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Abstract: Component substitution (CS) and multi-resolution analysis (MRA) are the two 

basic categories in the extended general image fusion (EGIF) framework for fusing 

panchromatic (Pan) and multispectral (MS) images. Despite of the method diversity, there 

are some unaddressed questions and contradictory conclusions about fusion. For example, 

is the spatial enhancement of CS methods better than MRA methods? Is spatial 

enhancement and spectral preservation competitive? How to achieve spectral consistency 

defined by Wald et al. in 1997? In their definition any synthetic image should be as 

identical as possible to the original image once degraded to its original resolution. To 

answer these questions, this research first finds out that all the CS and MRA methods can 

be derived from the Bayesian fusion method by adjusting a weight parameter to balance 

contributions from the spatial injection and spectral preservation models. The spectral 

preservation model assumes a Gaussian distribution of the desired high-resolution MS 

images, with the up-sampled low-resolution MS images comprising the mean value. The 

spatial injection model assumes a linear correlation between Pan and MS images. Thus the 

spatial enhancement depends on the weight parameter but is irrelevant of which category 

(i.e., MRA or CS) the method belongs to. This paper then adds a spectral consistency 

model in the Bayesian fusion framework to guarantee Wald’s spectral consistency with 
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regard to arbitrary sensor point spread function. Although the spectral preservation in the 

EGIF methods is competitive to spatial enhancement, the Wald’s spectral consistency 

property is complementary with spatial enhancement. We conducted experiments on 

satellite images acquired by the QuickBird and WorldView-2 satellites to confirm our 

analysis, and found that the performance of the traditional EGIF methods improved 

significantly after adding the spectral consistency model.  

Keywords: pansharpening; Bayesian data fusion; quality tradeoff; point spread function; 

spectral consistency 

 

1. Introduction 

With the development of science and technology, remote sensing data have exhibited explosive 

growth trends for multi-sensor, multi-temporal and multi-resolution characteristics. However, there are 

contradictions between the resolution limitations of current remote sensing systems and the increasing 

need for high-spatial, high-temporal and high-spectrum resolutions of satellite images [1]. One limitation 

is the spectral and spatial resolution tradeoff, as more than 70% of current optical earth observation 

satellites simultaneously collect low-spatial resolution (LR) multispectral (MS) and high-spatial 

resolution (HR) panchromatic (Pan) images [2]. This tradeoff will survive in forthcoming hyperspectral 

and MS sensors such as WorldView-3, EnMAP, PRISMA and HyspIRI [3]. Based on information 

fusion theory, satellite image fusion has been proposed to handle these limitations [4,5]. Pansharpening, 

which is a spatial and spectral fusion method, focuses on enhancing LR MS images using the Pan  

image to obtain both high-spatial and high-spectral resolution images [6]. Despite the variety of  

current pansharpening methods, they can generally be classified into component substitution (CS) and 

multi-resolution analysis (MRA) methods. Both the CS and MRA methods have been generalized into 

the extended general fusion framework (EGIF) [7,8]. 

Many studies have focused on comparing and reviewing these methods [4,5,8–23] and had several 

common findings. First, among the CS methods, the Gram-Schmidt (GS) algorithm [24] was found to 

be the best in terms of spectral preservation and spatial injection [2,7,25]. Second, among the MRA 

methods, the generalized Laplacian pyramid (GLP) has been shown to present advantages, as it can 

adapt to the sensor point spread function (PSF) [15,26–28]. Finally, a current trend of pansharpening 

methods is to preserve the spectral information of the original MS images. This preservation  

is accomplished in two ways. First, CS methods are either adopted on their own to create an ideal 

intensity by accounting for the spectral response functions or using linear regression  

technology [25,29–31], or combined with MRA methods [32–34]. Second, MRA methods are adopted 

to modulate high frequencies using global or local injection models [23,35] such as AABP (an 

acronym formed from its authors’ initials, i.e., Aiazzi, Alparone, Baronti and Pippi [36]), high-pass 

modulation (HPM) [37], context-based decision (CBD) [15,28], enhanced CBD [27], proportional 

additive wavelet LHS (intensity-hue-saturation) [38] and Model 3 (M3) [39]. Despite these findings, 

pansharpening remains a source of confusion and unaddressed questions, which are listed as follows.  
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Question 1: The relationship between the CS and MRA methods is not well understood. According 

to the EGIF, the only difference between CS and MRA methods is how to extract the spatial details. 

And the injection models to control the spatial detail injection amount utilized by the CS and MRA 

methods are similar [7]. Thus the enhancement of CS methods should be comparable to that of MRA 

methods. However, there are some studies which observed that the spatial enhancement of CS methods 

is larger than that of MRA methods [27,40–42].  

Question 2: There is a contradicting conclusion on the existence of the spatial enhancement and spectral 

preservation tradeoff in the fused images. Many CS method developers believed this tradeoff and tried to 

balance this tradeoff by introducing weight parameters to control the spatial injection [41,43,44]. Some MRA 

method developers implicitly assumed this tradeoff as they used optimization technologies with competitive 

objectives, i.e., to maximize the spatial similarity to the Pan image and the spectral similarity to the  

up-sampled MS images [45] to determine the best injection model [45–47]. Furthermore, in the MRA and CS 

comparison studies, researchers have found that although the spatial enhancement of CS methods is better 

than that of MRA methods [40–42], the spectral preservation of the former is worse. This indeed enhances the 

fidelity of the tradeoff quality in fused images [17,48,49]. However, Thomas et al. [10] challenged the 

existence of the tradeoff by stating that “this tradeoff is a consequence of the use of certain tools and not an a 

priori compulsory”. They claimed that it cannot be reduced to the spatial information of its associated spectral 

information in an image. As such, the question remains: does the tradeoff really exist? 

In fact, the question 2 originates from that the implicit spectral preservation definition in current 

pansharpening algorithms is improper. In pansharpening algorithms, the spectral preservation is defined to 

be as identical as possible to the up-sampled MS images. We will prove that from a Baysian perspective 

that all the EGIF methods have used the MS image as prior knowledge to preserve spectral information 

although only a few have explicitly stated that. For example, some intensity-hue-saturation-based  

(IHS-based) methods for spectral preservation have been developed by maintaining the saturation of the 

up-sampled MS images [29,41,50]. Some MRA methods indicate that if the Pan and MS images exhibit a 

low correlation, the up-sampled images can be used as a fused product for preserving spectral  

information [10,28,47]. In contrast, as observed by Wald et al. [51], spectral consistency infers that any 

synthetic image degraded to its original resolution with respect to the sensor PSF should be as identical as 

possible to the original image [51,52]. Recently, Chen et al. [53] have noticed the upsampled MS image 

(used in EGIF) is not as accurate as the original MS image (defined by Wald) for preserving the spectral 

information. The questions are how to guarantee spectral consistency with Wald’s definition with arbitrary 

sensor PSF and how much the methods can be improved if spectral consistency is achieved.  

In this paper, we find that the CS and MRA methods are special cases of the Bayesian data fusion 

method. And all of the preceding questions can be answered by interpreting fusion from a Bayesian 

perspective. Bayesian data fusion methods are rooted in image formulation models and consider the 

fusion process as an inverse problem [54–57]. It includes two steps, the modeling step to build the 

equations and the inversion step to find the solution. Interpreting fusion from a Bayesian data fusion 

framework can answer these questions due to its explicit assumptions in modeling process and its 

flexibility in inverse process. The modeling step is easy to interpret with explicit assumptions and thus 

we can find out what are the assumptions used in EGIF. And the diversity of the optimization 

technology provides more flexibility to solve the complicated models which cannot be solved in EGIF, 

i.e., to guarantee spectral consistency with regard to arbitrary sensor PSF. 
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1.1. Image Fusion from a Bayesian Perspective 

We interpret the fusion from a Bayesian perspective with images in vector form and operations on 

images in matrix form. Although the deduction process may not be straightforward by the vector and 

matrix forms, the benefits lie in interpreting the fusion more easily. We assume that each LR image has 

M pixels and that each HR image has N pixels. As such, N = r2M, where r is the spatial resolution ratio. 

The desired HR MS images with Q spectral bands in band-interleaved-by-pixel lexicographical 

notation is denoted as a vector with NQ elements, Z = [ZT 
1 , ZT 

2 , …, ZT 
N]T. The observed HR Pan image is 

denoted as a vector with N elements, X = [X1, X2, …, XN]T. Zn = [Z1 
n , Z

2 
n , …, ZQ 

n ]T is the spectra at the spatial 

location n (n = 1, 2, …, N). The corresponding LR versions of Z and X in lexicographical form are 

denoted as z and x, respectively, and comprise only M pixels.  

