tropical rainforests). This is because the method is suited for detecting fuel breaks, which
originate from the ground.

The method for estimating CBH from LiDAR data proposed in this paper gave better results over
the use of traditional percentile LiDAR metrics; therefore, the method can potentially be applied to
other fire-prone areas provided that suitable parameters are determined from the LiDAR data. The main
limitation of the study was that the number of sample plots used (24) was relatively small compared to
similar previous studies. Therefore, it would be interesting to conduct further tests on the method using
larger numbers of sample plots in different kinds of forests and different seasons.
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