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Abstract: A land-cover-based linear BRDF (bi-directional reflectance distribution function) 

unmixing (LLBU) algorithm based on the kernel-driven model is proposed to combine the 

compact airborne spectrographic imager (CASI) reflectance with the moderate resolution 

imaging spectroradiometer (MODIS) daily reflectance product to derive the BRDF/albedo 

of the two sensors simultaneously in the foci experimental area (FEA) of the Heihe 

Watershed Allied Telemetry Experimental Research (HiWATER), which was carried out in 

the Heihe River basin, China. For each land cover type, an archetypal BRDF, which 

characterizes the shape of its anisotropic reflectance, is extracted by linearly unmixing from 

the MODIS reflectance with the assistance of a high-resolution classification map. The 

isotropic coefficients accounting for the differences within a class are derived from the CASI 

reflectance. The BRDF is finally determined by the archetypal BRDF and the corresponding 

isotropic coefficients. Direct comparisons of the cropland archetypal BRDF and CASI 

OPEN ACCESS



Remote Sens. 2015, 7 6785 

 

albedo with in situ measurements show good agreement. An indirect validation which 

compares retrieved BRDF/albedo with that of the MCD43A1 standard product issued by 

NASA and aggregated CASI albedo also suggests reasonable reliability. LLBU has potential 

to retrieve the high spatial resolution BRDF/albedo product for airborne and spaceborne 

sensors which have inadequate angular samplings. In addition, it can shorten the timescale for 

coarse spatial resolution product like MODIS. 

Keywords: high spatial resolution BRDF/albedo product; airborne CASI; MODIS;  

multi-sensor; land-cover-based linear BRDF unmixing (LLBU) 

 

1. Introduction 

Techniques to improve the understanding and quantifying of land surface reflectance anisotropy 

provide a critical foundation for deriving land surface parameters in earth system and in eco-hydro 

scientific research. Reflectance anisotropy, defined as unequal surface scattering over all directions, is 

related to the surface’s three-dimensional structure and the geometry at which the surface is illuminated 

and observed. The anisotropy effects of reflectance is mathematically described by bidirectional 

reflectance distribution function (BRDF) [1], which is mainly determined by the structural and optical 

properties. And the parameters controlling or relating to the anisotropic and hemispheric reflectance, 

like soil roughness [2], clumping index/leaf area index (LAI) [3,4], albedo [5,6] and so on, can be derived 

from the BRDF. In addition, it is necessary to reduce the angular effects to obtain a standardized image. 

For example, correcting the directional surface reflectance to a standardized solar/observation geometry 

is necessary to reconstruct the reflectance or normalized difference vegetation index (NDVI) time  

series [7]. As anisotropic reflectance distinctly impacts remote sensing products [8], fitting the anisotropic 

reflectance with the BRDF model is essential because it improves our ability to understand the surface’s 

reflective properties. 

BRDF estimation from the reflectance acquired by satellite-based instruments is well investigated 

and there are sufficient coarse-scale atmospheric-corrected reflectance data with large angular ranges 

such as the moderate resolution imaging spectroradiometer (MODIS) [6,9], the multi-angle imaging 

spectroradiometer (MISR) [10–12], and polarization and directionality of earth reflectance  

(POLDER) [13,14] to fit semi-empirical BRDF models. Globally continuous BRDF products have been 

available since 2000. Their kilometer-scale BRDF property is a mixture signal of multi-land-covers that 

leads to a scale mismatch between ground measurements and satellite observations. Airborne 

instruments can act as bridges to link the coarse scale satellite products with ground observations. In 

particular, a fine-scale (or high spatial resolution) BRDF is required to address the patch-scale or 

regional-scale scientific studies such as those on local climates, ecosystem disturbances and the  

human-environment feedback associated with human activities [15]. One option for using airborne data 

for BRDF estimation is pixel-based (PB) BRDF fitting, requireing sufficient reflectance observation 

angles which can be acquired by sensors like airborne cloud absorption radiometer (CAR) [16–18] and 

airborne research scanning polarimeter (RSP) [19]. Another method is land-type-based (LB) BRDF 

fitting using aerial images, which are commonly acquired by an optical scanner with a wide field of view 
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and one observation geometry per pixel, such as the airborne HYMAP [8] and airborne compact airborne 

spectrographic imager (CASI) [20,21]. The BRDF’s shape [22], generally extracted from the relatively 

homogeneous pixels of MODIS or POLDER BRDF product, is required in LB BRDF fitting as prior 

knowledge of one land type [23,24]. Thus, the fitting performance of airborne BRDF is limited by the 

quality of the prior knowledge, as well as its spatiotemporal scale discrepancy. However, determining 

the BRDF’s dependence on the land type from a combination of fine- and coarse-scale reflectance data 

is an alternative way to ensure the effectiveness of anisotropic reflectance fitting at different spatial scales. 

