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Abstract: This paper describes a novel strategy for the visualization of hyperspectral
imagery based on the analysis of image pixel pairwise distances. The goal of this approach is
to generate a final color image with excellent interpretability and high contrast at the cost of
distorting a few pairwise distances. Specifically, the principle of equal variance is introduced
to divide all hyperspectral bands into three subgroups and to ensure the energy is distributed
uniformly between them, as in natural color images. Then, after detecting both normal
and outlier pixels, these three subgroups are mapped into three color components of the
output visualization using two different mapping (i.e., dimensionality reduction) schemes
for the two types of pixels. The widely-used multidimensional scaling (MDS) is used for
normal pixels and a new objective function, taking into account the weighting of pairwise
distances, is presented for the outlier pixels. The pairwise distance weighting is designed
such that small pairwise distances between the outliers and their respective neighbors are
emphasized and large deviations are suppressed. This produces an image with high contrast
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and good interpretability while retaining the detailed information content. The proposed
algorithm is compared with several state-of-the-art visualization techniques and evaluated
on the well-known AVIRIS hyperspectral images. The effectiveness of the proposed strategy
is substantiated both visually and quantitatively.

Keywords: hyperspectral image visualization; dimensionality reduction; multidimensional
scaling; human visual system

1. Introduction

Hyperspectral remote sensors can collect data simultaneously in hundreds of narrow, adjacent spectral
bands covering the visible to near-infrared wavelengths. The resulting hyperspectral images contain a
wealth of high-resolution spectral information permitting a wide range of remote sensing applications,
such as environment monitoring, geological surveying, and surveillance. However, visualizing the
information content of this high-dimensional data space is difficult and often involves trade-offs between
the complexity of information being conveyed, similarity of the output to the human visual system, and
speed of visualization display.

Hyperspectral image visualization has been part of remote sensing for decades in order to provide a
quick overview and understanding of a hyperspectral data set. Visualization is implemented by mapping
the original high-dimensional data into a three-dimensional color space and showing the mapped data
on a tristimulus-based display device (e.g., a standard computer screen). There is inevitable loss of
information in the process of visualization. However, in order to effectively preserve the information
contained in hyperspectral imagery and to intuitively provide a discriminative color representation, some
objective visualization criteria have been proposed, including pairwise distance preservation [1–3] and
feature separability (or contrast) [4,5]. The former tries to maintain pairwise distances in hyperspectral
imagery and in the final color image while the latter, introduced by Cui et al. [4], aims to display the
differences between pixels as distinctively as possible. It is difficult to simultaneously satisfy these
two criteria since the smaller differences between pixels cannot be well distinguished when all pairwise
distances are exactly preserved in the final color image. From the subjective perspective, the visualization
aim is to generate a trichromatic composite image with perceptual appeal [6–8] suitable for interpretation
by the human visual system, referred to as naturalness. However, it is challenging to display the full
information content in mapped data on devices designed for natural images.

In the literature, many visualization methods have been proposed for hyperspectral images and can be
roughly classified into four categories: band selection, linear spectral combination, data projection, and
convex optimization.

Band selection refers to techniques that select three representative bands as color components. The
simplest scheme is to pick three bands with wavelengths closest to the natural wavelengths of red, green
and blue. More sophisticated rule based approaches, such as one-bit transform (1BT) [9], normalized
information (NI) [6], minimum redundancy maximum relevance (mRMR) [10], minimum estimated
abundance covariance (MEAC) and linear prediction [11], have also been introduced for the selection of
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triplet bands. However, this kind of techniques usually loses a large amount of information contained in
the data space not represented in the three bands.

Another kind of visualization method is linear spectral combination. The idea is to create the final
image from a weighted sum of pixels across the available sampled wavelength spectrum. The design of
the weights involved is typically related to the visualization effect. In [3], a set of fixed spectral weighting
envelopes are derived from color matching functions, designed to mimic how human photopic (daylight)
vision works. In [12], a bilateral filtering scheme is presented for retaining the minor details, while,
more recently, a multiobjective optimization-based approach has been proposed to provide the solution
of weights by taking some desired properties of the resultant image into account [7]. Relatively speaking,
the fused images are more informative due to the process of combining information from all bands.

The third family of visualization methods is composed of data transformations that aim to project
the original hyperspectral image into a low-dimensional space. The classical example is principal
component analysis (PCA), which has been extensively used for visualization purposes. In general, PCA
and its variants are explored as an N -to-3 projection into the color space with the first three principal
components [13–15]. Further PCA methods have been investigated based on perceptual attributes [16]
and class separability [17]. An alternative way, i.e., segmented PCA, is to perform PCA on three
subgroups to extract principal components used for visualization [18,19]. Additionally, regarding the
nonlinear characteristics of hyperspectral data [20], a straightforward but time-consuming extension is
to employ nonlinear projection methods (e.g., local linear embedding) for dimensionality reduction into
three bands with the goal of preserving the local distances between a pixel and its neighbors.

A new class of visualization methods, designed to preserve some desired properties, was recently
proposed from the convex optimization perspective by formulating the related criteria into the underlying
objective function. In [4], Cui et al. exploited pairwise distance preservation and feature separability in
a two-step dimensionality-reduction framework. In their approach, the pairwise distance preservation
criterion is explicitly set as a three-dimensional mapping problem decomposed into two steps: a
two-dimensional projection as a partial solution using classical PCA and a linear programming method to
solve for the one-dimensional coordinate in the third dimension with the separability of features criterion
as a set of constraints. From a different perspective, Mignotte proposed a bicriteria optimization for color
display model (BCOCDM) method [5] by combing these two contradictory criteria with an internal
parameter, thus making this algorithm express the contribution of two criteria for a specific application,
besides only focusing on the criterion of pairwise distance preservation in [21]. This kind of visualization
method provides interesting and promising results to some extent.