In terms of notations of this paper we use boldface upper- and lowercase letters to differentiate 

matrices and vectors. However, in one exception, the HR MS and Pan image vectors are denoted as Z 

and X (in both italics and bold) to correspond with LR vectors z and x. z ̃and x ̃represent the up-sampled 

MS and Pan images, respectively, and have the same dimensions as the HR images. Denote Zq = [Zq 
1 , Zq 

2 , 

…, Zq 
N]T as the spectra vector of the band q, for q = 1, 2, …, Q. z ̃q and zq can be similarly defined. The 

superscript q indicates the qth band and the subscript n indicates the nth pixel in the following analysis.  

Treating the observed vectors, i.e., z and X, and the vector to be estimated, i.e., Z, as random vectors, 

the maximum a posteriori (MAP) estimate is given by a vector Ẑ , which maximizes the conditional 

probability density function of Z given X and z, p(Z|z, X). Applying the Bayes rule, we obtain.  

( , | ) ( )
( | , )

( , )

p p
p

p


z
z

z

X Z Z
Z X

X
 (1) 

1.2. Spectral Consistency, Spectral Preservation and Spatial Injection Models: Modeling Step  

(1) Firstly, the observation model h correlates the LR and HR MS images, z and Z, which 

mathematically describes the spectral consistency defined by Wald et al. [51]: 

( )h   z n H nZ Z  (2)

where H is a matrix with (QM) × (QN) elements representing the low-pass filtering and down-sampling 

process, and n is the random noise vector with QM elements. Z denotes the desirable HR MS images 

that are assumed to be the real scene without any blur. Thus, the specific sensor PSF, e.g., the blur 

effect, should be modeled in the H matrix. H usually comprises at least two parts: at least one image 

filtering matrix representing the blur PSF and at least one image down-sampling matrix to change the 

dimension of Z to that of z. For example, in a PSF case simulated by a two-level “à trous” wavelet 

(ATW) transformation filter [28] with a scale ratio of r = 4, there are two filtering matrices and two 

down-sampling matrices, respectively: 

H = D2F2D1F1 (3)

where F is the ATW filter (F1 with (QN) × (QN) elements and F2 with (QN/2) × (QN/2) elements) and 

D is the down-sampling process by two (D1 with (QN/2) × QN elements and D2 with QM × (QN/2) 

elements). D and F require a huge storage space, i.e., more than M times that required for storing the 

MS images Z. In our final solution, we find that the H matrix and Z vectors do not have to be formed, 

and that the solution can be expressed in image form (see the discussion in Sections 1.5, 1.6 and 2.6).  
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(2) Secondly, the relationship between the observed Pan image X and the MS images Z is 

represented by g(Z):  
( )g eX Z  (4)

where e is a vector of random errors with N elements. We usually assume that they are linearly correlated: 

( )g    e α eX Z Z  (5)

where Β is a coefficient matrix with N × (QN) elements and α is a coefficient vector with N elements. 

We will prove later that this model mainly related to the spatial detail injection in EGIF. 

(3) Finally, we assume that Z is a Gaussian vector with a mean vector z ̃and covariance matrix CZ,Z 

with QN × QN elements. This is a very important assumption as it can roughly satisfy the spectral 

preservation requirement using the up-sampled MS images as the mean value. It is simply referred to 

as the Gaussian assumption of the MS images.  

Denoting the covariance matrices of e and n as Ce with N × N elements and Cn with QM × QM 

elements, respectively, we have: 

| 2 exp
1
2

 (6)

| 2 exp
1
2

 (7)

2 , exp
1
2 ,  (8)

1.3. Maximum A Posteriori (MAP) Estimation: Inversion Step  

It is reasonable to assume that n is a Gaussian random vector and independent of z, X and e. Thus, X 

and z are independent conditional on the knowledge of Z. This allows Equation (1) to change as follows: 

( | ) ( | ) ( )
( | , ) ( | ) ( | ) ( )

( , )

p p p
p p p p

p
 

z
z z

z

X Z Z Z
Z X X Z Z Z

X
 (9)1F1F

Note that in Equation (9), p(X, z) is a constant. Although this equation is different from Equation (10) 

in a study by Hardie et al. (2004), they are equivalent. See Appendix A for details. 

We begin by deriving the MAP estimation by neglecting the spectral consistency term of p(z|Z) in 

Equation (9): 

| , ∝ |  (10)

Although neglecting the spectral consistency term is unreasonable, we will find that it is what EGIF 

does from the Bayesian perspective. And Section 2.5 introduces the MAP solution with consideration 

of the spectral consistency term.  

The MAP solution Ẑ can be found by minimizing the corresponding objective function [12,55] of 

Equation (10), o(Z), which can be formed by the exponent terms in Equations (7) and (8): 

T 1 T 1
,( ) ( ( )) ( ( )) ( ) ( )o         eα C α z C z Z ZZ X Z X Z Z Z   (11)

Ẑ  can be calculated as:  
1 T 1
,

ˆˆ [ + ( )]  eC C z C αZ ZZ X  (12)
1 1 T 1

,
ˆ     eC C CZ Z    (13)
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where Ĉ  is the estimated covariance matrix with QN × QN elements, measuring the uncertainty of the 

Ẑ  estimation. 

Ce and CZ,Z can be interpreted as the relative contribution from the observed Pan and MS images. 

Similar to Fasbender et al. [54], we define a weight parameter s to adjust their contributions, which we 

interpret as the weight given to the Pan information at the expense of the MS information. By 

introducing s, Ce and CZ,Z are divided by 2s and 2(1 − s), respectively, as the final covariance matrix. 

In this way, the best estimation can be given by  
1 T 1
,

ˆˆ [2(1 ) + 2 ( )]s s   eC C z C αZ ZZ X  (14)

1 1 T 1
,

ˆ 2(1 ) 2s s     eC C CZ Z    (15)

with a generalized intensity vector, ỹ = Βz ̃ + α, defined as in a study by [25], applying the matrix 

inversion lemma and simplifying the results yields the following equation: 

T T 1
, ,

ˆ [(1 ) ] ( )s s s     ez C C C y Z Z Z ZZ X    (16)

s is in a range from 0 to 1. Setting s = 0.5 lends the same weight to both images. If s = 0, the results 

are Ẑ  = z,̃ which are the blurred images obtained by up-sampling the LR MS images. The information 

from the Pan image is simply neglected in this case. 

This solution unfortunately involves many unknown parameters, including a QN × QN covariance 

matrix CZ,Z, an N × N covariance matrix Ce, an N × QN coefficient matrix Β and an N element 

coefficient vector α. Thus assumptions must be made about the properties of these random vectors to 

lower the number of parameters to be estimated and make the problem manageable. 

1.4. Extended General Image Fusion (EGIF) Framework 

The detail injection methods can be expressed in an EGIF [8,11,13]: 

ˆ ( )  z y Z X  (17)

where Ω represents the modulation coefficient matrix with QN × N elements. ỹ represents a vector 

with the same dimensions as the HR image X, which can be calculated by low-pass filtering image X 

according to an MRA method or by combining the LR MS images according to a CS method.  

1.5. CS Methods from a Bayesian Perspective  

One common assumption in some model-based and CS methods is that the Pan image X is a linear 

combination of HR MS images Z [54,58–66] as in Equation (5). Equation (16) solves for these methods. 

To estimate the unknown parameters, we assume that the pixels are spatially independent 

(Appendix B discusses spatial independence in detail) and share the same variance and regression 

coefficients, i.e., stationary second-order statistics. The local and global modulation coefficients 

correspond with the local and global stationarity, respectively: 

Q Q Q

( , ,..., )

( , ,..., )

N

N

diag

diag










e e

Z,Z

C I

α i

C C C C

   
 (18)
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where IN is an identity matrix with N × N elements, iN is an identity vector with N elements, β = [β1,  

β2, …, βQ], α, β1, β2, …,βQ are regression coefficients, CQ is a covariance matrix with Q × Q elements 

to measure the covariance between different spectral bands and σe is the variance of the regression 

residual in the relationship g seen in Equation (5). These (Q2 + Q + 2) unknown parameters, i.e., β, α, 

CQ and σe, can be estimated from the observed MS images z, the intensity image y and the degraded 

Pan image x. Define an modulation coefficient vector, ω = [ω1, ω2, …, ωQ]T, with ωq being the 

modulation coefficient for the qth band:  
1

Q Q[(1 ) ]s s s    eC C     (19)

The solution Equation (16) has the same formulation as Equation (17) (Ω = diag(ωT, ωT, …, ωT)N 

with ω as Equation (19) and follows the general scheme of a CS method [25]. This indicates that all 

CS methods are special cases of this MAP solution that use different s and covariance values in Equation 

(19). In IHS method, ω = iQ (with Q elements) is a constant for all the pixels. In Brovey transformation 

method, ωn = zñ/ỹn (with Q elements and the subscript n indicating the corresponding vector for the nth 

pixel) is pixel dependent (Table 1). Setting s = 1, ω = CQβT(βCQβT)−1. According to the covariance 

properties, σY,Y = βCQβT and [σ1 
Y,Z, σ

2 
Y,Z, …, σQ 

Y,Z]T = CQβT, where σY,Y is the variance of the intensity 

variable ỹ and σq 
Y,Z is the covariance between the intensity ỹ and the qth MS band z ̃q. Thus ω = [σ1 

Y,Z

/σY,Y, σ2 
Y,Z/σY,Y,…, σQ 

Y,Z/σY,Y]T with σq 
Y,Z/σY,Y being exactly the same modulation coefficient with the GS 

method (Table 1). If s is in the range of [0, 1] and σq 
Y,Z is positive, which is usually true, then ωq is a 

monotonic increasing function of s ranging in [0, σq 
Y,Z/σY,Y]. 