The BRDF variations at different spatial scales [16] can be explained by the BRF’s magnitude and 

shape variation. The BRDF shape, not the BRF itself, is a standardized variable which is normalized to 

the one at the nadir illumination-view geometry. A coarse-scale BRDF shape can be quantified by the 

sub-pixels’ (or the fine-scale) BRDF shapes weighted by their coverage proportions and thus it reveals 

the heterogeneity within one coarse-scale anisotropic reflectance. However, the impact of a sub-pixel 

BRDF shape feature on a coarse-scale one, and how it can be used to determine the consistency of the 

BRDF shape on other scales, has rarely been investigated, although it is a necessary part of deriving the 

appropriate reference for a coarse-scale BRDF such as the MODIS 500 m BRDF. 

The paper presents an algorithm, the land-type-based linear BRDF unmixing (LLBU) algorithm, for 

deriving the surface BRDF from the CASI-measured hyper-spectral reflectance and MODIS daily  

500 m reflectance in the foci experimental area (FEA) of the Heihe River basin. This algorithm uses the 

CASI BRDF shape to formulate the MODIS 500 m BRDF shape on a shorter timescale than the MODIS 

BRDF product (MCD43A1), which works well when the surface properties vary rapidly.  

The algorithm retrieves the surface BRDF/albedo product at the CASI fine scale and MODIS coarse 

scale simultaneously. 

2. A Compact Airborne Spectrographic Imager (CASI)-Based Airborne Experiment in the 

Heihe Watershed Allied Telemetry Experimental Research (HiWATER) 

A CASI-based airborne remote sensing experiment was carried out at FEA (which is located at 

38.88°N, 100.36°E) in the middle stream of the Heihe River basin, China, shown in Figure 1, on  

June 29th 2012, as part of the Heihe Watershed Allied Telemetry Experimental Research (HiWATER).  

The CASI instrument was a push-broom imaging spectro-radiometer that measured the spectrum of each 

location on the ground in 48 spectral bands between 380 and 1055 nm. It was flown at a relative altitude 

of 2 km above the surface and had a field of view (FOV) of 40° with 1500 across-track imaging pixels 

and a one-meter spatial resolution. The data acquired in this experiment support the inversion of the 

surface reflectance and related parameters such as the albedo, FPAR, LAI, chlorophyll content, and FVC 

and can be used to develop scaling methods for multi-spatial resolution remote sensing data [25]. 

The CASI spectral radiance was converted from digital numbers after spectral and radiance 

calibration and geometrically corrected to a standard earth-centered coordinate system which was  

re-sampled at a resolution of 5 m using a UTM projection. With atmospheric parameters measured from 

the ground, the 6S (second simulation of the satellite signal in the solar spectrum) atmospheric model 

was adopted to drive the atmospheric parameters that allowed the CASI atmospheric effects to be 

corrected to obtain the CASI bidirectional function factor (BRF) at the surface [26]. Preliminary 

validation of the corrected CASI reflectance showed that the absolute differences were 1.5% (relative 
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difference 5.93%) in the visible range of the spectrum (400 nm–700 nm) and 2.5% (relative difference 

7.89%) in the near infrared (700 nm–1055 nm), compared with the reflectance of a homogenous concrete 

surface measured synchronically in the ground campaign. 

 

Figure 1. The Heihe River basin and foci experimental area, showing land classification and 

the flight track over the FEA. 

Land cover types were mapped using the CASI BRF; this classification technique, detailed in the 

work of Wang et al. [27], is based on the ratio vegetation index (RVI). The FEA contains four land cover 

types: cropland (mainly corn), manmade features, bare soil, and bushes, as shown in Figure 1. Most of 

the area is covered by cropland, and its NDVI is generally between 0.75 and 0.88. The narrow range of 

NDVI indicates a similar structure (growing stage) of the cropland. 