These existing algorithms either favor distances preservation in high-dimensional space at the
risk of low contrast or prefer high contrast for achieving the good features separability in the
low-dimensional space but allow excessive distortion of the pairwise-distances or sometimes unwanted
loss of the local details. More importantly, the intrinsic properties of the pairwise measured space
for high-dimensional hyperspectral data, such as large-scale dynamic range of pairwise distances and
concentration phenomenon, make it difficult for them to yield a natural visual representation.

In this paper, we propose a new hyperspectral image visualization strategy with double mappings for
improved balancing of the trade-off between pairwise distance preservation and feature separability. Our
contributions are three-fold:
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1. In order to decrease the dynamic range of pairwise distances and uniformly distribute energy in the
three color components as that in natural color images, the principle of equal variance is adapted
to divide the hyperspectral image bands into three subgroups prior to further mapping.

2. Two different mapping methods are proposed for normal pixels and outlier pixels respectively.
This can achieve good contrast with minimal distortion of the pairwise distances while preserving
local fine information.

3. In the mapping case of outlier pixels, an objective function, based on the weighting of pairwise
distances, is designed to adaptively inhibit/enhance the large/small pairwise-distances for the
purpose of preserving local topology in the hyperspectral data space.

The reminder of this paper is organized as follows. Section 2 analyzes the characteristics of pairwise
distances in hyperspectral imagery and discusses the display problems of color space mapped data.
Section 3 describes the pairwise-distances-analysis-driven visualization strategy (PDADVS) with double
mappings. Experimental results and comparisons with existing methods are presented in Section 4,
followed by concluding remarks in Section 6.

2. Problem Statement

Despite the progress of visualization methods, intrinsic measure phenomena of the high-dimensional
hyperspectral data space are often overlooked. As such, this section presents important characteristics
of pairwise distances in hyperspectral images and highlights how these properties may affect the
visualization performance.

2.1. Analysis of Pairwise Distances in Hyperspectral Images

Visualization of hyperspectral imagery attempts to reduce the data dimensionality while retaining
the information content of the full data space. Toward this goal, pairwise distance preservation is a
good foundation for hyperspectral visualization because keeping pairwise distances in the visualized
data space indicates a good mapping with high faithfulness of a resultant color image to raw
hyperspectral data.

Before proceeding to the analysis of pairwise distances, we first define the notations used in what
follows. Let I be a hyperspectral image of w×h pixels with r bands in a tensor space Tr ∈ Rw×h×r, and
I1∼rm be spectral vector (also is corresponding to a hyperspectral image pixel) with the subscript denoting
the spatial location and the superscript denoting the range of bands. A subgroup of hyperspectral image is
referred to as Ik1∼k2, whose spectral vector is Ik1∼k2m . The pairwise distance dIk1∼k2m,n between two spectral

vectors Ik1∼k2m and Ik1∼k2n is defined as dIk1∼k2m,n =
√
‖Ik1∼k2m − Ik1∼k2n ‖22, which can be straightforwardly

extended to the full-band case with k1 = 1 and k2 = r.
The images used later for experimental validation are taken as examples to illustrate the characteristics

of pairwise distances in hyperspectral images, whose false-color composites are presented in Figure 1.
In all cases, the black and noise bands are first removed as outlined in Section 3.2. Table 1 lists the
measures of pairwise-distance variation for different subgroups of seven hyperspectral images, while
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Figure 2 shows the non-normalized histograms of pairwise distances of Moffet02_igm and Cuprite02
with different band coverage for the intuitive analysis.

(a) (b) (c)

(d) (e) (f)

(g)

Figure 1. False-color composites of experimental hyperspectral images: (a) Lun.lake01; (b)
Cuprite02; (c) Cuprite03; (d) Cuprite04; (e) Moffet02_igm; (f) Moffet03_igm; and (g)
Lun.lake_igm.

Table 1. Variances and ranges of pairwise distances for different subgroups of seven
hyperspectral images.

Subgroups Lun.lake01 Cuprite02 Cuprite03 Cuprite04 Moffet02_igm Moffet03_igm Lun.lake_igm

1 ∼ 60 24.3(254) 41.4(364) 32.8(295) 28.9(414) 24.3(254) 18.8(226) 44.4(400)
61 ∼ 120 37.7(298) 56.0(485) 40.5(380) 35.9(452) 27.7(298) 12.6(96) 20.5(191)
121 ∼ 190 28.0(327) 52.3(460) 44.6(443) 28.9(436) 28.0(327) 8.7(99) 15.9(153)
1 ∼ 100 32.0(326) 58.8(510) 45.3(431) 41.9(562) 32.0(326) 21.4(240) 47.8(437)
all bands 44.0(503) 82.6(739) 63.7(647) 51.7(761) 44.0(503) 22.8(246) 56.8(470)
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Figure 2. Non-normalized histograms of pairwise distances: (a) Moffet02_igm with
1 ∼ 60 bands; (b) Cuprite02 with 1 ∼ 60 bands; (c) Moffet02_igm with 1 ∼ 100 bands;
(d) Cuprite02 with 1 ∼ 100 bands; (e) Moffet02_igm with all available bands (1 ∼ 206);
and (f) Cuprite02 with all available bands (1 ∼ 197).
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As shown in Table 1 and Figure 2, pairwise distances are distributed in a very wide range and exhibit
heavy-tailed characteristics. In addition, the distributions show both increased variance and dynamic
range as the dimensionality of the subgroups increase. Figure 2 reveals that the majority of pairwise
distances populate the smaller distance values, which is consistent with the phenomenon of measure
concentration in high-dimensional space [22–24]. Furthermore, the average and maximum quantities
of pairwise distances together with their ratios are presented in Table 2 for all available bands of seven
hyperspectral images. In general, the mean is significantly less than the corresponding maximum value
for each image. As a result, the dissimilarities represented by smaller pairwise distances become
less meaningful because of their poor discernibility. On the contrary, a few larger pairwise distances
indicate that some pixels are considerably dissimilar from the normal ones and are considered outliers as
in [4,25,26], whose ranking and detection will be discussed in Section 3.3.

