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Abstract: We study land subsidence processes and the associated ground fissuring, affecting 

an active graben filled by thick unconsolidated deposits by means of InSAR techniques and 

fieldwork. On 21 September 2012, Ciudad Guzmán (Jalisco, Mexico) was struck by ground 

fissures of about 1.5 km of length, causing the deformation of the roads and the propagation 

of fissures in adjacent buildings. The field survey showed that fissures alignment is 

coincident with the escarpments produced on 19 September 1985, when a strong earthquake 

with magnitude 8.1 struck central Mexico. In order to detect and map the spatio-temporal 

features of the processes that led to the 2012 ground fissures, we applied InSAR multi-

temporal techniques to process ENVISAT-ASAR and RADARSAT-2 satellite SAR images 

acquired between 2003 and 2012. We detect up to 20 mm/year of subsidence of the 

northwestern part of Ciudad Guzmán. These incremental movements are consistent with the 
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ground fissures observed in 2012. Based on interferometric results, field data and 2D 

numerical model, we suggest that ground deformations and fissuring are due to the presence 

of areal subsidence correlated with variable sediment thickness and differential compaction, 

partly driven by the exploitation of the aquifers and controlled by the distribution and 

position of buried faults. 

Keywords: InSAR; ground subsidence; buried faults; ground fissuring 

 

1. Introduction 

Ground subsidence can be caused by several geological factors, climatic processes and anthropogenic 

sources, or by the mixing of the above phenomena. The subsidence is frequently linked to intense 

faulting and opening of fissures in urban areas, generating a significant geologic hazard that needs to be 

accurately assessed and monitored [1–3]. Both standard InSAR (Interferometric Synthetic Aperture 

Radar), based on the analysis of a pair of SAR images, and Advanced InSAR (A-InSAR), based on the 

analysis of series of SAR images, have been applied to assess natural hazards such as processes of slow 

and/or fast surface movements [4]. InSAR measurements are particularly capable of mapping ground 

deformation with a very high spatial resolution over a large area, with high precision and a  

moderate-to-zero cost [5–8]. Among others, SAR processing techniques have been successfully used to 

study vertical surface movements caused by anthropogenic ground subsidence, like mining [9,10] and 

the withdrawal of subsoil fluids in combination with loading [11–16]. Urban areas located within 

confined basins in active tectonic and volcanic environments are especially subject to the dangerous 

effects of the ground subsidence, faulting and fissuring, due to the combination of neotectonics, 

seismicity, thick unconsolidated sedimentary deposits and anthropogenic activities [17–19]. 

One of the intense surface deformations linked with ground subsidence in urban areas occurred in the 

Mexican area of Ciudad Guzmán (CG) (Jalisco state) [20]. On 21 September 2012, in the center of CG 

several fissures opened, causing deformations of roads and serious damages to houses and  

facilities [20,21]. This event was very fast, with no precursors and not related to significant seismic 

activity. These characteristics, the coexistence of active faults, thick recent sediments and human 

activities make the CG 2012 fissuring event an interesting case study for the understanding of the 

mechanisms and evolution of ground deformation in urban areas. 

This work presents the results of a detailed field study and InSAR analysis of the CG surface 

deformations, focusing on the 2003–2012 period. Through the interferometric processing of SAR images 

of CG and surrounding area with standard and advanced methods, our study attempts to quantify and 

characterize the behavior of the subsidence deformation processes. Remote sensing data, accurate field 

mapping of brittle deformations, and numerical modeling of the subsidence process are used in order to 

propose a genetic model of the observed deformations. The final aim of our paper is to contribute to a 

better knowledge of ground subsidence in urban areas located within active tectonic and volcanic 

environments, showing that the integration of InSAR remote sensing, structural fieldwork and numerical 

modeling is an effective methodological approach for the study of these hazardous geological processes. 
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2. Geological Setting and Ground Subsidence of Ciudad Guzmán 

The Trans-Mexican volcanic Belt (TMVB) is a 1200-km-long active continental volcanic arc 

originated by the subduction of the Cocos and Rivera plates along the Middle American Trench [22] 

(Figure 1). Some of the main Mexican cities in the TMVB, such as Mexico City, Querétaro, Morelia, 

Toluca, Guadalayara, Puebla and CG experience surface subsidence and ground fissuring [17,18,23]. 