3. Deriving the CASI and MODIS (Moderate Resolution Imaging Spectroradiometer)  

BRDF/Albedo (Bidirectional Reflectance Distribution Function) Algorithm 

3.1. Archetypal BRDF 

Early field measurements and MODIS observations of the land surface’s anisotropic reflectance show 

how the characteristics of the BRDF are related to specific land types. Investigations about BRDF 

features show that the BRDFs within a land cover type have generally similar shapes [13,15,23]. 

However, for the land type of vegetation, it is more complicated. A rapid change in vegetation properties, 

which can be indicated by the variation of NDVI, can result in a substantial difference in the  

BRDF [15,28]. However, the BRDF properties’ dependence on the NDVI is relatively smooth for 
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vegetation classes with high coverage (thus high NDVI) or when the magnitude of the NDVI remains 

approximately constant within the same land cover type [14,29]. Therefore, it is reasonable to assume 

that the BRDF’s shape is similar for the same land type of vegetation with a similar NDVI.  

The basic shape underlying these BRDFs can be represented by an archetypal BRDF fitted by the 

kernel-driven model [30] in a normalized form F() [13,22], as in Equation (1). The archetypal BRDF 

is a normalized BRDF with a value of one when illuminating and viewing from the nadir. Hence, the 

archetypal BRDF describes the shape features of the BRDF, but ignores the magnitude. 
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where  is the observation geometry representing the illumination and viewing angles,  is the 

wavelength or denotes a waveband with a narrow wavelength width. kvol() and kgeo() are the 

volumetric scattering kernel and the geometric-optical kernel, respectively. fiso(), fvol(), and fgeo() are 

the coefficients of the isotropic, volumetric, and geometric-optical scattering, respectively.  

3.2. Land-Type-Based Linear BRDF Unmixing (LLBU) Model Construction 

The LLBU algorithm uses airborne fine-scale reflectance and spaceborne coarse-scale reflectance 

synergistically to determine the fine-scale land-cover-specific archetypal BRDF and the coarse-scale 

archetypal BRDF on a relatively short timescale. By assuming the land surface BRFs scale linearly in 

space, the mixed coarse-scale reflectance could be reconstructed by weighting the fine-scale reflectance 

with the area-based proportion of each land type [16]. LLBU originates in the method of linear spectral 

unmixing, which uses land type proportions to decompose the coarse-scale mixing BRFs to each land 

type’s BRF. 

In this paper, the daily 500 m reflectance data collected from the MODIS MOD09GA and MYD09GA 

products on June 29th and 30th were used as the coarse-scale multi-angular reflectance data, which 

covered the same area and were transformed to the coordinate projection reference frame used by the 

CASI. This analysis assumes that there are n types of land covering in a MODIS pixel X. Each type is 

denoted by a subscript i corresponding to the archetypal BRDF Fi(). The MODIS BRF R(X,) can 

be written as Equation (2). 
n

i
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where X is the MODIS pixel location, A is the MODIS pixel area, Ai(X) is the area of type i in the MODIS 

pixel X , and ξis an error term. It is assumed that there are M CASI pixels for the ith land covering 

type in MODIS pixel X and that each CASI pixel is indicated by the subscript im. Note that here the 

parameter  refers to the sensor’s wavelength, and this is the same for CASI. 

The CASI reflectance im,’, X, is expressed by Fi(,’) with a coefficient fiso_im(X,) 

as follows: 

im iso_im i( ', ,λ) ( , ) ( ', )X f X λ F λ     (3)

where ,’	represents the CASI observation geometry. It should be noted that the CASI reflectance was 

convolved to the MODIS VIS and NIR spectral domain using the MODIS band spectral response 

function. To solve Equation (2), the fine-scale land type and its NDVI were used to derive the land type 



Remote Sens. 2015, 7 6789 

 

proportion and the grouped land type BRFs. The least squares error was minimized for all of the  

clear-sky MODIS observations R(,X,) to invert fiso_i(X), the archetypal BRDF Fi() and 

fiso_im(X,). In the ideal case, in which the two sensors have the same instrumental response and very 

similar accuracy in the radiation calibrations and atmospheric corrections, the accumulated CASI 
coefficient  fiso_i(X,)തതതതതതതതതതതത aggregated from the CASI pixels’ isotropic coefficients and their area aim(X) 

proportions of land type i equals the isotropic coefficient fiso_i(X) of land type i  in a MODIS pixel. 