In order to further demonstrate the inconsistency of outlier pixels, the normalized pairwise-distance
matrix image of an outlier located in (183, 211) and 512 randomly selected normal pixels extracted from
Cuprite02 image is shown in Figure 3. To construct this matrix, the outlier pixel is positioned in the
median x-/y-coordinates. In this illustration, with white points denoting the high degree of dissimilarity,
it is clear that large distances between this outlier and the normal pixels are much larger than that
calculated among the normal pixels. Large pairwise distances is another consequence of the existence
of outlier pixels, besides high dimensionality of hyperspectral images. Therefore, careful handling is
necessary for the optimal visualization of hyperspectral data.

Table 2. Average and maximum quantities of pairwise distances for all of the available bands.

Subgroups Lun.lake01 Cuprite02 Cuprite03 Cuprite04 Moffet02_igm Moffet03_igm Lun.lake_igm

mean 68.4 126.0 106.8 73.2 68.4 22.8 56.8
max 506 743 654 765 506 246 470

max/mean 8.7 5.9 6.1 10.5 7.4 10.8 8.3

Figure 3. Normalized pairwise-distance matrix image of an outlier and 512 normal pixels in
Cuprite02 image.

2.2. Display Problems of The Mapped Data in Color Space

To visualize hyperspectral images, the mapped data will be displayed on a standard tristimulus device,
whose gamut is restricted to a triangle in chromaticity space and three primary colors generally have fixed
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quantization levels. Under the criterion of pairwise distance preservation, the characteristics of pairwise
distances in the color space are similar to that of pairwise distances in the original high-dimensional
space. Then the dynamic range, as that in the original high-dimensional space, will become large
accordingly with the increase of dimensionality. Naturally, each color value will represent a larger
pairwise-distance range. In addition, due to the concentration of measure phenomenon, the quantizing
levels in each component of three primaries, associated with the majority of normal pixels, only account
for a small central part {a+ 1, a+ 2, · · · , b− 1} of the whole gray level set G = {0, 1, 2, · · · , L}, while
the top and bottom parts of this set, i.e., {0, 1, 2, · · · , a} and {b, b + 1, · · · , L}, are used to indicate a
small number of the outlier pixels. As a result, the differences between normal pixels, represented by
small pairwise distances, are difficult to distinguish in the color image and has poor contrast. Meanwhile,
like the outliers originally measured in the high-dimensional space, their counterparts in the color space
are few and far way from other color pixels. This makes it difficult to illustrate the pixel diversity in the
mapped color space.

(a) (b) (c)

Figure 4. The distribution maps of outliers in Cuprite02 achieved by the method described
in Section 3.3. ξ% of the pixels at the top (red points) of each component and ξ% of pixels
at the bottom (green points) of each component are considered as the outliers (from left to
right are shown with ξ = 0.1, 0.5, 1, respectively).

These difficulties have been explored by previous research and many techniques have been proposed
to achieve a preferable visual effect. In this simplest case, these pixels, whose duplicates in the color
image are so large that they suppress the brightness of other pixels, can be removed before dimensionality
reduction [27]. In [3], Jacobson et al. proposed to render no more than 2% of pixels by clipping their
out-of-gamut color values to the gamut in sRGB after fixed integration envelopes are applied. PCA2%

used in ENVI linearly stretches each of three display bands so that 2% of pixels at both ends of each
color channel are at the minimum and maximum display value. However, in these cases, some pixels (i.e.,
outliers) regarded as a nuisance which impede the contrast enhancement tend to be eliminated. Although
this creates a vivid contrast in some regions, the dissimilarities between outliers, which contain useful
information, are lost. Furthermore, the local contrast where these outliers exist cannot be reflected in
the visualized color image even though they have topological structure in a local region as shown in
Figure 4. Good visualization cannot be achieved unless the visualization method is designed specifically
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to take these outliers, as well as the more general properties of hyperspectral images, into account. This
is the motivation of our proposed method described in next section.

3. Proposed Visualization Technique

In this section, a new visualization technique for hyperspectral imagery is proposed, i.e., the
pairwise-distances-analysis-driven visualization strategy (PDADVS). In this approach, normal pixels
and outliers are treated separately using two different mapping methods for enhancing global contrast
while avoiding the high risk of sacrificing local details and excessively distorting pairwise distances.
For clarity, the flowchart of PDADVS is shown in Figure 5 and detailed descriptions of each step are
provided in Sections 3.2 through 3.5.

Hyperspectral

image
Partitioning

 hyperspectral 

bands

Preprocessing

Distinguishing 

normal and 

outlier pixels

L subgroup

A subgroup

B subgroup B

 channel

Display
Performing

double mappings

   L 

 channel

A

channel

Distinguishing 

normal and 

outlier pixels

Distinguishing 

normal and 

outlier pixels

Performing

double mappings

Performing

double mappings

Figure 5. Flowchart of the proposed hyperspectral image visualization algorithm.

3.1. Partitioning of Hyperspectral Bands

3.2. Preprocessing

A hyperspectral image generally contains some bad bands (e.g., water absorption and low SNR
bands), which impact the following analysis. Therefore, preprocessing is a necessary part of the
visualization process. Because of the high-spectral correlation, two adjacent bands in hyperspectral
imagery tend to be highly correlated, which conversely provides us a probability to perform the removal
of bad bands. Specifically, those bands, whose correlation coefficients to their neighboring bands are
less than a given threshold η = 0.8, are removed. Additionally, hyperspectral imagery is affected by
additive noise that impairs information extraction and scene interpretation. To reduce this noise, the
wavelet hard thresholding approach [28] is applied to each band. Finally, bands with SNR values less
than 15dB are excluded.