These cities are located in lacustrine basins bounded by fault scarps and volcanic reliefs. The 

sedimentary fill of the basins is highly heterogeneous in composition and texture, ranging from fine 

lacustrine sediments to coarse alluvial, colluvial and volcaniclastic deposits [24]. The neotectonic 

activity, seismic shacking, compaction of unconsolidated recent sediments and human activities, like 

water withdrawal and ground loading within these basins, have been considered as the principal causes 

of the occurrence of ground subsidence and subsequent soil fissuring in the urban areas of the  

TMVB [17,18,23]. CG, with a population of about 100,000 inhabitants, is located in the Mexican  

state of Jalisco, at 1500 m a.s.l., inside the Colima Rift, which is the southern branch of the  

Colima-Tepic-Chapala triple junction in the western sector of the TMVB [17,25–31] (Figure 1). 

 

Figure 1. Main tectonic and volcanotectonic structures in the Northern Colima Graben 

(NCG). The red box in the upper left panel locates the Colima and CG area, the blue box in 

the main panel locates Figure 2 while the white box locate Figure 3. CG: Ciudad Guzmán, 

NC: Nevado de Colima volcano, FC: Fuego de Colima volcano, LZ: Laguna Zapoltlan 

(modified from [32]). 

The Colima Rift consists of three structural segments, the Northern Colima Graben (NCG), the Central 

Colima Graben, and the Southern Colima Graben. The NCG, where CG is located, is flanked by reliefs 

consisting of Late Miocene-Pleistocene volcanic deposits, Jurassic-Eocene sedimentary and intrusive 
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rocks. The depression is floored by Pliocene-Holocene lacustrine sediments, alluvium, colluvium and 

volcaniclastic deposits of the nearby Colima Volcanic Complex (CVC) [26,27] (Figure 2). The NGC is 20 

km wide and 60 km long, and flanked by sharp and parallel NNE-SSW-trending active faults. Bounding 

faults in the NCG dip 70° toward the graben axis, the relief of their fault scarps is up to 1–2 km, and the 

mean displacement rate is up to 1–3 mm/year [26,27,31]. The kinematics of these faults is normal with a 

minor right-lateral strike-slip component of motion, consistent with a minimum principal stress oriented 

from E-W to NW-SE [26–28,31]. 

 

Figure 2. (a) Geological map of Ciudad Guzmán surroundings with the location of the 2012 

fissures (purple dots, see Figure 3, here located with light blue dashed box).  

(Ba) Basanites—Quaternary deposits; (VS) Volcanic Sediments; (BT) Brown  

Tuffs—Plio-Quaternary deposits; (At) Andesitic Tuffs—Pliocene; (Rb) Red beds—Late 

Cretaceous; (Li) Limestone; and (Da) Dacites—Early Cretaceous. (b) Geological  

cross-section of the A-A’ trace in Figure 2a, with the location of the 2012 fissures (modified 

from [32]). (c) Geometry of the finite element model, taken from the black rectangle in 

Figure 2b. The model has been made with MSC Marc 2013 software [33]. 

The urban area of CG is bordered to the east by a Cretaceous continental sedimentary sequence 

exposed along the main fault scarps (red beds), and lies on the graben fill sequence composed of 
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volcaniclastic deposits with intercalation of alluvial and lacustrine sediments. The thickness of the 

mainly unconsolidated graben fill sequence in the CG area ranges from 300 to 1200 m [32] (Figure 2).  

This area is exposed to hazardous natural events such as landslides, volcanic eruptions and earthquakes. 

The seismic hazard is linked to the main tectonic structures of the volcanic arc and subduction zone, capable 

of strong earthquakes, and to minor local active faults generating moderate earthquakes [34,35,36]. 