Table 1. The corresponding modulation coefficients for the different component 

substitution (CS) and multi-resolution analysis (MRA) methods. 

CS MRA ω/ωn 

GIHS and IHS GLP iQ 
GS (s = 1) GLP-M3 (s = 0.5) [σ1 

Y,Z/σY,Y, σ2 
Y,Z/σY,Y,…, σQ 

Y,Z/σY,Y]T (Y = X for MRA) 
Brovey HPM zñ/ỹn (ỹn = x ̃for MRA) 

We can interpret the IHS and Brovey transformation methods as special cases of the GS method.  

In the GS method (derived by setting s = 1), the relationship between the modulation coefficient vector  

ω = [σ1 
Y,Z/σY,Y, σ2 

Y,Z/σY,Y, …, σQ 
Y,Z/σY,Y]T = CQβT(βCQβT)−1 and regression coefficient vector β is: 

Q T Q T -1

1

= [ ] = 1 =
Q

q q

q

 

C C      (20)

Actually, we found that the IHS, generalized IHS (GIHS) and Brovey transform methods all satisfy 

this equation. Thus they can be interpreted as special cases of the GS method by neglecting the  

time-consuming covariance calculation process and redistributing the detail injection among different 

bands under Equation (20). This also explains why all the comparison studies of the IHS, GIHS, 

Brovey transform and GS methods have found the GS method to be the best in terms of spectral 

preservation and spatial injection [2,7,25].  

Previous studies have introduced similar weighting parameters s to balance the contributions from 

different information sources [41,44,54] but lack of detail explanation. With a parameter t, Choi’s 

method [41] can be rewritten into the general CS framework by setting  
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(1 1/ ) 1Qt t  i  (21)

Tu et al. [44] introduced a parameter l, which can be written into the general CS framework by setting  

( ) / [( 1) ] 1n Q n n n nl X l   i + z y y  +  (22)

1.6. MRA Methods from a Bayesian Perspective 

The MRA method formulations show that estimate of fused MS band q, ˆ qZ , is independent of the 

other MS bands[11,27,67]. Thus, we assume that Z1, Z2, …, ZQ are all conditionally independent on X, 

with a mean vector z ̃1, z ̃2, …, z ̃Q and a covariance matrix C1 
Z,Z, C

2 
Z,Z, …, CQ 

Z,Z. Furthermore, Zq and X are 

linearly correlated [55–57,67]: 
( )q q q q q qg    e α eX Z Z  (23)

where αq and eq have N elements, Βq has N × N elements and eq has a covariance matrix Cq 
e . Thus, the 

MAP estimate is given by  

T q T 1
, ,

ˆ ( ) [(1 ) ( ) ] ( ) 1,2,...,q q q q q q q q q q qs s s q Q     ez C C C y Z Z Z ZZ X    (24)

1 -1 T -1
,

ˆ( ) 2(1- )( ) 2 ( ) ( ) 1,2,...,q q q q q q qs s q Q   eC C CZ Z    (25)

where ỹq = Βqz ̃q + αq and sq is the weight parameter for the qth band.  

X has a Gaussian distribution with an unknown mean E(X) and a covariance CX,X with N × N 

elements as we assume that Z and X are linearly correlated and that Z has a Gaussian distribution. We 

can similarly assume that X has an expected value E(X) = x.̃ Furthermore, Βqz ̃q + αq = x ̃= ỹq, for q = 1, 

2, …, Q. Thus,  

T T 1
, ,

ˆ ( ) [(1 ) ( ) ] ( ) 1,2,...,q q q q q q q q q q qs s s q Q     ez C C C x Z Z Z ZZ X    (26)

where Βq = Cq 
Z,X(Cq 

Z,Z)−1 and Cq 
e  = CX,X – Cq 

Z,X(Cq 
Z,Z)−1(Cq 

Z,X)T, with Cq 
Z,X being the covariance matrix 

between vectors Zq and X.  

As with the CS methods, assumptions must be made to make the parameters easier to estimate:  

, ,

, ,

, ,

σ

σ

σ

q q
N

N

q q
N







C I

C I

C I

Z X Z X

X X X X

Z Z Z Z

 (27)

where σq 
Z,Z, σX,X and σq 

Z,X are the variance and covariance values for the corresponding covariance matrices. 

These matrices have only (2Q + 1) unknown parameters and can be estimated from the observed MS 

images z and degraded Pan image x. Thus, the modulation coefficient for the qth band, ωq, is: 

,

, , / ,
 =  ,

,
 (28)

where ρq = σq 
Z,X/sqrt(σq 

Z,ZσX,X) represents the correlation coefficient between bands X and Zq.  

Thus the MRA methods, derived by setting Ω = diag(ωT,ωT, …,ωT)N in Equation (17) with ω = [ω1, 

ω2,…, ωQ] and ωq as Equation (28), are special cases of the Bayesian fusion method that uses different sq 

values to weigh the different information sources. Table 1 lists some MRA modulation coefficients 

derived from different weights. Setting ωq = 1 produces the high-pass filtering method or the simple GLP 
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method depending on what filtering is used in MRA. Setting ωq = z ̃
q 
n /xñ gives the HPM method [37], 

which corresponds to the Brovey method in CS category as xñ corresponds to ỹn deducted above. Setting 
 = , / ,  produces the M3 modulation coefficient [11,68] corresponding to the GS method in CS 

category (Table 1).  

We can derive the weight from the modulation coefficient, 

2 2
, , ,

2 2
, , , , , ,

ω [σ (σ ) / σ ] 1 (ρ )

σ ω [σ 2(σ ) / σ ] σ / (ω σ ) 1 2(ρ )

q q q q
q

q q q q q q q
s

 
 

   
X X Z X Z Z

Z X X X Z X Z Z Z X X X
 (29)

From this equation we can derive sq = 0.5 from the M3 modulation coefficient, which has the similar 

formulation with the GS method derived by setting s = 1 in the CS method (Table 1). Similarly, introducing 
a new variable, global correlation coefficient ρ q , we can derive sq = (1 − (ρq)2)/( q  + 1 − 2(ρq)2) from the 

ECB coefficient [27] and sq = (1 − (ρq)2)/(ρ + 1 − 2(ρq)2) from the AABP coefficient [36].  

2. Relationships among Spectral Preservation, Spectral Consistency and Spatial Injection  

in Pansharpening 

2.1. Relationship between the Multi-Resolution Analysis (MRA) and Component Substitution (CS) Methods 

From the modeling process in the Bayesian data fusion framework, the difference between the 

MRA and CS methods lies only in how the HR MS and Pan images are correlated (Equations (5) and 

(23)). In the modeling process of the CS methods, the linear correlation (Equation (5)) can be seen as a 

constraint to the Gaussian assumption of the MS images (Equation (8)) as long as the number of MS 

bands is larger than 1 (i.e., the unknown variables are more than the given variables in Equation (5)). 

Setting s = 1 indicates that the Gaussian variables are estimated under this linear correlation constraint, 

i.e., the GS method. In the MRA methods, the linear correlation assumption (Equation (23)) 

completely competes with the Gaussian assumption of the MS images (Equation (8)) as we can derive 

the solution by solely solving Equation (23) (i.e., the unknown variables have the same number with 

the given variables). Thus, setting s = 0.5 indicates a good tradeoff between the two assumptions, i.e., 

the M3 injection model. If the normalized spectral responses are ideal and the linear combination 

assumption can be satisfied, i.e., σe = 0 in Equation (18), then the M3-GLP and GS methods are 

exactly the same.  

The assumption of σe = 0 is not realistic, as demonstrated by Thomas et al. [10]. It is even violated 

when sharpening for newly developed sensors where the Pan and MS spectral bandwidths do not 

overlap (e.g., the near infrared (NIR) band of SPOT-5, blue band of IKONOS and coastal, and the 

NIR1 and NIR2 bands of WorldView-2 and the forthcoming WorldView-3) [3], when sharpening MS 

images with synthetic aperture radar data [69,70] and when sharpening thermal images with visible and 

NIR images [71]. To minimize σe and make the linear combination assumption reasonable, the newly 

developed CS methods focus on creating an ideal intensity component by accounting for the spectral 

response functions [29,30,72] or by conducting multiple regression analyses of the degraded Pan 

image and original MS images [8,25,42]. The multiple-regression-analyses approach harkens back to 

studies conducted in the 1990s [73,74]. The traditional method for minimizing σe is to histogram match 

the Pan image X to the linear combination intensity ỹ [25]. Another recently developed approach 
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involves injecting Pan spatial details into the ỹ to decrease σe [32–34,75]. This is referred to as the 

combined CS/MRA method. 