However, because there were differences between the two sensors, two more parameters, i()and 
iሺሻ, were used to make the reflectances of the two sensors consistent. The relation of isotropic 

coefficients between MODIS and CASI was as follows: 

im
iso_i i iso_i i i iso_im i

i
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( ) ( ) ( ) ( ) ( ) ( ) ( )
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M

m=1

a X
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3.3. LLBU Inversion 

An iteration strategy was employed for the inversion. In order to keep the consistency of fiso_i(X,)തതതതതതതതതതതത 

and fiso_i(X,) for land type i and find an archetypal BRDF Fi() that fit both the CASI BRF and the 

land type BRF well, we used the following ratio as an indicator: 
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where p is the iteration index. The value of p() was calculated in a principal plane of several fixed 

geometries. The threshold of p() was set to 10%. If p() met the threshold, the iteration ended. It is 

noted that the view zenith angle in  was limited to values between −60° and 60° due to the poor 

extrapolation ability of the kernel-driven model for large angles. 

The iterative process of inverting the land type’s archetypal BRDF was initialized using  

Equation (2), and all the BRDFs of type ith are assumed to be the same in MODIS pixels. Thus, the 

fiso_i(X) are equivalent for all pixels (i.e., fiso_i()). In step 0, all clear-sky observations of MODIS are 

used to construct Equation (2) to retrieve n types’ BRDF coefficients (fiso_i(), fvol_i(), fgeo_i()), where 

the area proportions 
 Ai(X)

஺
 can be pre-calculated by the CASI land cover map. If there are K MODIS 

pixels and L MODIS images, at most K × L equations (selecting the clear-sky observations) are 

formulated to solve the 3 × n BRDF coefficients (when p = 0). Once the BRDF coefficients are estimated, 

they are normalized to obtain the land type’s initial archetypal BRDF coefficients (1,
fvol_iሺλሻ

fiso_iሺλሻ
,

fgeo_iሺλሻ

fiso_iሺλሻ
). In 

step 1, the land type’s archetypal BRDF coefficients were inserted into Equation (3) to calculate fiso_im(X,), 

where each CASI pixel’s observation is used to construct the Equation (3) to obtain each CASI pixel’s 
isotropic coefficient fiso_im(X,). Then, aggregate fiso_im(X,) to update fiso_i(X,)തതതതതതതതതതതത with pre-calculated area 

proportions. In step 2, the newly updated fiso_i(X,)തതതതതതതതതതതത, was put into Equation (2) to further invert the land 

type’s archetypal BRDF coefficients and	αiሺሻ (when p > 0), where there’re also 3 × n unknowns with 

each type has a corrector αiሺሻ  and two archetypal BRDF coefficients (the volumetric and  

geometric-optical coefficient, here we denote the them as Fi). In step 3, αiሺሻ is used to calculate the 
fiso_i(X,) in Equation (4) with the newest fiso_i(X,)തതതതതതതതതതതത. Thus, one round of iteration was finished. The new 
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archetypal BRDF are once again put into Equation (3) to update the fiso_im(X,) as Step 1. Steps 1 to 3 

were repeated until p() met the threshold. The final outputs were the land type’s archetypal BRDF 

coefficients Fi, the CASI fiso_im(X,), which fit the CASI anisotropy reflectance data, and the MODIS 
fiso_i(X,). The LLBU inversion scheme is shown in Figure 2, for simplification,  is omitted. 

p p
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Figure 2. The flowchart for the LLBU inversion scheme. 

3.4. Albedo Calculation 

Land surface albedo, a critical parameter that affects the earth’s climate, is determined by the features 

of the land surface’s anisotropy reflectance and the atmospheric state. One of the main purposes of the 

BRDF inversion described in this paper is to improve the airborne CASI and MODIS albedo estimation. 