According to the analysis of pairwise distances in Section 2, we partition all available hyperspectral
bands into three subgroups for decreasing the dynamic range of pairwise distances. As such, in terms
of the consistency in distance preservation, the relatively smaller dynamic range of pairwise distances in
the hyperspectral image space will lead to the smaller gamut of pixels in the color space correspondingly.
This is conducive to the feature separability in the sense that the differences between pixels can be better
reflected by three color components corresponding to different subgroups respectively rather than these
corresponding to the whole band.
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To this end, the principle of equal variance is proposed to partition all hyperspectral bands into three
subgroups prior to mapping. Different from the equal subgroups technique used in [5,21], equal variance
can guarantee that three components of the final color image are correlated (i.e., if the intensity changes,
all three components will change accordingly) and the energy is distributed uniformly as in natural
color images [29], such that the visualization result is optimal for human visual system. To provide
perceptual visualization, three subgroups are then mapped to the device-independent and approximately
perceptually uniform CIE (Coherent Infrared Energy) L∗a∗b∗ color space.

To achieve the partitioning, we minimize the following objective function

Fs1,s2 =
(
σ(U I1∼s1)− σ(U I(s1+1)∼s2

)
)2

+
(
σ(U I1∼s1)− σ(U I(s2+1)∼r

)
)2

+
(
σ(U I(s1+1)∼s2

)− σ(U I(s2+1)∼r
)
)2
, s.t 0 < s1 < s2 < r

(1)

where σ denotes the variance, and U Ik1∼k2 is a 1 × (w×h)×(w×h−1)
2

row vector for an image of size
w × h, corresponding to the Euclidean distances dIk1∼k2m,n of pairs of spectral vectors in Ik1∼k2. In
practice, we consider a subsampling of pairs of pixels in the image (i.e., all pairs with horizontal or
vertical displacements of 2p pixels for p ≥ 3) to compute the vector of pairwise distances for reducing
computational complexity. As is well known, there is high relevance between the adjacent-band images
in hyperspectral imagery. So each subgroup should consist of contiguous bands in order to keep as much
of the common information as possible contained within the subgroup during the mapping. On the other
hand, it can be seen from Tables 1 and 2 that both mean and variance of pairwise distances increase with
the number of bands in the subgroups. Therefore, a line searching technique is introduced (summarized
in Algorithm 1) to solve Equation (1) for the partitioning of hyperspectral bands. Table 3 lists the number
of the available bands after preprocessing for all considered experimental hyperspectral images and their
partitioning results.

Algorithm 1 Partitioning of hyperspectral bands
Require: I - a hyperspectral image of w × h pixels with r bands;
Ensure: s1, s2 - two splitting points of the whole band
1: Initialize
2: k = 0; s1 = br/3c; s2 = 2× br/3c+ 1;
3: U1 = σ(U I

1∼s1
); U2 = σ(U I

(s1+1)∼s2
); U3 = σ(U I

(s2+1)∼r
);

4: F (k)
s1,s2 = (U1− U2)2 + (U1− U3)2 + (U2− U3)2;

5: repeat
6: σAV = (U1 + U2 + U3)/3;
7: step = b|F (k)

s1,s2/10|c;
8: if (U1 < σAV )&(U2 < U3), then s1 = s1− step;
9: if (U1 < σAV )&(U2 > U3), then s1 = s1 + step;

10: if (U2 > σAV )&(U1 > U3), then s1 = s1− step, s2 = s2 + 2× step;
11: if (U2 < σAV )&(U1 < U3), then s1 = s1 + step, s2 = s2− 2× step;
12: U1 = σ(U I

1∼s1
); U2 = σ(U I

(s1+1)∼s2
); U3 = σ(U I

(s2+1)∼r
);

13: F (k+1)
s1,s2 = (U1− U2)2 + (U1− U3)2 + (U2− U3)2;

14: 4F = |F (k+1)
s1,s2 −F

(k)
s1,s2|;

15: k = k + 1;
16: until4F ≤ 10−3
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Table 3. Number of the available bands after preprocessing and the partitioning results.

Hyperspectral Images Number of the Available Bands Subgroup 1 Subgroup 2 Subgroup 3

Lun.lake01 200 1 ∼ 70 71 ∼ 127 128 ∼ 200

Cuprite02 197 1 ∼ 80 81 ∼ 123 124 ∼ 197

Cuprite03 196 1 ∼ 78 79 ∼ 130 131 ∼ 196

Cuprite04 198 1 ∼ 63 64 ∼ 116 117 ∼ 198

Moffett02_igm 206 1 ∼ 33 34 ∼ 67 68 ∼ 206

Moffett03_igm 216 1 ∼ 23 24 ∼ 46 47 ∼ 216

Lun.lake_igm 207 1 ∼ 24 25 ∼ 48 49 ∼ 207

3.3. Outlier Ranking and Detection

As described earlier in Section 2, it is difficult to deal with all pixels of hyperspectral images in the
same way for simultaneous discrimination between small and large distances. To address this issue, two
different mapping strategies are proposed separately for normal pixels and outlier pixels. This separate
approach can achieve the better feature separability with minimum distortion of pairwise distances while
avoiding the loss of spatial details.