Earthquakes have hit the NCG several times, in 1911, 1931, 1932, 1941 and 1973 [35]. The latest seismic 

events that affected CG occurred in 1985 (M8.0), 1995 (M7.4) and 2003 (M7.5) [36]. Some of these 

earthquakes (e.g., 1985) generated ground fissuring in the urban area of the town [37]. In addition, 

ground fissures opened in CG without any significant seismic shake (e.g. 1993). Indeed, on 21 

September 2012, the urban area of CG experienced intense ground fissuring, causing deformations of 

roads and serious damages to some houses. The 2012 fissures opened in the same location reported for 

a number of NE-SW striking superficial cracks opened in 1985 and 1993. These fissures have been 

associated to the faults cropping out along the border of the graben, which are buried by recent sediments 

under the urbanized area [21]. The withdrawal of water from the ground has been considered the main 

driving factor of the surface subsidence and the opening of cracks in the city [20,32,38]. The upper 

sediment sequence under the urban area consists of heterogeneous sediments with relatively low 

cohesion, that can be affected by water table dynamics and piping [32]. 

3. Urban Survey and Structural Measurements 

A fast urban survey has been performed in CG in November 2012 to describe and measure the 

deformations (Figure 3) of 21 September 2012. We walked along the CG streets speaking with the 

residents about the phenomenon of September 2012 and describing faults and fissures, affecting recent 

anthropic structures, and measuring their strike and displacement with compass and ruler. In Table 1, 

direct observations of fissures are reported. Locally the deformation pattern is represented by dispersed 

fissures along the roads, house walls and fences or is not visible because of rapid fixing (mainly for the 

main streets). The faults and fissures strike N 0°–20°E, also showing local variability due to the 

anisotropic behavior of manmade infrastructure. The entire deformation area is characterized by slight 

bends, both left and right (Figure 3) and locally the structures show en-echelon arrangement (e.g. Figure 

4b,c). The deformation pattern is almost continuous (more than 1 km long) and affects a narrow area 

(few to tens of meters). Only the main evidences are described in Table 1 along with the measured 

displacements. In general the deformations show vertical displacement (10 to 30 cm) with a minor right 

lateral component of a few millimeters to 2 cm (Figure 4). 

Speaking with the owners of the damaged houses and other eyewitnesses, none describes any 

earthquake associated to these movements. Some of them said that two to three deformations happened 

very close together (within about 15 minutes). A house, destroyed by the 1985 earthquake, and now 

made of wood, has been affected again and partially damaged (point 1, Figures 3 and 4a). 
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Figure 3. Main sites where faults and fissures affected Ciudad Guzmán on 21 September 

2012. Numbers refer to the site described in Table 1. Representation on ESRI basemap 

imagery service. See Figure 2 to locate the area. 

Table 1. Faults and fissures in Ciudad Guzman produced in September 2012. Strike-slip 

offsets have right-lateral sense of motion. 

Location 

Figure 3) 
Fissures Faults 

Vertical  

Offset (cm) 

Strike-Slip 

Offset (cm) 

Displaced  

Material 
Note Pictures 

1 X X 35 1-2  

Road and the house 

located along  

the north side 

The house has been destroyed  

in 1985 by the earthquake.  

15°N striking 

4A 

2 X X   
Pavement  

and fences 

Mainly fissures, some of them  

showing 1–2 cm offset 
 

3  X 20–25  Road 
No fissures visible because  

the road has been repaired 
4B 

4 X X 12 3  Pavement 0°N striking 4B 

5 X X 15 2  Pavement 5°N striking 4C 

6 X X 15  
Parking,  

Pavement and Road 

Partially repaired.  

10°N striking 
4D 

7 X    Road and house 
Mainly fissures, some of them  

showing mm offset 
 

8 X    
Shop and  

road at the corner 

Mainly fissures, some of them  

showing mm offset 
 

9 X X 5  Road Mainly fissures in a wide area  

10  X 8 4  Road and wall 10°N striking 4E 

11  X 18  Road and wall 20°N striking 4F 

12 X X 7  Road 15°N striking  
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Figure 4. Photos showing evidences of ground fissures and faulting: (a) deformed and 

fractured pavement (site 1); (b) crossroads and sidewalk showing the pavement displaced 

and partially repaired (sites 3 and 4); (c) sidewalk affected by normal fault with a minor 

strike slip offset, as visible in the inset (site 5); (d) parking affected by fissures and normal 

faults (site 6); (e) sidewalk and wall affected by normal fault associated with a strike slip 

offset, as visible in the inset (site 10); and (f) street, sidewalk and gate affected by normal 

displacement (site 11). For the location, see Figure 3. 