The result is expected to keep their values consistent on small timescales. The blue-sky albedo is 

expressed as a linear combination of the black- and white-sky albedos weighted by the fraction of diffuse 

sky light in the total illumination, as shown in Equation (6). Integrating the BRDF over the viewing 

hemisphere results in the black-sky albedo, as in Equation (7); while integrating over the viewing and 

illumination hemisphere results in the white-sky albedo, as in Equation (8). In the following description, 

the term albedo refers to the shortwave blue-sky albedo unless otherwise specified. 
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(8)

where w() is the spectral weight, N is the unit nadir vector, adh(s,X) and ahh(X) are the broadband 

black-sky albedo and broadband white-sky albedo, respectively, a(s,X) is the broadband blue-sky 

albedo, and d is the fraction of diffuse sky light in the total illumination. The CASI albedo and the 

MODIS albedo are depicted, respectively, by the isotropy kernel coefficients and archetype BRDF terms 

in Equation (8). 
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4. Results 

To make the CASI BRF and MODIS BRF datasets consistent, the hyperspectral CASI reflectance 

was convolved with the MODIS VIS and NIR spectral bands (648 nm, 858 nm, 470 nm, 555 nm) because 

the CASI covers the spectral range from 380 nm to 1050 nm. The CASI BRF datasets covers the FEA, 

which corresponding to 153 MODIS pixels. It should be noted that the manmade features in this FEA, 

including rammed earth buildings, cement buildings and asphalt roads, have relatively smooth surfaces 

with nearly isotropic reflections. Consequently, a Lambertian BRDF is assigned to this land type. 

4.1. Investigation of BRF Fitting Ability at Different Scales 

LLBU, integrating the MODIS and CASI BRFs to retrieve the BRDF of the two scales, attempts to 

fit the two sensors observations simultaneously. To investigate the retrieved BRDF, we reconstructed 

the BRF at both CASI and MODIS scales on their observation geometries and compared the simulations 

with the observations. The fitting residual standard error (RSE) is used as an indicator. 

 

Figure 3. CASI reflectance comparisons between the simulations and observations:  

(a) Band 1; (b) Band 2; (c) Band 3; (d) Band 4. 

Figure 3 shows the BRF fitting at the CASI scale. The simulations agree very well with the CASI 

reflectance observations because there is only one angular observation to be fit during the inversion. As 

in Equation (3), once the land-cover-type specific archetypal BRDF reaches a stable value in the iterative 
process, the fiso_im(X,) from the last p-1 multiplies Fi

p(Θ',), will become significantly closer to the 

observations. However, for the MODIS scale of LLBU, the fitting shown as in Figure 4 is not as good 

as the CASI fitting, because it involves multi-pixel and multi-angle observations, as in Equation (2). To 

evaluate the LLBU fitting at the MODIS scale, we compared it with the counterpart of the AMBRALS 

algorithm (the algorithm for modeling (MODIS) bidirectional reflectance anisotropies of the land 

surface) with BRDF parameters from the MODIS BRDF/albedo model parameters product  

(a) (b)

(c) (d)

RSE=0.0007 RSE= 0.0011

RSE=0.0004 RSE= 0.0003



Remote Sens. 2015, 7 6792 

 

MCD43A1 [31]. MCD43A1 provides the spectral BRDF parameters retrieved from the cloud-cleared 

Terra and Aqua daily reflectance over 16-day periods. As shown as in Table 1, the RSE of LLBU at the 

MODIS scale was satisfactory compared with the results of the AMBRALS algorithm. 

 

Figure 4. MODIS reflectance comparisons between the simulations and observations:  

(a) band 1; (b) band 2; (c) band 3; (d) band 4. 

Table 1. The residual standard error (RSE) of fitting the CASI and MODIS reflectances with 

LLBU or AMBRALS. 

RSE LLBU CASI LLBU MODIS AMBRALS MODIS 

Band1 0.0007 0.0103 0.0098 

Band2 0.0011 0.0242 0.0239 

Band3 0.0004 0.0059 0.0084 

Band4 0.0003 0.0074 0.0078 

4.2. The BRDF Analysis and Assessments 

4.2.1. The CASI Land-Type-Specific Archetypal BRDF and Its Comparison with in situ BRDF 

Figure 5 shows the retrieved CASI archetypal BRDF of croplands, bare soil and bushes in the 

principal plane in which the sun zenith angle (SZA) is 19.01°, with Aqua passing on 29 June. The 

croplands and bushes had very similar BRDF features, i.e., Band 1, Band 3 and Band 4 present significant 

hotspot effects taking the shape of domes driven by the geometric-optical kernel, while Band 2 (the NIR 

band) presented a bowl shape due to strong multiple scattering captured by the volumetric scattering 

component. The bushes showed a more significant hotspot effect than the cropland. For the bare soil, all 

of the bands had strong hotspot effects with high geometric-optical weights. 