Prior to performing double mappings, we require to distinguish outliers from normal pixels with
the aid of multidimensional scaling (MDS) [30,31]. MDS is a well-known technique for visualizing
the high-dimensional data and exploring its underlying structure by analyzing the dissimilarities
(or similarities) between pairs of data points, which utilizes an embedding to find coordinates in
a low-dimensional space for each high-dimensional data point that preserve the given pairwise
dissimilarities as faithfully as possible. Specifically, for each subgroup, the outliers are detected by
the following three steps:

Step (1) Given distance matrix DIk1∼k2 with its entry dI
k1∼k2
m,n representing the pairwise distance

between pixels Ik1∼k2m and Ik1∼k2n in a subgroup of hyperspectral imagery, we implement
MDS to obtain the coordinates for each pixel of Ik1∼k2 by minimizing the objective function

EX =
w×h∑
m=1

w×h∑
n=1

(dI
k1∼k2

m,n − dXk1∼k2

m,n )2 (2)

where dIk1∼k2m,n = ‖Ik1∼k2m − Ik1∼k2n ‖2 and dXk1∼k2
m,n = ‖Xk1∼k2

m − Xk1∼k2
n ‖2. To calculate the

inner product matrix (Ik1∼k2)T Ik1∼k2 = −1
2
JDIk1∼k2J with J = I − 1

w×hee
T and e being a

column vector of all 1’s [31], now Equation (2) can be reduced to

E∗X =
w×h∑
m=1

w×h∑
n=1

[
(Ik1∼k2m )T Ik1∼k2n − (Xk1∼k2

m )TXk1∼k2
n

]2
(3)

Then the solution for minimizing Equation (3) can be found by solving an eigenvalue
problem, given by Xk1∼k2 = Λ1/2V T , where Λ is the top q eigenvalues of (Ik1∼k2)T Ik1∼k2

and V is the eigenvectors of (Ik1∼k2)T Ik1∼k2 corresponding to the top q eigenvalues.
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Step (2) Since the coordinates are computed on the premise of distance preservation, they can be used
to measure the degree of deviation of pixels in original high-dimensional space. With the
results in Step (1), we define the rank for each pixel of Ik1∼k2, i.e.,

rank(Ik1∼k2m ) = Xk1∼k2
m − 1

w × h

w×h∑
l=1

Xk1∼k2
l (4)

Step (3) Finally, we sort Ik1∼k2 according to their ranks, and then the pixels whose ranks are in the
top ξ percent and in the bottom ξ percent should be identified as outliers.

3.4. The Mapping of Normal Pixels

For the hyperspectral image visualization, it is of importance to provide a quick overview for the
existing materials and their distribution in the final color image. Moreover, as mentioned in Section 2,
the existence of outliers has a negative effect on the feature separability due to their large pairwise
distances with normal pixels. As for normal pixels dominating hyperspectral data, it is desirable to
keep pairwise distance among them in dimensionality reduction to yield a faithful representation for
hyperspectral images.

In terms of the requirements on low computational complexity and the preservation of pairwise
distance, we prefer to utilize MDS for the mapping of normal pixels. Here the results is directly extracted
from that obtained by MDS in Section 3.3, instead of recalculating the embedded points by defining a
new objective function of MDS only involving normal pixels. In such a way, besides simplicity, it is of
importance to maintain the consistency of the whole pairwise distances, since normal pixels and outliers
will be simultaneously involved in the mapping of outliers in next subsection.

3.5. The Mapping of Outliers

In this subsection, a novel mapping method is proposed for the outliers. This method takes pairwise
distance preservation and feature separability into account, and, unlike MDS, adaptively deals with the
small and large pairwise distances.

Suppose we have the set ψ of outliers in a subgroup, the objective function for each outlier Ik1∼k2m∈ψ is
designed as follows

EPk1∼k2m∈ψ
=

1

C

∑
n∈Ns

(dI
k1∼k2
m,n − dPk1∼k2m,n )2√

dIk1∼k2m,n

+ λ×
√
dIk1∼k2m,n × dPk1∼k2m,n (5)

where
{
dI

k1∼k2
m,n

}
n∈Ns

are the pairwise distances between current outlier Ik1∼k2m and its neighbors (other
outliers or normal pixels), and

{
dP

k1∼k2
m,n

}
n∈Ns

are the distances between the embedded point of Ik1∼k2m

in color component P and the neighboring points. C =
∑

n∈Ns d
Ik1∼k2
m,n , Ns denotes a square fixed-size

neighborhood centered around an outlier, and λ is a positive internal parameter balancing the contribution
of pairwise distance preservation and feature separability.

The first term (dI
k1∼k2
m,n − dPk1∼k2m,n )2/

√
dIk1∼k2m,n is used to achieve distance preservation by minimizing

the difference of pairwise distances between dI
k1∼k2
m,n in hyperspectral image and dP

k1∼k2
m,n in the color
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image. The involving weight 1/
√
dIk1∼k2m,n is the inverse of the square root of pairwise distance and

is designed to enhance the importance of small distances among the neighborhood of outlier Ik1∼k2m∈ψ

in the objective function. Correspondingly, small distances are emphasized and local dissimilarity
can be preserved in the neighborhood of P k1∼k2

m∈ψ in the color component. Meanwhile, due to large
pairwise distances between outliers and normal pixels, a second term is introduced in order to
prevent the embeddings of outliers in three color components from departing too far from those that
correspond to their respective neighbors. There are two points worth being mentioned about this
dimensionality reduction:

(1) The constraint term in BCOCDM tries to keep the dissimilarity between color pixels. In
comparison, the second term of the proposed objective function aims to reduce the deviation
between an outlier and its neighbors (especially normal pixels in its neighborhood). This results
in a reduction of the color component range. As such, as mentioned in Section 2, more color levels
will be used for describing the embedded points associated with normal pixels, which account for
the overwhelming majority.

(2) In order to get good contrast not only in different local regions but also in the full image, the
presented method does not simply eliminate or clip the outliers, like the previous algorithms (e.g.,
PCA2%, and Cui’s [4]). Instead, it adjusts their values in color components based on visualization
criteria of pairwise distance preservation and feature separability. As a result, local pairwise
distances between outliers and their respective neighbors are preserved, and local information
around outliers is also kept.