4. InSAR Analysis: Methods and Results 

We analyzed ground deformation in the CG area by applying the classical and multi-temporal InSAR 

techniques to the 2003–2010 ENVISAT and 2012 RADARSAT-2 data (Table 2). In order to investigate 

the ground deformation during 2003–2010 period (prior to the rupture), we used 40 ascending and 41 

descending ENVISAT images acquired by the ASAR (Advanced Synthetic Aperture Radar) sensor 

during March 2003–October 2009 and December 2003–August 2010 periods, respectively. These two 
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sets of images were processed with the Multi-Baseline method implemented in GAMMA software [39]. 

This method computes deformation time series and residual topographic heights using the Singular 

Value Decomposition (SVD) Least-Squares inversion technique [40,41]. All interferograms were 

computed with a multi-look factor of 1 × 5 in range and azimuth directions, respectively, leading to a 20 

× 20 m pixel on the ground. After the computation of the interferograms, only coherent points, i.e., pixels 

characterized by signal-to-noise-ratio of the interferometric phase higher than 1.3 were selected. This 

resulted in a stack of 42 ascending and 58 descending point-wise interferograms used for the SVD 

inversion. The velocity fields computed from ascending and descending data are shown in Figure 5. 

Both velocity maps show a Line Of Sight (LOS) distance increase (surface movement away from the 

satellite, i.e., subsidence) in the area NW of CG. This area is confined by the location of the 2012 surface 

fissures (Figures 2, 3 and 5). The other side of the ruptures alignment (Eastern side of CG) is stable. It 

is worth noting that a step gradient in the surface velocity is located exactly where the surface cracks 

appear. The deformation rates measured by ENVISAT InSAR dataset in the subsiding area reach values 

of up to 25 mm/year for ascending data and of about 17 mm/year for descending data, and both 

deformation fields show similar spatial pattern. 

Table 2. The ENVISAT 2003–2010 dataset (left); and list of interferograms created using four 

2012 RADARSAT-2 images (6 March; 26 June; 6 September; 11 December) (right). 

ENVISAT RADARSAT-2 

Ascending Orbit—Figure 5a Descending Orbit—Figure 5b Interferogram Figure 

20030117 20040416 20050506 20060804 20030124 20050826 20061020 20061020 
20120306–

20120626  
8A 

20030328 20040521 20050610 20061117 20031205 20050930 20061124 20061124 
20120626–

20120906 
8B 

20030502 20040730 20050715 20061222 20040319 20051104 20061229 20061229 
20120906–

20120306 
9 

20030815 20040903 20050819 20070126 20040423 20051209 20070309 20070309   

20030919 20041008 20050923 20071207 20040528 20060113 20070413 20070413   

20031024 20041112 20051028 20080912 20040806 20060217 20070518 20070518   

20031128 20041217 20051202 20081121 20041119 20060428 20071005 20071005   

20040102 20050121 20060106 20090306 20050513 20060602 20071109 20071109   

20040206 20050225 20060317 20091211 20050617 20060707 20071214 20071214   

20040312 20050401 20060526 20100813 20050722 20060915 20090313 20090313   

       20100924   

The applied processing methodology allowed estimation of time deformation histories for each of the 

coherent points identified in the SAR scene. Figure 6 shows an example of such time series for three 

points characterized by three different behaviors. Point A in Figure 6 has almost flat horizontal trend, 

i.e., it is representative of a stable area. Point B experiences a subsidence of about –15 mm/year; for this 

point very small oscillations are visible. Point C shows a higher rate of subsidence, of  

about –22 mm/year, with similar oscillations as point B, but more pronounced. The observed oscillations 

seem to be regularly distributed in time and are likely due to seasonal recharge and discharge of the 

aquifers. 
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Figure 5. Surface deformation velocities (deformation rate) estimated by the  

Multi-Baseline method, applied to (a) ascending and (b) descending ENVISAT data. Known 

faults and the cracks observed on the field are superimposed. 

 

Figure 6. Example of three deformation histories estimated by the Multi-Baseline approach 

on ENVISAT ascending dataset. Curves A, B, and C are related to the points depicted in the 

inset (black circles). 