RSE=0.0103 RSE=0.0242

RSE=0.0059 RSE=0.0074

(a) (b)

(c) (d)
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Figure 5. The archetypal BRDF shapes in the principal planes. The three columns from left 

to right are cropland, bare soil, and bushes; the four rows represent Bands 1–4 (a–l). The 

sun’s zenith angle for all of these planes is 19.01°; positive (negative) view zenith angles 

refer to forward (backward) scattering. 

To investigate the accuracy of the extracted CASI land-cover-type-specific BRDF, the archetypal 

BRDF for cropland is compared with the one retrieved from the in situ measured reflectance. The  

in situ multi-angular BRF measurements were taken in a relatively homogeneous corn field located at 

100°22′19.4″E, 38°51′20.3″N on 29 July. The scene of this measurement is shown as in Figure 6. The 

corn canopy is enclosed with a little gap to the background. A high resolution field portable 

spectroradiometer (SVC HR-1024) was mounted on a multi-angular controller to make multi-angular 

observations by changing the view zenith angle. This device observed the target with a view zenith angle 

step size of 10° from −60° to 60°. The in situ directional reflectance at a cross ridge plane (SZA = 16.3°) 

and along the solar principal plane (SZA = 25.3°) were measured. These measurements were used to retrieve 

the kernel-driven model, and then the kernel coefficients were normalized as shown in Equation (1). 

Figure 7 compares the LLBU cropland BRDF archetype with the one retrieved in situ along the solar 
principal plane. The indicator cmp

ሺሻ as Equation (9) is used to quantify their similarity. The  

LLBU-retrieved BRDF agreed favorably with the in situ one, as shown in Figure 7. The value of cmp in 

the solar principal planes of Bands 1, 2 and 4 satisfied the threshold requirement of 10%, indicating good 
agreement, when cmp is 2%, 5%, 5%, for those three bands, respectively, except for Band 3, which had 

a cmp of 12%. The discrepancy between the two BRDF shapes in Band 3 may have been partly due to 

the weak and noisy signal in the blue band in the CASI observations. 
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Figure 6. The scene of corn canopy multi-angular reflectance measurement. 

 

Figure 7. The BRDF shapes in the principal planes retrieved by the in situ measurements 

and the LLBU. (a) Band 1; (b) Band 2; (c) Band 3 (d) Band 4. The sun zenith angle in these 

planes is 19.01°; positive (negative) view zenith angles refer to forward (backward) scattering. 

4.2.2. The Archetypal BRDF at MODIS Scale and Its Comparison with MCD43A1 Results 

The MODIS pixel’s archetypal BRDF for a spatial resolution of 500 m was calculated from the CASI 

land-cover-specific archetypal BRDFs weighted by their corresponding area proportions and the 
isotropy kernel coefficient fiso_i(X,) which represents the heterogeneity within the class. According to  

Equation (2), we can describe the MODIS pixel’s archetypal BRDF as follows: 
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Figure 8 presents the archetypal BRDF for all the MODIS’s pixels in the FEA. It specifies the pixels’ 

dominant land cover type, i.e., the land cover type taking up the largest portion of a MODIS pixel.  

Figure 8a,b,d shows that these pixels’ BRDF shapes were grouped together very clearly, because they 

had inherited the land-cover-specific BRDF of their dominant land cover types. There were varieties of 

the same dominant land-type cover within the archetypal BRDFs due to the effects of other land covers, 

thus overlapping boundaries appear among groups. In particular, the fuse boundaries between pixels 

dominated by bushes and those mostly covered by cropland were affected by the second most common 

land cover type (cropland for the pixels dominated by bushes and bushes for the pixels dominated by 

cropland). In addition, the archetypal BRDFs for cropland and for bushes were similar in Bands 1, 3 and 

4; as shown in Figure 8c, there was no boundary between the two kinds of pixels. 