Algorithm 2 SD algorithm for solving Equation (5)
Require: P k1∼k2m∈ψ/(0) - initial mapping value of outlier; ε - tolerance;

|Ns| - the size of neighborhood window; Itermax - the maximum number of iterations;
Ensure: P k1∼k2m∈ψ - the output mapping value of outlier;
1: Initialize k = 0

2: repeat
3: Compute the gradient direction:

g(k)m = ∇EPk1∼k2
m∈ψ/(k)

=
−4
C

∑
n∈Ns

[
(dI

k1∼k2

m,n − dPk1∼k2m/(k),n)(P
k1∼k2
m/(k) − P

k1∼k2
n )√

dIk1∼k2m,n

− λ

2
×
√
dIk1∼k2m,n × (P k1∼k2m/(k) − P

k1∼k2
n )

] (6)

4: Compute the search direction: β(k)
m = −g(k)m ;

5: Compute the step length: α(k)
m = ζ

|Ns|2−1
∑
n∈Ns,n6=m d

Ik1∼k2

m,n ;

6: Compute the (k + 1)th iterative value of P k1∼k2m : P k1∼k2m/(k+1) = P k1∼k2m/(k) + α
(k)
m β

(k)
m ;

7: k = k + 1.
8: until g(k)m ≤ ε or k < Itermax

To find the solution of Equation (5), the method of steepest descent (SD) is suggested, for which
a quantity, calculated from multiplying the mean of pairwise distances between the outlier and its
neighbors by a small scaling factor, is introduced as the step length for improving the convergence
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speed. This step length will be further adjusted step by step as the solving procedure reaches the best
point, so that it fluctuates smoothly and avoids oscillations often arisen in the gradient descent algorithm.
The details of SD algorithm for solving Equation (5) are given in Algorithm 2.

4. Experimental Results and Discussion

4.1. Dataset Description and Experimental Setup

To validate the effectiveness of our visualization algorithm, experiments are reported on the
hyperspectral image datasets acquired by the National Aeronautics and Space Administration Jet
Propulsion Laboratory (AVIRIS) system. These datasets include seven images taken during 1997 from
the sites of Lunar Lake (NV), Cuprite (NV), and Moffett Field (CA). They are generated in two different
spectral formats: reflectance and radiance. Reflectance images are denoted with a file extension of
.rf l while the file extension .igm refers to the radiance images. Two kinds of files both have 224

spectral bands ranging from 400–2500 nm, with nominal bandwidth of 10 nm. For simplification
of description, these hyperspectral images will be denoted by Lun.lake01, Cuprite02, Cuprite03,
Cuprite04, Moffett02_igm, Moffett03_igm, and Lun.lake_igm, respectively. These image sizes
are 512× 614 pixels.

In this set of experiments, η is set to 0.8 for removing some water absorption bands with the
computation of correlation coefficients between adjacent bands, and the strategy described in [21] is used
to exclude some low SNR bands in the preprocessing step. Furthermore, the pixels whose ranking values
lie within the top and the bottom 0.5 percent (i.e., ξ = 0.5) for the normalized hyperspectral reflectance
images and radiance images, are identified as the outliers. These values are found experimentally to
have a good compromise for the given data formats and are applicable to the multiple test images of
each format. In the mapping of outliers, the size of square neighborhood and the internal parameter λ
are set to |Ns| = 5 and λ = 1, respectively, as well as ζ = 2 × 10−4, ε = 0.001 and Itermax = 40 in
the solving procedure. The code for achieving this visualization algorithm runs on MATLAB using an
Intel(R) core(XEON) E3− 1231V3 CPU with 3.40G.

For comparison purpose, visualization performances are evaluated in terms of two metrics: ρ and
δ. The correlation-based metric ρ, was proposed in [3,4]. It is the measured correlation between the
Euclidean distance of each pairwise spectral vectors in hyperspectral image (denoted as U1∼r

I ) and their
corresponding pairwise Euclidean distance (color difference) in the perceptual CIE L∗a∗b∗ color space
(namely U1∼3

P ). The evaluation of pairwise distance preservation is calculated as follows:

ρ =

(U1∼r
I )TU1∼3

P

|U1∼r
I |

− U1∼r
I U1∼3

P

std(U1∼r
I ) · std(U1∼3

P )
(7)

where (U1∼r
I )T , |U1∼r

I |, U1∼r
I , and std(U1∼r

I ) denote the transpose, cardinal, mean, and standard
deviation of U1∼d

I , respectively. As suggested in [4], we accelerate this computation by subsampling
pixels in practice. In the ideal case, the normalized correlation equals 1. As far as δ is concerned, it
is defined as the average pairwise distance between pixels in color space, used to measure the feature
separability or contrast:
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δ =
|U1∼3

P |1
|U1∼3

P |
(8)

in which |U1∼3
P |1 and |U1∼3

P | denote the L1 norm and the cardinal of vector U1∼3
P , respectively. In this

metric, larger the value of δ represents better feature separability.

4.2. Experimental Results

4.2.1. Parameter Analysis

For the proposed PDADVS algorithm, there are three critical parameters: the percentage of outliers
ξ, the size |Ns| of square neighborhood and the internal parameter λ involved in the mapping of outliers.
When analyzing one specific parameter, we fix the other parameters as the corresponding values given
above. First of all, the effect of different ξ values on the visualization performance is investigated. The
score curves of distance preservation and feature separability are shown in Figure 6a,b for Cuprite02
and Cuprite04, in Figure 6c,d for Moffett03_igm and Lun.lake_igm, respectively. From Figure 6,
it can be seen that the score of pairwise distance preservation (indicating by the blue curve) slowly
decreases with the increase of ξ on the whole for four hyperspectral images. Concerning the score of
feature separability, one can observe from Figure 6a–d that the contrasts are monotonically increasing
at the beginning (i.e., ξ is less than about 0.5), but the results progressively worsen with the further
increase of ξ, possibly caused by the overadjustment over normal pixels. By considering the tradeoff
between distance preservation and feature separability, ξ is suggested to be set as 0.5 for the reflectance
and radiance hyperspectral images in all the following experiments.