2.2. Degree of Spatial Enhancement 

Many studies have observed that the spatial enhancement of CS methods is larger than that of MRA 

methods [27,40–42]. This is because X – ỹ in Equation (16) of the CS methods could have more spatial 

details than X – x ̃in Equation (26) of the MRA methods as in the CS methods Pan image X cannot be 

an exactly linear combination of HR MS images Z (i.e., σe in Equation (18) cannot be 0 see Section 2.1 

and it can add some artificial spatial details into X – ỹ). However, from a Bayesian perspective, spatial 

enhancement is also controlled by the parameter s and thus the modulation coefficient. In fact, when s 

is set to 1, for the CS methods, the modulation coefficient ωq has a maximum value of σq 
Y,Z/σY,Y. For the 

MRA methods, the corresponding counterpart of the GS modulation coefficient is σq 
Y,Z/σX,X, which can 

be obtained by setting s = 0.5 (Table 1 and Section 1.6). And ωq has a maximum value of σq 
Z,Z/σ

q 
X,Z. σ

q 
Y,Z

/σY,Y (the maximum CS modulation coefficient by setting s = 1) ≤ σq 
X,Z/σX,X < σq 

Z,Z/σ
q 
X,Z (the maximum 

MRA modulation coefficient by setting sq = 1). This indicates that the amount of spatial information 

provided by the MRA methods may be more than that provided by the CS methods when sq > 0.5 in 

MRA methods. This possibility is verified in the experimental section.  

2.3. Are Spatial Injection and Spectral Preservation Competitive? 

Many researchers have believed that there is a tradeoff between spatial information injection and 

spectral information preservation. In fact, the tradeoff between the spatial enhancement and spectral 

preservation is only true in EGIF [52], where the spectral information is measured by its similarity to the 

up-sampled MS images z.̃ We define the spectral consistency as the first property of Wald’s  

protocol [51] that once degraded to its original resolution, any synthetic image  should be as 

identical as possible to the original image z [52]. This is observed in Equation (2), and is neglected by 

both the MRA and CS methods in Equation (10). 

2.4. Are the Up-Sampled Images Spectrally Consistent? 

Usually, the up-sampled images z ̃ and x ̃ are derived using an expansion and a corresponding  

low-pass expansion filter [28,76]. However, none of the up-sampling methods explicitly satisfies the 

spectral consistent property, i.e., Hx ̃ x. In fact, the up-sampled images are spectrally consistent only 

if the sensor PSF is ideal and the nearest neighbor resampling method is applied. Massip et al. [68] 

recently demonstrated that de-convoluting the MS images according to the sensor PSF before  

up-sampling could improve the fusion results, which in fact indicates that the assumption Hx ̃ = x is 

more reasonable when the sensor PSF is more like ideal after de-convolution.  

As Hx ̃ x, the spatial detail is not zero-mean (i.e., H(X − x)̃ = x − Hx ̃ 0). Thus the MRA methods 

cannot fulfill the consistency condition [10,11,52]. Furthermore, applying a non-zero-mean modulation 

coefficient, which varies as a function of spatial location, exacerbates this problem. 
  

Ẑ
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2.5. How to Obtain a Spectrally Consistent Solution 

The reason why all of the traditional EGIF methods including MRA methods are not spectrally 

consistent lies in their neglecting the spectral consistency term p(z|Z) in Equation (9) from a Bayesian 

perspective (see Equation 10 and Section 1.3 how we derive the traditional EGIF methods from the 

Bayesian perspective). The so-called spectral consistency in the EGIF methods is only roughly 

guaranteed by their assumption that the MS images have a Gaussian distribution with a mean value 

comprising the up-sampled MS images. This section solves Bayesian Equation (9) with consideration 

of the spectral consistency term p(z|Z). The solution of the traditional detail injection methods, i.e., 

p(Z)p(X|Z), follows a Gaussian distribution with a mean vector Ẑ  in Equation (14) and a covariance 

matrix Ĉ  in Equation (15):  

T 11 ˆˆ ˆ( ) ( ) exp{ ( ) ( )}
2

p p    CZ X Z Z Z Z Z (30)

When incorporating Equation (7) (i.e., the p(z|Z) term) and Equation (30), the close-form solution 

for the minimization can be similarly obtained by determining where the gradient of the cost function 

is zero, as the second derivative is always positive [12,55]:  

T 1 1 1 T 1 1 T T 1ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( + ) ( + ) ( ) ( )S
         n n nH C H C H C z C CH HCH C z HZ Z Z Z  (31)

where ˆ
SZ  is the spectrally consistent estimation of Z. However, this solution involves the formulation 

and inversion of a large matrix, Tˆ  nHCH C , with (QM) × (QM) elements, making it computationally 

extensive and unable to be solved pixel by pixel as in solving Ẑ . To avoid such a process, some 

previous studies [55,57,58,77–79] have assumed an ideal (rectangular) PSF. In this case, H is block 

diagonal and the large equation system in Equation (31) can be spatially decomposed into independent 

subsets by segmenting the images into blocks. However, the bell-shaped modulation transfer function 

(MTF) of the real sensor system makes the decomposition impossible. 

Although the steepest gradient descent method [59,62,77–79] can be used with an arbitrary sensor 

PSF to solve Equation (31) without inversing the large matrix, no study has attempted to do so except 

Eismann and Hardie [60] used the conjugate gradient search algorithm to fuse multispectral and 

hyperspectral images. As the conjugate gradient search algorithm establishes conjugacy for successive 

search directions, it can be used to avoid the stagnation that can occur for the steepest gradient search 

algorithms and make optimization more effective. We use the conjugate gradient search algorithm for 

our estimation. Define: 
T 1 1

T 1 1

ˆ+

ˆ ˆ+

 

 




n

n

A H C H C

b H C z C Z
 (32)

then Equation (31) can be solved by:  

0 A bZ  (33)

Because A is a real, symmetric and positive-definite matrix, the conjugate gradient search algorithm 

can be applied and is depicted as the following pseudo-codes. 
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Algorithm 1. Conjugate gradient search algorithm to avoid large matrix formation 

Let Z(0) = Ẑ             (set the initial solution Z(0) to be the results created by the traditional detail injection methods, Ẑ ) 

r(0) = b − AZ(0)       (r is a vector with the same dimensions as Z. For example, r(0) = b − AZ(0) = HTC−1 
n (z-HZ(0)), 

where z-HZ(0) is a vector that represents the error of the initial solution Z(0) against the LR 

image z and HT represents the expansion of this error vector into the HR dimension)  

p(0) = r(0)                (p is a vector representing the conjugate direction in which the solution Z(0) should be adjusted) 

k = 0 

repeat  

   α(k) = [rT(k)r(k)]/[pT(k)Ap(k)]   (α is a scalar representing the best step with which solution Z(k) should be adjusted)  

   Z(k + 1) = Z(k) + α(k)p(k)             (adjust the solution Z(k) to be more spectrally consistent)  

   r(k + 1) = r(k) − α(k)Ap(k)            (the following statements are to change the direction p to guarantee conjugacy) 

   if (r(k + 1) is sufficiently small, e.g., has an average element value smaller than 1E-10 in our work, or k is 

sufficiently large, e.g., 5 in our work) then exit loop 

   γ(k) = [rT(k + 1)r(k + 1)]/[rT(k)r(k)] 

   p(k + 1) = r(k + 1) + γ(k)p(k) 

   k = k + 1 

end repeat 

The result is stored in Z(k+1). The sentences in brackets after the algorithm statements explain the 

actions. This iteration process continually adjusts solution Z(k) to be spectrally consistent with z. The 

maximum iteration is set to be 5 as we have experimentally confirmed that the performance increased 

with the increasing iteration. However, the increase is little and the performance is stable when the 

iteration is larger than 5. Fortunately, we can implement the algorithm without forming these 

matrices/vectors by performing these operations in the image form. Most of the operations in the 

algorithm are easily implemented in the image domain, as matrices Cn and Ĉ  are diagonal. For 

example, Cnu (with u being an image vector with QM elements, e.g., z) means that each pixel in the u 

image is multiplied by the corresponding diagonal element. However, there are two complicated 

operations to change vector dimensions: H and HT. The operation Hv (with v being an image vector 

with QN elements, e.g., Z) is to degrade image v by mimicking the sensor PSF, i.e., a two level ATW 

filter with a scale ratio r = 4 in Equation (3). The most difficult operation is HTu. Considering 

Equation (3), as HT = FT 
1 DT 

1 FT 
2 DT 

2  = F1DT 
1 F2DT 

2 , HTu is actually expanding the image u by 2 (DT 
2 ), 

applying the ATW filter to the expanded image (F2) and reapplying the same expansion (DT 
1 ) and 

filtering (F1) again. Thus, this conjugate gradient optimization technology does not require the formation, 

let alone inversion, of the large Hessian matrix A. 