The vertical and east-west horizontal components of the deformation have been calculated combining 

the ascending and descending ENVISAT data (Figure 7). It is well know that space-borne SAR, flying 

on a quasi-polar orbit, are very weakly sensitive to the north-south component of the deformation (about 

8% for ENVISAT) [42]. Thus, this component is always neglected during displacement estimation. Only 

a very low percentage of the north-south movement can be detected. These maps confirm that on the 

Eastern side of CG (i.e., to the east of the observed fissures), the ground is almost stable, with horizontal 

and vertical deformation rates close to zero. Moving towards west, a sudden increase of the deformation 

is observed, crossing the fissure alignment. The subsidence rate reaches values of about 25 mm/year 
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(Figure 7a), together with eastward oriented horizontal movements with a magnitude of about 10–15 

mm/year, i.e., one half of the subsidence rate (Figure 7b).  

 

Figure 7. (a) Vertical deformation rate (negative values mean subsidence) and  

(b) east-west deformation rate (positive values mean eastward movement) computed from 

ascending and descending ENVISAT data. 

Besides the multi-temporal analysis of ENVISAT images, additional SAR data were exploited to 

further investigate the pre-event deformation prior to the ruptures occurrence. Three descending SAR 

images from the Canadian RADARSAT-2 mission (6 March, 28 June and 6 September, 2012, Table 2) 

allowed capturing and measuring the displacement between March and September, 2012, just before the 

event. We calculated two interferograms by paring 6 March–26 June, and 26 June–6 September images. 

The resulting deformation maps are reported in Figure 8. Both maps show subsidence located in the 

same area detected by multi-temporal analysis of ENVISAT data. Also in these two cases, the 

deformation is confined within the alignment marked by the fissures, with a clear increase in deformation 

with a spatial extent of 4 km2. Indeed the 26 June–6 September interferogram shows a larger displaced 

area with respect to the 6 March–26 June map, and in addition, subsidence increase toward NNW with 

values reaching 0.5–1.0 cm. Such discrepancy in the observed displacements between the two images is 

probably caused by the seasonal recharge of the groundwater, which is clearly visible in the slight 

oscillations of the displacement of point C in Figure 6. 

The rupture event was also analyzed by exploiting RADARSAT-2 images. In this case, we used the 

additional SAR image acquired on 11 December 2012 (Table 2). This data, combined with the  

6 September, image allowed estimation of the co-event deformation (Figure 9). The deformed areas 

(Figure 9) are very similar to the one already observed in the previous interferometric analyses. In 

addition, a more pronounced subsidence of 1.5 cm is visible in the proximity of the surface ruptures. 

Furthermore, the loss of coherence immediately at NW of the fissures is consistent with the very large 
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deformations observed during the field surveys (Table 1). It is worth noting that the image pair used to 

estimate the co-event deformation has a time lapse of about three months. Therefore, the resulting 

displacement cannot be considered strictly a co-event one, but additional post-event deformation is 

present. Indeed, this can be observed looking at the northern section of the subsidence where the values 

are similar to the pre-event interferogram (Figure 8b), i.e., more regular in time. 

 

Figure 8. Pre event deformation estimated by exploiting 2012 RADARSAT-2 images:  

(a) 6 March–26 June differential interferogram, and (b) 26 June–6 September  

differential interferogram. 

 

Figure 9. Co-event deformation by means of DInSAR applied to RADARSAT-2 data  

(6 September–11 December 2012). The maximum measured deformation in LOS is about 

1.5 cm, located close to the surface ruptures and in the northern area of CG. The loss of 

coherence, visible in proximity of the fissures, can be due to a large deformation. 
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5. Discussion 

ENVISAT time series from 2003 to 2010 (Figures 5 and 7) clearly show that the subsidence rate 

affecting the Eastern side of the town is approximately constant in time, with ground velocities 

increasing from 0 mm/year east of the fissures alignment, up to 25 mm/year northwest of CG. The 

linearity of the detected deformation likely reflects a consistency in the cause of subsidence. A seasonal 

oscillation can be noted for points B and C in Figure 6, related to the dry and rainy seasons (October to 

January is the dry season while most of precipitations are concentrated from June to September). 

Artificial loading (due to urbanization), natural consolidation, earthquakes, or groundwater 

withdrawal in general may cause the subsidence phenomenon. Such events may act separately or  

in combination.  

It is unlikely that artificial loading produced by urbanization caused the observed subsidence. 