In addition to the quantitative comparison, we also take the Lun.lake_igm as an example for visual
interpretation. Figure 7 illustrates three color visualization results of Lun.lake_igm obtained by the
proposed PDADVS model with ξ = 0, 0.5, 5, respectively. In Figure 7a, the image is relatively
dark in that some pairwise distances between the outliers and their respective neighbors may not be
sufficiently adjusted while there appears to have colors pop-outed (indicated by red ellipse areas) by the
overadjustment over normal pixels and some textures become indistinct in Figure 7c. Only in Figure 7b,
features can be easily identified and more fine details are visible due to the appropriate choice of ξ.

Furthermore, the neighboring window size |Ns| is also tested on the hyperspectral image of
Lun.lake_igm. Table 4 lists the scores of both metrics and the running time. According to Table 4,
the comparisons indicate that |Ns| has a positive impact on the running time, but the pairwise distance
preservation slightly decreases as |Ns| increases while the contrast cannot be further improved when the
value of |Ns| is larger than 7. By making comprehensive consideration for performance and complexity,
we suggest that |Ns| = 5 is chosen in practice.

Finally, another parameter λ related to the mapping of outliers is also studied, which controls the
contribution of pairwise distance preservation and feature separability. To this end, we roughly choose
λ in the range [0, 1, 2, 3, 4, 5]. The ρ and δ scores evaluated on all experimental hyperspectral images
are given in Table 5. As expected, the results show that, as λ increases from 0 to 5, there is an obvious
improvement on contrast but being subjected to the detriment of the preservation of pairwise distance.
This indicates that the introduction of the constraint term in Equation (5) is helpful to the contrast
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enhancement. By a comprehensive analysis, λ = 1 is an acceptable choice which can provide the
satisfactory contrast on the premise of guaranteeing ρ > 0.980 for all these hyperspectral images.
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Figure 6. Correlation metric ρ and contrast metric δ for different percentages of outliers
in pixels for our proposed PDADVS algorithm: (a) Cuprite02; (b) Cuprite04; (c)
Moffett03_igm; and (d) Lun.lake_igm.

Table 4. Scores of both metrics and running time obtained by the PDADVS model involving
different values of |Ns| with keeping ξ = 0.5 and λ = 1 for Lun.lake_igm.

|Ns| ρ δ Running Time in Seconds

3 0.9972 59.1 6.8
5 0.9950 64.1 11.5
7 0.9888 71.0 15.1
9 0.9771 72.4 26.2

11 0.9525 73.1 38.6
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(a) (b) (c)

Figure 7. Comparison of color display results obtained by our PDADVS model with: (a)
ξ = 0; (b) ξ = 0.5; and (c) ξ = 5 on the subimage (3161 : 3672, 21 : 634) extracted from
the AVIRIS image Lun.lake_igm. The “pop out” areas are denoted by red ellipsoids in the
Figure 7c.

Table 5. ρ and δ scores obtained by the PDADVS model for increasing values of λ.

Hyperspectral images λ = 0 λ = 1 λ = 2 λ = 3 λ = 4 λ = 5

Lun.lake01 0.991 [50.1] 0.986 [60.8] 0.982 [67.4] 0.974 [69.5] 0.956 [70.1] 0.942 [71.3]

Cuprite02 0.997 [55.0] 0.996 [69.2] 0.990 [75.1] 0.982 [77.2] 0.973 [78.1] 0.963 [78.8]

Cuprite03 0.997 [38.2] 0.992 [44.2] 0.985 [54.9] 0.980 [56.2] 0.978 [57.8] 0.970 [58.1]

Cuprite04 0.998 [46.1] 0.996 [54.8] 0.994 [58.1] 0.986 [62.9] 0.980 [64.9] 0.976 [66.3]

Moffett02_igm 0.990 [62.1] 0.985 [68.3] 0.980 [71.3] 0.975 [72.0] 0.961 [73.5] 0.952 [74.3]

Moffett03_igm 0.985 [67.5] 0.981 [70.8] 0.971 [72.5] 0.963 [73.1] 0.951 [73.8] 0.942 [74.5]

Lun.lake_igm 0.997 [58.2] 0.995 [64.1] 0.988 [67.3] 0.982 [70.1] 0.979 [71.4] 0.961 [72.4]

4.2.2. Quantitative Comparison

To validate our proposed PDADVS, we compare it with several existing visualization algorithms:
CMF [3], PCA [4], PCA2% [4], and BCOCDM [5]. Table 6 reports the quantitative results measured on
the test hyperspectral images for all considered algorithms.

Table 6. Comparison of correlation ρ and contrast δ obtained by all considered
visualization algorithms.

Hyperspectral Images CMF PCA PCA2% BCOCDM PDADV S

Lun.lake01 0.823 [5.6] 0.920 [10.9] 0.532 [52.5] 0.984 [17.6] 0.986 [60.8]

Cuprite02 0.881 [7.7] 0.953 [13.9] 0.432 [53.3] 0.971 [17.5] 0.996 [69.2]

Cuprite03 0.802 [13.9] 0.910 [10.2] 0.585 [45.1] 0.966 [20.8] 0.992 [44.2]

Cuprite04 0.813 [8.4] 0.903 [10.5] 0.413 [47.3] 0.951 [13.0] 0.996 [54.3]

Moffett02_igm 0.871 [12.8] 0.961 [11.2] 0.551 [78.5] 0.948 [26.5] 0.985 [68.3]

Moffett03_igm 0.864 [10.1] 0.966 [13.2] 0.602 [47.8] 0.959 [18.8] 0.981 [70.8]

Lun.lake_igm 0.896 [16.4] 0.945 [12.3] 0.554 [41.4] 0.984 [17.6] 0.995 [64.1]
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From Table 6, the comparison of ρ and δ values shows that CMF is less competitive than other
methods. As expected, BCOCDM outperforms PCA for most cases in pairwise distance preservation
and separability of features, both of which have the higher ρ values and the relatively lower δ ones.
This phenomenon manifests that feature details in the color image may not be discriminated when the
preservation of distance metric is the main focus of BCOCDM or is the only purpose as done in PCA.
Conversely, PCA2% with the highest δ values yields the best contrast but gives a lower score for ρ, which
indicates that pairwise distances are distorted seriously in the final color image. This probably results
in an unreliable interpretation for hyperspectral images. Meanwhile still from this Table, we can clearly
observe that our proposed PDADVS provides the best performance in pairwise distance preservation, as
it is comparable to PCA2% in terms of contrast with the δ values being about four times larger than that
of PCA. From an overall perspective, PDADVS performs best and can obtain the better contrast at the
smallest cost of sacrificing distance preservation.