2.6. Spectral Preservation is Complementary with Spatial Injection  

Equation (6) is applied in the traditional detail injection method to roughly guarantee spectral 

consistency, as it assumes that the HR MS images have a Gaussian distribution, with the up-sampled 

MS images serving as the mean vector. In contrast, Equation (7) strictly guarantees the spectral 

consistency. Equation (7) has much more freedom than Equation (6), as its known variables (z with 

QM elements) are r2 times less than the variables to be estimated (Z with QN elements). And only 

using Equation (7) to estimate Z is an ill-posed problem [53]. Thus, we can expect that rather than 
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competitive with the spatial detail injection, as the term Equation (6) did in the traditional detail 

injection methods, this new spectral preservation term is complementary to the spatial detail injection. 

3. Experimental Confirmation 

To experimentally confirm our previous analysis, we compared the GLP method coupled with two 

different injection models (i.e., M3 and ECB) representing the MRA category and the GS method 

representing the CS category. There are many other MRA methods in the literatures [80–83], such as 

wavelet filter banks [80,81], which may have similar performance of the GLP method in terms of 

spectral preservation as opposed to Wald’s spectral consistency. The GLP-M3 method was 

implemented by setting different s values to examine its spatial enhancement capability. To examine 

the relationship between the spatial enhancement and spectral preservation, we also incorporated the 

traditional detail injection methods with the spectral consistency constraint of Equation (2) as 

described in Section 2.5. We named these methods GS-S, GLP-M3-S and GLP-ECB-S, respectively, 

with “S” representing the spectral consistency. We omitted “GLP” from the names in the following 

analysis without ambiguity, e.g., “M3” refers to “GLP-M3.”  

We implemented GS by computing the simulated LR Pan image as the pixel average of the MS 

bands, and performed histogram matching using the linear transformation method. The slope of the linear 

function was the ratio of the standard variances between the LR image x and the intensity image y.  

The intercept of the linear function was set to make the line pass through the point (mean(x), mean(y)), 

where “mean” refers to the average of all of the vector elements. Following [28], in all of the cases 

involving the GS method, z ̃and x ̃were up-sampled using an expansion and a corresponding low-pass 

expansion filter, i.e., a 23-taps filter. We also included the plain expansion of the MS dataset, z,̃ for 

comparison, which we referred to as “EXP”. The conjugate gradient search was run for 5 iterations to 

secure a robust estimation. The ECB was the only local-adaptive injection model. Its coefficients were 

calculated on a square sliding window of 13 × 13 pixels in size, centered on the pixel in question in the 

up-sampled images z ̃and x ̃ [27] and clipped above 3 and below 0 to avoid numerical instabilities. In 

this study the 13 × 13 pixel window was used as sensitivity analysis undertaken using different 

window sizes on our test data did not reveal much difference for windows with 11 to 15 pixel side 

dimensions. Similar window size of 11 × 11 was utilized in Aiazzi et al. [7]. 

3.1. Experimental Data 

We conducted experiments using two datasets acquired by the QuickBird and WorldView-2 

satellites. The selected QuickBird data, with 0.6-m Pan and 2.4-m MS images, consisted of a forest 

landscape bisected by a broad road near Boulder City, Colorado, U.S. (Figure 1). The MS image 

consisted of four bands, including R, G, B and NIR. The MS image was 600 × 600 pixels in size with a 

2.4-m spatial resolution. The WorldView-2, which simultaneously collects Pan imagery at 0.46 m and 

MS imagery at 1.84 m, was the first commercial HR satellite to provide eight spectral sensors in the 

visible NIR range. Due to U.S. government licensing, the imagery information is made commercially 

available at 0.5 m and 2.0 m. In our dataset, the MS image was 800 × 800 pixels in size with a 2.0-m 

spatial resolution. We divided the eight MS bands into two groups for testing according to their 

bandwidth relationship with the Pan band (Figure 2). The first group contained bands 3 (green), 4 
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(yellow), 5 (red) and 6 (red edge), which were all covered by the Pan band wavelength. For the second 

group, we selected bands 1 (coastal), 2 (blue), 7 (NIR1) and 8 (NIR2), which were either not covered or 

not fully covered by the Pan band wavelength. The WorldView-2 scene subset, which contained many 

complex urban buildings and vegetation across San Francisco, was observed on 9 October 2011 

(Figure 1). DigitalGlobe released the data through the 2012 IEEE GRSS Data Fusion Contest.  

(a) 
 

(b) 

 
(c) (d) 

Figure 1. Color compositions of (a) the original QuickBird MS image (2.4 m) at 600 × 600 

pixels combined from red, green and blue bands and (b) the original WorldView-2 MS 

image (2.0 m) at 800 × 800 pixels combined from green, red and red edge bands. The 

degraded Pan images for (c) QuickBird at 2.4 m and (d) WorldView-2 at 2.0 m.  
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Figure 2. Relative spectral radiance response of the WorldView-2 instrument. The 

bandwidths are Coastal: 400–450 nm, Blue: 450–510 nm, Green: 510–580 nm, Yellow:  

585–625 nm, Red: 630–690 nm, Red Edge: 705–745 nm, NIR1: 770–895 nm and NIR2:  

860–1040 nm. (Image credit: Digital Globe.) 

3.2. Validation Strategies 

We conducted pan-sharpening at both reduced and full scales. At the reduced scale, we degraded 

the Pan and MS images by four before fusion so that we could use the original MS data as references 

for the fusion result evaluation. We applied a low-pass filter to the HR data, decimated the filtered 

images by two along both directions, reapplied the same filter and decimated the images again by two. 

We used 23-taps and ATW low-pass filters on the Pan and MS images, respectively [27,28] to match 

the MTF of the bands. At the full scale, we directly pansharpened the original MS images using the 

original Pan image and thus no MS reference images were used for the fusion results evaluation.  

The consistency property of the Wald’s protocol, the synthesis property of the Wald’s protocol and 

Alparone’s protocol without reference were adopted as the validation strategies. To check the 

consistency property of the Wald’s protocol, we degraded all of the fused products to the original MS 

resolution by mimicking the sensor PSF [52]. We then evaluated the degraded fused MS product against 

the original reference MS images. This validation can be applied to both the reduced and full scale 

experiments. To check the synthesis property of the Wald’s protocol, we need the reference HR MS 

images and thus can only be applied to the reduced scale experiments. To check the Alparone’s protocol, 

we do not need the reference HR MS images and thus can be applied to the full scale experiments. 

Obviously, with reference available, the validation procedure of the consistency and synthesis properties 

of the Wald’s protocol is very accurate. However, the consistency property is just a necessary condition 

but not a sufficient condition to guarantee the fused image quality. And the synthesis property is founded 

on the hypothesis of invariance between scales, which is not always fulfilled in practice [51]. As such 

validation using Alparone’s protocol without reference is still necessary. Furthermore, a visual 

comparison is a mandatory step to appreciate the quality of the fused images.  
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If there are reference images in validation as in checking the consistency and synthesis properties of 

the Wald’s protocol, four quality indices can be adopted. (1) The first is the ERGAS index, from its 

French name “relative dimensionless global error in synthesis,” which calculates the amount of spectral 

distortion [84]. The best ERGAS value is zero; (2) The second is the Q4 index proposed by [85],  

which is an extension of the universal quality index (i.e., Q) suitable for four-band MS images.  

This index is sensitive to both correlation loss and spectral distortion between two MS images, and 

allows both spectral and spectral distortions to be combined in a unique parameter. The best value is 

one, with a range from zero to one. In our experiments, we calculated Q4 on 32 × 32 blocks; (3) The 

third is the spectral angle mapper (SAM), which calculates the angle between two spectral vectors to 

estimate the similarities between two different images. The best value is zero. (4) The last is signal to 

noise ratio (SNR, [86]) in decibel (dB). It is used to measure the ratio between information and noise 

of the fused image.  

If there are no reference images in validation as in checking Alparone’s protocol, three following 

different quality indices can be adopted. (1) A spectral distortion index, Dλ, is derived from the 

difference of inter-band Q values calculated from the fused MS bands and from the original LR MS 

bands; (2) A spatial distortion index, DS, is derived from the difference of inter-band Q values 

calculated between the fused MS bands and HR Pan band and between the original LR MS bands and 

the degraded Pan band; (3) QNR (i.e., Quality with No Reference) is a combination of the preceding 

spectral/spatial distortion index [87]. They all take values in [0, 1], with zero being the best value for 

Dλ and DS, and one being the best value for QNR.  