Urbanization generally results in subsidence after the load has been applied for at least two  

decades [43]. A comparison between satellite images of the urban area of CG shows that the urban layout 

has not changed from 2005 to 2013, suggesting that there is no direct connection with the detected 

subsidence and fissuring. Furthermore, natural processes such as isostatic sediment loading or 

consolidation of weak quaternary deposits, which presents typical rates of few millimeters per year [44], 

cannot explain the detected rapid subsidence rates. 

The hydraulic erosion or piping may act as the main process driving the fissuring of September 2012 

in CG [37], but a careful analysis of daily rainfall estimation by Tropical Rainfall Measuring Mission 

(TRMM) over the CG area shows no heavy precipitations or storms prior or during the subsidence event 

(Figure 10). Because of these reasons, we exclude hydraulic erosion as the main process generating 

ground deformations. 

 

Figure 10. Rainfall estimates from TRMM (Tropical Rainfall Measuring Mission—NASA) 

3B42 Daily ver.007 data for 2012. 
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The data discussed in Sections 3 and 4 show that ground subsidence extends over a large area and the 

fissures are aligned NE–SW, suggesting a geometric control of the deep buried structures and the 

dislocated bedrock. In fact, the NCG bounding faults, prolonged southward under the urbanized area 

(Figure 2), clearly overlap with the fissures opened on September 2012. These faults probably act as a 

structural control on the detected subsidence, even if no tectonic deformation occurred, as showed by 

the lack of any seismic shaking during the 2012 ground deformations. Furthermore, similar observations 

on the role that existing faults play on subsidence partitioning have already been observed in  

Mexico [17,23]. 

Land subsidence caused by compaction of aquifer systems is a worldwide problem in agricultural and 

urban areas heavily dependent on groundwater supplies. In some places, this kind of land subsidence is 

associated with structural faults, generating fissures and surface faults due to vertical differential 

compaction of lacustrine and/or fluvio-lacustrine sediments overlying the faults [45,46]. This 

phenomenon is called Subsidence-Creep-Fault Process (SCFP) [18,46] and is characterized by different 

stages. The groundwater extraction from the pore spaces in unconsolidated sandy to gravelly aquifers 

causes a lowering of pore-water pressure. This results in an increase of the effective stress in the high-

permeability low-compressibility coarse-grained aquifers and a time-dependent pore-pressure reduction 

in the low-permeability high-compressibility fine-grained aquitards [47]. The reduction in pore-water 

pressure produces an increase in the overburden stress, causing the immediate compaction of the soil. If 

the stress increment due to the groundwater depletion is larger than the preconsolidation stress  

(i.e., stress ever experienced by these sediments) the deformation is irreversible as it is caused by the 

non-reversible grain rearrangement of the sediments. Generally, the compaction of thecoarse-grained 

soils, which constitute the aquifer, is negligible. If the aquifer has silt and clay beds (aquitards) within, 

the lowered pore-water pressure in the sand and gravel causes the slow drainage of water from the pore 

spaces in the silt and clay beds, allowing the fine-grained particles to compress or compact. The overall 

aquifer volume change is due mainly to the compaction of fine-grained sediments. Reaching pore-water 

pressure equilibrium between aquifers and aquitards may take months or years, and thick clay layers 

may take hundreds of years to reach equilibrium. Thus, the resulting compaction may continue long after 

groundwater withdrawals are brought back into equilibrium with groundwater recharge, or cease 

completely. 

In the presence of bedrock dislocated by faults and overlaid by soft sediments, the ground compaction 

may produce differential settlements depending on the different thickness of sediments, causing tension 

and fissuring along the surface projection of the buried fault planes. If the process extends over time, 

one of the borders of the soil fissure sinks (surface fault), generating a scarp at the surface projection of 

the buried fault planes. 