(a) (b)

(c) (d)

Figure 8. Visualization results for Moffett03_igm with range of (821 : 1332, 51 : 642)

obtained by: (a) PCA; (b) BCOCDM; (c) PDADVS; and (d) PCA%2 [4].
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Furthermore, visualization results ofMoffett03_igm andMoffett02_igm (both with a size of 512×
614) obtained by PCA, BCOCDM, PDAVDS, and PCA%2 are shown in Figures 8 and 9 for a visual
comparison. It can be observed from Figures 8 and 9 that different regions can be easily identified, and
very fine details (e.g., that pointed by red arrows in Figure 8, and buildings in theMoffett02_igm scene)
are clearly visible even if in relatively dark or bright local areas, which is consistent with the quantitative
results. For other methods, there always exist areas in which some colors “pop out” to different extent
or the color is so dark that details in these local areas may not be distinguished. Moreover, Figure 10
gives the color displays of four reflectance scenes, obtained by our proposed PDADVS. In this figure, all
images exhibit a natural color looking.

(a) (b)

(c) (d)

Figure 9. Visualization results for Moffett02_igm with range of (511 : 1022, 1 : 614)

obtained by: (a) PCA; (b) BCOCDM; (c) PDADVS; and (d) PCA%2 [4].
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(a) (b)

(c) (d)

Figure 10. Visualization results with our proposed PDADVS: (a) Lun.lake01; (b)
Cuprite02; (c) Cuprite03; and (d) Cuprite04.

5. Discussion

In terms of visualization effectiveness, our proposed PDADVS is superior to other state-of-the-art
algorithms for all the hyperspectral images, whose good performance mainly comes from the separate
treatment of outliers. By doing so, the gap between color pixels in the mapped color space corresponding
to outliers and normal pixels can be decreased such that the pixel diversity is achieved, on the premise
of preserving pairwise distances. As such, it is very suitable for handling the hyperspectral images with
more complicated geographical features. On the contrary, a possible limitation of the proposed method
is that it is not too effective in the hyperspectral images whose scenes are relative simple. For example,
from Table 6 we can see that the proposed PDADVS with the same parameter settings yields the higher
δ values for Moffett02_igm, Moffett03_igm and Cuprite02 than Lun.lake01, Cuprite03, Cuprite04,
and Lun.lake_igm.

As further remarks, it is worth noting that, although the above experimental analysis is performed
on the portions of the original hyperspectral images, this technique can be used to the large images.
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To illustrate the applicability, we test the performance of PDADVS on the original images of
Moffett02_igm and Moffett03_igm, respectively, having 2032×614 and 1924×753 pixels. It allows
achieving ρ = 0.981, δ = 61.3 for Moffett02_igm and ρ = 0.980, δ = 50.3 for Moffett03_igm.
The running times are 56.4 and 56.2 seconds for Moffett02_igm and Moffett03_igm, respectively.
Figure 11 shows their corresponding visualization results, which provide evidence for good performance
of PDADVS. From Figure 11, it is interesting to observe that the different regions as well as man-made
structures and objects are still clearly identifiable in these two images.

(a) (b)

Figure 11. Visualization results with our proposed PDADVS on the original images: (a)
Moffett02_igm; and (b) Moffett03_igm.

In addition, we discuss the computational complexity of the PDADVS algorithm. Specifically, the
embedded points corresponding to normal pixels are obtained through calculating eigenvalues and
eigenvectors, whose computational time is less than a millisecond. So we don’t care about the running
time of the mapping of normal pixels. On the other hand, the mapping of outliers is a spring system [24].
Each outlier is linked to its neighborhood through springs whose lengths correspond to the pairwise
distances between the outlier and its neighbors in the original space. In this way, we place the outliers
in the output space and keep the pairwise distances between the embedded points of outliers and their
respective neighbors as similar as possible to those in the original space. The implementation of the
mapping for the outliers would require the computational complexity O(|NS| × Itermax × ON) (ON

is the number of outliers). As mentioned above, the number of outliers takes a very small proportion
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of pixels in hyperspectral image (e.g., 0.5 even less). Compared with other algorithms using nonlinear
mapping for all pixels such as BCOCDM, the computational complexity of the mapping in our algorithm
is greatly reduced. For example, if the outliers are about 0.5% of all pixels, the running time of our
method should reduce to about 0.5% of the BCOCDM’s.

6. Conclusion

In this paper, a novel pairwise-distances-analysis-driven visualization strategy (PDADVS) is proposed
for the visualization of hyperspectral imagery. The analysis of pairwise distances reveals that the
dimensionality of the original data space influences both the dynamic range and variance or the larger
pairwise distances and outliers negatively affect the visualization of pixel diversity (i.e., contrast).
From this perspective, the proposed selection of band subgroups, using the principle of equal variance,
improves the ability to map hyperspectral imagery such that the visualization is close to a natural image
and makes the resulting color image more suitable for the perception by the human visual system.
Additionally, the proposed dual mapping technique, used to separately map normal and outlier pixels
to the CIE L∗a∗b∗ color space, preserves pairwise distances as much as possible while maintaining good
contrast both regionally and across the full image. In particular, the objective function involves the
weighting of pairwise distances in the mapping of outliers and adaptively retains local information in the
neighborhood of each outlier.

Experimental results reported on several AVIRIS hyperspectral images show that the proposed
PDADVS yields the better overall performance, and is a fast and efficient technique for the visualization
of hyperspectral image.
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