3.3. Experimental Results 

Figures 3–5 show the fusion results of different pansharpening methods for the QuickBird and 

WorldView-2 datasets at the reduced scale. The quantitative evaluation indices are reported in Tables 2–13, 

which checked the synthesis property of the Wald’s protocol at the reduced scale (Tables 2, 6 and 10), the 

consistency property of the Wald’s protocol at both the reduced and full scale (Tables 3, 5, 7, 9, 11 and 

13) and Alparone’s protocol without reference at the full scale (Tables 4, 8 and 12).  

Table 2. Quantitative comparison of the fusion results to check the synthesis property of 

the Wald’s protocol for the QuickBird dataset at the reduced scale, i.e., at 2.4 m. The best 

result in each row is displayed in bold, and the second best is displayed in italics. The 

shaded gray cells are for alternative group columns with different categories.  

Category No-Sharpening CS MRA-Local MRA-Global 

Method EXP GS GS-S ECB ECB-S M3, s = 0.5 M3-S s = 0.75 s = 0.75, S s = 0.9 s = 0.9, S

ERGAS 5.132 4.690 3.515 5.122 4.303 3.942 3.312 4.790 4.086 5.699 4.815 

Q4 0.579 0.851 0.890 0.822 0.860 0.853 0.894 0.825 0.861 0.793 0.831 

SAM (◦) 4.946 5.511 4.449 6.029 4.993 5.064 4.123 5.513 4.491 6.104 4.840 

SNR 14.56 15.92 17.98 15.01 16.45 16.93 18.44 15.32 16.68 13.97 15.36 
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Table 3. Quantitative comparison of the fusion results after degrading the images into the 

LR resolution, i.e., at 9.6 m, to check the consistency property of the Wald’s protocol for 

the QuickBird dataset at the reduced scale. 

Method EXP GS GS-S ECB ECB-S M3 M3-S s = 0.75 s = 0.75, S s = 0.9 s = 0.9, S 

ERGAS 1.166 1.881 0.402 1.033 0.804 0.919 0.357 1.016 0.539 1.149 0.701 

Q4 0.983 0.986 0.999 0.990 0.999 0.991 0.999 0.989 0.999 0.986 0.998 

SAM (◦) 1.098 1.330 0.235 1.140 0.282 1.118 0.214 1.148 0.256 1.188 0.314 

SNR 27.26 23.93 36.79 28.65 31.89 29.46 37.50 28.61 34.21 27.65 32.23 

Table 4. Quantitative comparison of the fusion results to check Alparone’s protocol for the 

QuickBird dataset at full scale, i.e., at 0.6 m. Time is measured in minutes. The font face 

indicators are identical to those in Table 2. 

Method EXP GS GS-S ECB ECB-S M3 M3-S s = 0.75 s = 0.75, S s = 0.9 s = 0.9, S 

Dλ 0.037 0.117 0.034 0.081 0.057 0.070 0.030 0.119 0.055 0.149 0.078 

Ds 0.193 0.174 0.023 0.045 0.021 0.070 0.040 0.139 0.024 0.162 0.042 

QNR 0.777 0.729 0.944 0.878 0.922 0.864 0.931 0.758 0.922 0.713 0.883 

Time 0.02 0.28 6.30 3.10 9.12 0.27 6.29 0.29 6.42 0.28 6.44 

Table 5. Quantitative comparison of the fusion results after degrading the images into the 

LR resolution, i.e., at 2.4 m, to check the consistency property of the Wald’s protocol for 

the QuickBird dataset at full scale. 

Method EXP GS GS-S ECB ECB-S M3 M3-S s = 0.75 s = 0.75, S s = 0.9 s = 0.9, S 

ERGAS 0.815 2.490 0.303 1.170 0.620 0.845 0.232 1.232 0.349 1.552 0.429 

Q4 0.989 0.966 0.998 0.983 0.992 0.988 0.999 0.977 0.998 0.967 0.996 

SAM (◦) 0.880 1.537 0.375 1.036 0.652 0.867 0.310 0.986 0.339 1.112 0.365 

Table 6. Quantitative comparison of the fusion results to check the synthesis property of 

the Wald’s protocol for the WorldView-2 group 1 dataset at the reduced scale, i.e., at 2.0 

m. The font face indicators are identical to those in Table 2. 

Method EXP GS GS-S ECB ECB-S M3 M3-S s = 0.75 s = 0.75, S s = 0.9 s = 0.9, S 

ERGAS 9.340 5.573 4.368 4.093 3.846 4.225 3.939 4.033 3.728 3.994 3.671 

Q4 0.542 0.875 0.906 0.923 0.931 0.912 0.924 0.923 0.933 0.926 0.936 

SAM (◦) 6.106 6.184 5.400 5.820 5.290 6.019 5.317 5.950 5.282 5.935 5.275 

SNR 9.92 14.92 16.52 17.13 17.64 16.83 17.42 17.24 17.90  17.33 18.03 

Table 7. Quantitative comparison of the fusion results after degrading the images into the 

LR resolution, i.e., at 8.0 m, to check the consistency property of the Wald’s protocol for 

the WorldView-2 group 1 dataset at the reduced scale. 

Method EXP GS GS-S ECB ECB-S M3 M3-S s = 0.75 s = 0.75, S s = 0.9 s = 0.9, S 

ERGAS 1.908 2.439 0.168 0.646 0.190 0.644 0.136 0.663 0.139 0.685 0.143 

Q4 0.977 0.982 1.000 0.997 1.000 0.997 1.000 0.997 1.000 0.997 1.000 

SAM (◦) 1.154 1.333 0.205 1.009 0.284 1.070 0.183 1.064 0.183 1.067 0.184 

SNR 23.13 21.65 44.21 32.75 43.16 32.73 46.02 32.50 45.79 32.23 45.55 
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Table 8. Quantitative comparison of the fusion results to check Alparone’s protocol for the 

WorldView-2 group 1 dataset at full scale, i.e., at 0.5 m. Time is measured in minutes. The 

font face indicators are identical to those in Table 2. 

Method EXP GS GS-S ECB ECB-S M3 M3-S s = 0.75 s = 0.75, S s = 0.9 s = 0.9, S 

Dλ 0.046 0.013 0.015 0.021 0.012 0.030 0.013 0.035 0.018 0.036 0.020 

Ds 0.197 0.023 0.024 0.010 0.023 0.015 0.019 0.018 0.009 0.019 0.007 

QNR 0.766 0.964 0.962 0.969 0.965 0.955 0.969 0.948 0.974 0.945 0.974 

Time 0.03 0.50 11.20 5.64 16.25 0.48 11.22 0.49 11.21 0.49 11.31 

Table 9. Quantitative comparison of the fusion results after degrading the images into the 

LR resolution, i.e., at 2.0 m, to check the consistency property of the Wald’s protocol for 

the WorldView-2 group 1 dataset at full scale. 

Method EXP GS GS-S ECB ECB-S M3 M3-S s = 0.75 s = 0.75, S s = 0.9 s = 0.9, S 

ERGAS 1.453 2.894 0.732 1.191 0.934 1.104 0.642 1.191 0.776 1.230 0.838 

Q4 0.990 0.965 0.997 0.993 0.996 0.994 0.998 0.993 0.997 0.993 0.997 

SAM (◦) 0.927 1.433 0.420 0.860 0.523 0.925 0.353 0.931 0.417 0.936 0.448 

Table 10. Quantitative comparison of the fusion results to check the synthesis property of 

the Wald’s protocol for the WorldView-2 group 2 dataset at the reduced scale, i.e., at 2.0 

m. The font face indicators are identical to those in Table 2. 

Method EXP GS GS-S ECB ECB-S M3 M3-S s = 0.75 s = 0.75, S s = 0.9 s = 0.9, S 

ERGAS 8.098 11.01 5.404 6.289 5.474 6.129 5.423 5.988 5.130 7.206 5.676 

Q4 0.516 0.705 0.849 0.803 0.845 0.751 0.820 0.810 0.858 0.801 0.852 

SAM (◦) 8.769 9.850 6.581 7.383 6.600 7.729 6.735 7.206 6.383 8.428 6.934 

SNR 12.48 12.80 16.04 16.18 16.98 16.11 16.93 16.36 17.36 15.50 16.88 

Table 11. Quantitative comparison of the fusion results after degrading the images into the 

LR resolution, i.e., at 8.0 m, to check the consistency property of the Wald’s protocol for 

the WorldView-2 group 2 dataset at the reduced scale. 