The SCFP is compatible with the subsidence pattern observed in CG by SAR data and with the 

development of the fissures of September 2012. The observed high gradients of ground velocities 

occurring on a narrow zone (<1 km wide) suggest that there is a sharp transition between laterally 

adjacent lithological units juxtaposed by faulting, which present different thickness, compressibility and 

permeability. In fact, the aquifer of CG is formed by alternating levels of sandy to gravelly layers 

(acquifers) and silty to clayey levels (aquitards) [32,37]. Furthermore, an important drop of piezometric 

water level has been reported in CG and in other Mexican cities [45,48]. In particular, CG has 

experienced a reduction in the phreatic level of about 69 cm per year [37]. 
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The connection between SCFP and the development of fissures at ground has been verified with a 

numerical model of the ground subsidence using the finite element method. A 2D numerical model 

crossing CG from NW to SE has been developed (Figure 2c). The fully coupled approach proposed by 

Biot [49] has been considered in the model in order to assess the deformation of porous media that results 

from fluid withdrawals. The model consists of two materials: the rocky basement, assumed as infinitely 

stiff and impermeable; and the aquifer body, supposed homogeneous and isotropic. An elastic 

constitutive model has been assumed for the aquifer body, with the geotechnical parameters listed in 

Table 3 [50]. 

Table 3. Geotechnical parameters for the finite element model of Figure 2c 

Material ρ (kg/m3) E (Pa) ν k(m2) e 

Basement 2400 - - - - 

Quaternary soil 1520 6e7 0.26 1e8 0.4 

ρ = relative density; E = Young modulus; ν = Poisson coefficient; k = intrinsic permeability; e = void index 

The model is vertically fixed at the bottom and horizontally sideways. The only force acting is the 

gravity load. This simplified model is useful for the analysis of the stresses and deformations into the 

soil mass that caused the surface cracks. Of course, a multi-layered aquifer system is the best solution in 

order to best fit the observed displacements, but this kind of modeling is not possible at this time because 

of the lack of data regarding the complex aquifer system, the exact geometry of the buried faults and the 

amount of the extracted water. 

The modeling has been performed in two steps. At first stage, a physically valid distribution of  

in-situ stress state is obtained by applying the gravity load. The groundwater table is horizontal at the 

ground level and pore pressures present a hydrostatic stress distribution. In the second stage, the water 

table is lowered in order to simulate the displacements observed by the ENVISAT data during  

2003–2010. Since the information regarding the amount of the extracted water during this period is 

missing, we assumed a mean groundwater loss of 67 cm/year, for a total reduction of about five meters 

in six years. The selected rate corresponds to the annual phreatic surface reduction observed until  

2004 [37]. This assumption is valid because generally the water demand tends to increase increases 

following the population growth. Certainly, there is the possibility that between 26 June–2012 and  

6 September 2012 a strong variation of the water table has happened, causing the deformation pattern in 

Figure 8b. Anyway this aspect enforces the hypothesis of a connection between groundwater changes 

and the ground fissures. A first comparison between observed and calculated LOS ENVISAT 

displacement profiles at 2010 (Figure 11a,b) shows a fairly good agreement, despite the simplicity of 

the adopted model. The displacements are overestimated to the eastern part. 

Such discrepancy is probably due to the presence of different lithology, which has different 

subsidence potentials [50,51], or because the groundwater depletion is uneven, thus it does not affect the 

east side of CG. Moreover, the presence of buried faults, which act as a barrier to groundwater flow, 

may produce differential subsidence [45], but such feature is not introduced in our model because of the 

lack of field data. 
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Figure 11. Comparison between calculated and observed LOS displacements considering 

the cumulated displacements of (a) ascending and (b) descending ENVISAT data.  

(c) Vertical and (d) horizontal displacement contours, together with the resultant 

displacement vectors. (e) Horizontal and vertical displacement profiles at the ground level. 

(f) Horizontal and vertical gradient at the ground level. (g) Contour of the horizontal strains 

after the lowering of the water table. 

In order to explain the features of the observed displacement and the development of ground fissures, 

the results of the numerical model are shown in terms of horizontal and vertical displacement profiles 

and contours, and horizontal strains.  

Generally, a uniform lowering of the water table, as we modeled in this case, produces only vertical 

displacements when the thickness of the compacting stratum is constant. In presence of sudden 

discontinuities and/or gradual changes in sediment thickness, the magnitude of vertical displacements 

depends strictly on the thickness of the compacting soil, giving rise to the development of a complex 

pattern. For the CG model, the vertical displacements increase towards NW, following the higher 
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thickness of the compacting stratum (Figure 11c) as it can be clearly seen by observing the vertical 

ground displacement profile in Figure 11e. 