Method EXP GS GS-S ECB ECB-S M3 M3-S s = 0.75 s = 0.75, S s = 0.9 s = 0.9, S 

ERGAS 1.632 7.631 0.353 1.368 0.412 1.202 0.220 1.333 0.262 1.793 0.480 

Q4 0.974 0.826 0.999 0.985 0.999 0.987 1.000 0.986 0.999 0.976 0.998 

SAM (◦) 1.726 6.976 0.388 1.587 0.487 1.484 0.263 1.547 0.283 1.989 0.480 

SNR 25.97 17.64 40.60 30.16 38.13 30.65 42.69 29.95 41.36 28.40 38.15 

Table 12. Quantitative comparison of the fusion results to check Alparone’s protocol for 

the WorldView-2 group 2 dataset at full scale, i.e., at 0.5 m. Time is measured in minutes. 

The font face indicators are identical to those in Table 2. 

Method EXP GS GS-S ECB ECB-S M3 M3-S s = 0.75 s = 0.75, S s = 0.9 s = 0.9, S 

Dλ 0.024 0.065 0.023 0.060 0.044 0.072 0.045 0.078 0.050 0.072 0.048 

Ds 0.151 0.217 0.077 0.049 0.042 0.039 0.026 0.068 0.021 0.067 0.013 

QNR 0.828 0.732 0.902 0.894 0.915 0.892 0.931 0.860 0.930 0.866 0.939 

Time 0.03 0.50 11.29 5.67 16.32 0.52 11.15 0.49 11.10 0.50 11.26 
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Table 13. Quantitative comparison of the fusion results after degrading the images into the 

LR resolution, i.e., at 2.0 m, to check the consistency property of the Wald’s protocol for 

the WorldView-2 group 2 dataset at full scale. 

Method EXP GS GS-S ECB ECB-S M3 M3-S s = 0.75 s = 0.75, S s = 0.9 s = 0.9, S 

ERGAS 1.286 8.393 0.375 1.369 0.812 1.087 0.267 1.345 0.371 1.719 0.477 

Q4 0.989 0.804 0.999 0.988 0.995 0.992 1.000 0.989 0.999 0.982 0.999 

SAM (◦) 1.365 6.644 0.381 1.364 0.738 1.202 0.217 1.336 0.271 1.612 0.348 

3.3.1. Degree of Spatial Enhancement 

The GLP-based methods (e.g., the GLP-M3 method) could exhibit better spatial enhancement than the 

GS method when the s value was adjusted properly. In all of these figures, when s is set to be larger than 

0.75, the spatial enhancement of the MRA methods is larger than that of the GS method (Figures 3–5).  

3.3.2. Are the Up-Sampled Images Spectrally Consistent? 

None of the up-sampled images found to be strictly spectrally consistent from both the quantitative 

measurements and visual comparisons. The consistency quantitative matrices of the up-sampled 

images were shown in the first columns of Tables 3, 5, 7, 9, 11 and 13 (3, 7 and 11 for the reduced 

scale, and 5, 9 and 13 for the full scale). The ERGAS values are around 1, which is not close to 0. In 

Figures 3–5, we can also see that that the up-sampled images have larger spectral distortions than the 

MRA fused images as opposed to the reference images, e.g., the roofs in Figures 3 and 4 and the 

vegetation in Figure 5.  

None of the MRA methods actually satisfied the spectral consistency property (Tables 3, 5, 7, 9, 11 

and 13). However, the spectral consistency performance of the GLP-based methods was always better 

than that of the GS method even when the s value increased from 0.5 to 0.75 and 0.9 for the M3 method 

to gain more spatial enhancement. This indicated that although the GLP-based methods were not 

spectrally consistent by design, their spectral inconsistency was not as obvious as that of the GS 

method. That is why so many studies have stated that GLP-based methods perform better in terms of 

spectral preservation. 

3.3.3. Spectral Preservation is Complementary with Spatial Injection   

All of the fused images at both the reduced and full scales were almost perfectly spectrally 

consistent with the LR MS images by adding the spectral consistency constraint (Tables 3, 5, 7, 9, 11 

and 13). They all had Q4 values close to 1, big SNR values, and very small ERGAS and SAM values 

when checking the consistency property at their LR resolutions [52]. The fused products under the 

spectral consistency constraint also had better quantitative evaluation indices when checking the 

synthesis property (Tables 2, 6 and 10) and checking Alparone’s protocol (Tables 4, 8 and 12). This 

improvement was obvious given the respective one-unit decrease in ERGAS and SAM values for the 

GLP-based methods (Tables 2, 6 and 10). The improvement was even more obvious for the GS method, 

which made GS-S the second best performance for the QuickBird and WorldView-2 group 2 datasets. 

The performance increases were also obvious visually. For example, the tone in Figure 3d (GS-S) is 
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closer to the observed reference scene than that in Figure 3c (GS). However, there is a case for the 

WorldView-2 group 1 dataset (Table 8) that the ECB method with spectral consistency constraint 

showed no improvement in terms of QNR metric. This is possibly because that the QNR at the full 

scale is not as reliable as the other metrics used at the reduced scale [88] or because that the spatial 

independence assumptions is violated in the HR dataset. 

Furthermore, we found only a negligible decrease in spatial enhancement after making the fused 

products spectrally consistent (Figures 3–5). This indicated that spectral consistency, which is quite 

different from spectral preservation to the up-sampled MS images, is complementary with spatial 

enhancement rather than competitive. For example, comparing the GS-S and GS methods, the 

sharpness was only slightly weakened (Figures 3–5e and f). Moreover the GS-S method performed 

very closely to the M3-S method, which indicated that the proposed spectral consistency model was 

quite effective for making up for the spectral distortion caused by the fusion method. 

(a) (b)  

(c)  (d)  

Figure 3. Cont.  
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(e) (f) 

(g) (h) 

(i) (j) 

Figure 3. True color display of the fused results from different strategies for the QuickBird dataset 

at the reduced scale. (a): Observed at a 2.4-m spatial resolution; (b): EXP; (c): GS; (d):  

GS-spectrally consistent; (e): GLP-ECB; (f): GLP-ECB-spectrally consistent; (g): GLP-M3; (h): 

GLP-M3-spectrally consistent; (i): GLP with s = 0.75; (j): Spectrally consistent GLP with s = 0.75. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 4. Cont. 
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(g) (h) 

(i) (j) 

Figure 4. A subset, marked in the left white box in Figure 1, of different fusion results  

at the reduced scale of the WorldView-2 group 1 dataset. Bands 3, 5 and 6 are combined  

for RGB display. (a): Observed at a 2.0-m spatial resolution; (b): EXP; (c): GS; (d):  

GS-spectrally consistent; (e): GLP-ECB; (f): GLP-ECB-spatially consistent; (g): GLP-M3; 

(h): GLP-M3-spectrally consistent;(i): GLP with s = 0.75; (j): Spectrally consistent GLP 

with s = 0.75. 
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(a) (b) 

(c) (d) 

(e) (f) 

Figure 5. Cont. 
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(g) (h) 

(i) (j) 

Figure 5. A subset, marked in the right white box in Figure 1, of different fusion results  

at the reduced scale of the WorldView-2 group 2 dataset. Bands 1, 7 and 8 are combined 

for RGB display. (a): Observed at a 2.0-m spatial resolution; (b): EXP; (c): GS;  

(d): GS-spectrally consistent; (e): GLP-ECB; (f): GLP-ECB-spatially consistent;  

(g): GLP-M3; (h): GLP-M3-spectrally consistent;(i): GLP with s = 0.75; (j): Spectrally 

consistent GLP with s = 0.75. 

3.4. Discussions  

The Bayesian perspective of the pansharpening methods can be supported by the GS performance 

dependence of the linear fitness of Equation (5) in our experimental results, i.e., the Pan approximation 

by the linear MS combination. As basic assumption of the GS method is the perfect linear relationship 

between the Pan band and MS bands, its performance may be largely affected by the fitness of this 

linear relationship. As shown in Table 14, the residual variance of the linear regression in  

Equations (5) and (18) for the WorldView-2 group 2 dataset is much larger (indicating worse 

representation of Equation 5) than that for the QuickBird and WorldView-2 group 1 datasets. Thus the 
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GS method performed much worse for the WorldView-2 group 2 dataset than the other two datasets. 

Researchers have tried to make the regression residual as small as possible, such as via histogram 

matching in the original CS methods and via injecting spatial details into the linear combination results 

y in the combined CS/MRA method [34]. 

Table 14. The variance of the regression residual σe in Equation (18), the modulation 

coefficient ωq in Equation (19) for the GS method and the weight parameter sq in Equation 

(29) averaged over the image for the ECB method for the reduced scale experiments. Their 

average values over all the four bands are shown in the last column.  

Band (q) 1 2 3 4 Average 

QuickBird 
σe = 429 

ωq: GS 0.589 1.086 0.940 1.384 1.00 
sq: ECB 0.565 0.536 0.575 0.715 0.597 

WorldView-2, group 1 
σe = 154 

ωq: GS 0.948 1.183 0.849 1.020 1.00 
sq: ECB 0.621 0.595 0.583 0.655 0.613 

WorldView-2, group 2 
σe = 4558 

ωq: GS 0.237 0.318 1.806 1.639 1.00 
sq: ECB 0.662 0.649 0.689 0.705 0.676 

The Bayesian perspective of the pansharpening methods can also be supported by confirming the 

relationship between regression and modulation coefficients of the CS methods (i.e., Equation (20)). 

For the GS method, because the regression coefficient in Equation (18), βq, equals 1/4, the average 

modulation coefficient (ωq) value shown in Table 14 is actually Ʃβqωq. They are all equal to 1, which 

satisfies Equation (20).  

The s value is important as it controls the amount of modulation coefficient and thus the spatial 

enhancement degree. Theoretically setting s = 0.5 would get the best results as there is no prior 

information on the priority between the linear correlation assumption and the Gaussian distribution 

assumption. Thus when setting s = 0.5 the modulation coefficients were automatically and precisely 

controlled by the variance and covariance values in Equation (28). However, we could not estimate the 

variance and covariance properly due to the scale effect [18,87]. As such, the best s value should also 

compensate the scale effect which is hard to predict [51] and thus requires further research. For 

example, in our experiments, the best s value was not 0.5. Increasing s from 0.5 to 0.75, i.e., from M3 

(s = 0. 5) and ECB (s ≈ 0. 6) to M3 with s = 0.75, resulted in some increase in the algorithm 

performance for all of the WorldView-2 datasets (The s values for the ECB method were spatially 

adaptive, with averages around 0.6, as shown in Table 14.)  

The Bayesian perspective of the pansharpening methods can also be supported by that 

experimentally the best s value is 0.5 when there is no scale effect in calculating variance and 

covariance. Figure 6 shows ERGAS, SAM and Q4 as functions of the s value in the GLP-based 

methods for the three datasets at the reduced scale. The coefficients were calculated based on the HR 

images to avoid the scale effect, which was not available in practice. Without exception, the best 

ERGAS, SAM and Q4 values were achieved by setting s = 0.5.  



Remote Sens. 2015, 7 6854 

 

(a) (b) 

Figure 6. ERGAS, SAM (a) and Q4 (b) as functions of the s value in the GLP-based 

methods for all three datasets, including WorldView-2 (WV) and QuickBird (QB).  

3.5. Computational Complexity 

The last rows of Tables 4, 8 and 12 show the computational times of each algorithm in the full scale 

experiments. We used an Intel® Dual-Core™ i5 CPU with installed memory of 4.00 GB and a 32-bit 

Windows 7 operating system as the computer platform in the experiment. All of the codes were written 

in Matlab language. 

The efficiency of the conjugate gradient search to guarantee the spectral consistency was acceptable in 

the computing environment for an LR MS image around 800 × 800 pixels in size. And it can be improved 

using recently developed parallel computing paradigm [89]. The algorithm efficiency was proportional to 

the product of the LR MS pixel number and the spectral band number (i.e., M × Q). This means that when 

the study area was increased, the computation time increased linearly along with the number of pixels. 

Compared with the ECB method, the main computational time of the ECB-S method was spent on the 

conjugate gradient search, as they required the same amount of time to calculate the modulation 

coefficients. Most of the time spent by the algorithms with the spectral consistency constraint was spent on 

the conjugate gradient search. The MRA methods with spatial varying modulation coefficients, e.g., ECB, 

required more time for calculation than the global modulation coefficients, e.g., M3. 

4. Conclusions 

Despite continuous improvements in the pansharpening algorithm performance, many questions 

have arisen over the last decade. For example, is the spatial enhancement of CS methods better than 

MRA methods? Is there a tradeoff between spectral preservation and spatial enhancement in the fused 

product? What is the difference between the spectral preservation of up-sampled MS images and the 

spectral consistency against original MS images? 

By analyzing the solution of the Bayesian data fusion framework, we found that both CS and MRA 

methods are special cases of Bayesian data fusion by assuming/modeling (1) the Gaussian distribution 

of the desirable MS images with the up-sampled MS images comprising the mean value to preserve 

spectral information and (2) the linear correlation between the MS and Pan bands to inject spatial 
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information. We derived the established EGIF with different injection models by setting different 

weight parameters to control the different assumption/model contributions.  

The only difference between the CS and MRA methods is how the MS and Pan images are linearly 

correlated. By adjusting weight parameters to balance the spectral preservation and spatial injection, 

the MRA methods can perform better than the CS methods in terms of spatial injection. The experimental 

results related to two images captured by QuickBird and WorldView-2 satellites confirmed this conclusion. 

It is widely believed that building these two assumptions/models into the detail injection 

pansharpening framework results in a tradeoff of spatial and spectral quality in the fused product. 

However, this conclusion comes from an implicit and improper assumption that the up-sampled MS 

images best preserve the spectral information. The spectral consistency should be defined as that any 

synthetic image should be as identical as possible to the original image once degraded to its original 

resolution with regard to sensor PSF. The up-sampled MS images are actually not spectral consistent. 

And the spectral consistency is guaranteed by incorporating a third model, the spectral consistency 

model, in the Bayesian data fusion framework. In this way, the spectral consistency constraint should be 

complementary with spatial injection rather than competitive. Spectrally consistent images with arbitrary 

sensor PSF can be estimated using the conjugate gradient search method at the expense of computational 

efficiency. The experimental results confirmed our analysis and found that the performance of the 

traditional EGIF methods improved significantly after adding the spectral consistency constraint.  

The assumptions of the Gaussian distribution of the data and the spatial independence (Appendix B) 

in the Bayesian method deduction might not be practical in some cases. Future research may attempt to 

segment the image into regions to make the assumptions more reasonable in each region rather than in 

the whole image. Alternative solutions are to make a non-Gaussian distribution assumption and to 

consider the spatial correlation as did in the co-kriging downscaling method [90,91], which may need 

more complicated optimization techniques to solve the models. 
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Appendix  

A. The Relationship between this Bayesian Solution and Previous Solutions 

Although the deduction process for the Bayesian estimation may be different from those of  

Hardie et al. [55] and Fasbender et al. [54], they are more consistent than conflicting. We illustrate 

their consistencies in the following analysis.  

Equation (9) is exactly Equation (8) in the study by Hardie et al. [55]. Although p(Z) in Equation (9) 

is cancelled out in Equation (10) in the study by Hardie et al. [55], there is no conflict between them, as  

( | ) ( | ) ( )
( | , ) ( | ) ( | ) ( ) ( | ) ( | )

( , )

p p p
p p p p p p

p
  

z
z z z

z

X Z Z Z
Z X X Z Z Z Z X Z

X
 (A-1)

Note the difference between p(X|Z) and p(Z|X), which determines whether p(Z) should be 

cancelled. Setting s = 0.5 in Equations (24) and (25) results in the same solution as that seen in the 

study by Hardie et al. [55]. When p(z|Z) is neglected, our solution is: 

T T 1 1
, , , ,

ˆ ( ) [ ( ) ] ( ) ( ) 1, 2,...,q q q q q q q q q q q Q        ez C C C x z C C x   Z Z Z Z Z X X XZ X X    (A-2)

which is exactly the same as Equation (13) in the study by Hardie et al. [55] with p(z|Z) neglected. 

When we consider p(z|Z), our solution is Equation (31), which is exactly the same as Equation (20) in 

the study by Hardie et al. [55].  

Equation (9) is exactly the same as Equation (2) in the study by Fasbender et al. [54], with p(Z) 

neglected. However, according to their assumption (1) in Section III.B, p(z|Z) has the same 

formulation as p(Z) in our assumption, i.e., “Z is a Gaussian vector with mean vector z̃ and covariance 

matrix CZ,Z”. Thus, the solution obtained by Fasbender et al. [54] in the equations at the end of Section 

III is exactly the same as our solution when p(z|Z) is neglected, i.e., Equations (14), (15) and (16).  

B. The Meaning of Spatial Independence 

The desirable HR MS images Z are assumed to be spatially independent with a mean vector z ̃and a 

covariance matrix CZ,Z. This assumption seems absurd due to the existence of spatial autocorrelation. 

However, it only indicates that the residual variable (Z - z)̃ is spatially independent with a mean vector 

0 and a covariance matrix CZ,Z. Although Z is a spatially correlated variable, the misusing z ̃operation 

spatially decorrelates the pixels as the spatially varying mean vector z ̃ captures most of the spatial 

correlation [57]. This kind of spatial independence does not oppose the spatial correlation in the simple 

kriging method, in which Z is a spatially correlated variable with a constant mean for the entire image 

and a spatially correlated covariance matrix. Similarly, the regression residual e in Equation (5) and eq 

(not the variable X) in Equation (23) can be assumed to be spatially independent, as most of the spatial 

correlation is explained by the equation g(Z) with a spatially correlated variable Z. 
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