Moreover, a change in the thickness produces some local horizontal movements. The soil mass in the 

ticker part, subjected to higher vertical deformation, pulls the soil in the thinner part towards the deeper 

side of the profile; this effect causes the horizontal movement of the soil particles. In fact, the modeled 

thickness heterogeneity causes horizontal displacements close to the surface. More in detail, SE directed 

horizontal movements develop between 0 and 1250 meters (Figure 11d,e). These displacements are in 

agreement with the observed horizontal displacements in Figure 7b and are mainly driven by the gradual 

increment of the sediment thickness towards SE. The difference in magnitude between the observed and 

computed horizontal displacements (Figures 11e and 7b) depends strictly on the geometry of the 

bedrock, which probably is more complex than the one we modeled, and also on the uneven groundwater 

depletion. Such horizontal displacements are distributed over a large area thus they do not develop high 

horizontal strains (Figure 11e). Moreover, larger values of NW directed horizontal displacements 

develop close to the surface projection of the buried fault at about 1200 meters (Figure 11d,e). 

The general displacement is well represented in Figure 11c,d. At the left of the model (i.e., at 0 m), 

the vectors are oriented downward because of the imposed constraint on the horizontal displacements. 

This is an artifact of the model, which produces zero horizontal displacements. Proceeding to the right, 

the vectors are slightly rotated towards SE, until they rotate towards NW close to the buried fault. This 

displacement pattern justifies the development of ground fissures. In fact, the modeled horizontal and 

vertical displacement profiles (Figure 11e) show high gradients in proximity of the cracks (Figure 11f), 

where the thickness of the compressible stratum changes because of the buried fault. In particular, 

maximum vertical displacements in this area are about four times higher than horizontal displacements, 

suggesting a dominant role of the vertical displacements in the development of fractures. This result is 

consistent with the geometry of the observed fissures, which show a main vertical offset. 

Because the horizontal particle movement is not uneven along the surface, it causes horizontal strain, 

and the possible generation of ground fissures. In fact, in the area between 0 and 1000 meters, the 

horizontal strains are generally positive, indicating compression. Contrariwise, maximum tensile 

horizontal strains are localized in a narrow zone at the surface (at about 1200 meters in Figure 10f), 

coinciding with the position of the observed ground cracks. This suggests that ground fissures are mainly 

driven by vertical displacements, but develop in narrow zones characterized by high values of tensile 

strains. Such phenomenon could be enhanced by the presence of faults with different mechanical and 

hydraulic properties with respect to the neighboring soils, and by the presence of a superficial brittle 

unsaturated zone [52,53]. 

6. Conclusions  

Slow surface subsidence field, fast ground fissuring and their relationships with morphology and 

tectonic structures of the CG area have been studied by means of advanced InSAR techniques, structural 

field survey and numerical modeling. ENVISAT time series (2003–2010) clearly show that ground 

subsidence rate affecting the northwestern side of the town is approximately constant in time, with ground 

velocities increasing 0 mm/year up to 25 mm/year. Pre- and co-fracturation ground displacements 

processes in CG show similar patterns to structural observations in the field. The subsidence phenomenon 
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in CG is the primary consequence of artificial subsoil water pumping, probably in combination with other 

factors linked to subsurface water circulation (such as local piping) or tectonic activity. We conclude that 

the progressive accumulation of strains due to ground subsidence caused by groundwater depletion has 

produced the observed fissures of September 2012. In particular, the progressive sediment compaction 

produced by the groundwater overexploitation results in a complex displacement pattern, strictly 

dependent on irregularities in the hydrologic basement and on the presence of discontinuities such as buried 

faults. In fact, differential vertical displacements produce horizontal displacements at ground level, which 

are localized close to the projection at ground level of the buried faults, thus leading to the development of 

tensile horizontal strains. The fracturing is mainly driven by vertical displacements, but it manifests where 

high gradients of horizontal strains develop. However, the assumption of a homogeneous aquifer body 

may lead to a wrong estimation of strain distributions.  

Further work is required to characterize the complex geometry and the elastic and hydraulic 

characteristics of the aquifer system in order to predict the future development of fractures. In fact, this 

phenomenon may still occur in the future with an even greater impact on CG buildings, roads and urban 

facilities. It is evident that the entire basin is affected by ground subsidence and requires careful land use 

planning throughout the basin to create a sustainable environment by means of the regulation of 

groundwater extraction, improvement in agricultural practices, and better water and wastewater 

management policies. 
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