 

Figure 8. The archetypal BRDFs of the MODIS pixels. (a–d) are for Bands 1 through 4, 

respectively. Different colors mark the largest proportion of a land cover type in the MODIS pixel. 

Aside from the different compositions of the land covers, the MODIS pixel BRDF shapes were also 

affected by the heterogeneity within each class represented by the isotropy kernel coefficient fiso_i(X,). 

Figure 9 shows the isotropic kernel coefficients of the cropland in each MODIS pixel in Band 2. The 

variety of these coefficients differentiated the cropland growing in the FEA. On the 500 meter scale, the 

complexity of a MODIS pixel was caused not only by the different abundances of the land covers but 

also by the heterogeneity within each class. These two factors determine the BRDF shape variance 

shown in Figure 8. 

 

Figure 9. The isotropic kernel coefficients of the cropland portion of each MODIS pixel in Band 2. 
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As an indirect evaluation, we compare the LLBU MODIS archetypal BRDF with the MODIS 

standard product MCD43A1, which is essentially derived by the AMBRALS algorithm. The pixels that 

were fully invert in AMBRALS and marked as the best quality by MCD43B2 (MODIS BRDF/albedo 

quality product) were selected. The northwest boundary pixels of the FEA that were adjacent to a desert 

or river course were eliminated from the comparisons due to geolocation bias. 

LLBU AMBRALS
cmp

AMBRALS

( ) - ( )
γ ( , ) = mean( )

( )

| F Θ,X,λ F Θ,X,λ |
X λ

F Θ,X,λ
 (11)

Figure 10 shows the pixels’ archetypal BRDFs from MCD43A1. The RMSEs of Bands 1 to 4 were 
0.19, 0.04, 0.21, and 0.12, respectively. To clarify the comparisons, we used cmp

ሺX,ሻ as Equation (11) 

to quantify the similarity of the BRDFs of each pixel calculated using LLBU and AMBRALS. For Band 2, 
all of the pixels were in good agreement, with each pixel’s cmp less than 10%. However, the other bands 

had significant differences for some pixels. Figure 11 shows typical situations for Bands 1, 3 and 4 
having the best agreement ( cmp≤10% ), good agreement ( 10%൑cmp≤20% ), or poor agreement 

(cmp>20%). However, for Band 4, due to the high values of the archetypal BRDF of MCD43A1, cmp’s 

threshold for good agreement has been limited to 15%. Table 2 presents the proportion of pixels in each 

typical comparison case for each band. For Bands 1 and 3, more than 20% of the pixels’ LLBU BRDFs 

agreed very well with the corresponding AMBRALS results, and 40% of the pixels were in poor 

agreement. For Band 4, about half of the pixels were in the best agreement, and 24% were in poor 

agreement. In general, approximately 60% of the pixels were in good agreement for all of the bands. 

An important fact is that AMBRALS accumulated multi-angular observations from DOY (day of 

year) 177 to 192, while LLBU accumulated them from DOY 181 to DOY 182. The AMBRALS  

value represents the average state over a long period during which the surface may have changed.  

The spatial distribution of the pixels’ BRDF agreements showed that the ones with a low NDVI variation 

(e.g., bush-dominated and partly cropland-dominated pixels) were in good agreement. However,  

bare-soil-dominated pixels were in poor agreement when a significant land cover change occurred during 

this time period. Figure 12 presents the changes in the land cover of an area that was primarily covered 

by bare soil on 29 June (DOY 181) and changed noticeably on 8 July (DOY 190). The change in land 

cover may explain the differences between the AMBRALS and LLBU results. In addition, the vegetation 

signals in Bands 1 and 3 were very weak, which may have partially brought out the uncertainty in  

both algorithms.  

 

Figure 10. The archetypal BRDFs of the best-quality marked pixels from MCD43A1,  

(a–d) show bands 1 to 4, respectively. 
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Table 2. The proportion of pixels in each of the three comparison situations. 

 Best Agreement Good Agreement Poor Agreement 

Band1 26% 37% 37% 

Band2 100% 0% 0% 

Band3 21% 35% 44% 

Band4 54% 22% 24% 

 

Figure 11. LLBU and AMBRALS compared in three typical situations. Columns from left 

to right are best agreement, good agreement, and poor agreement, respectively, and rows 

from top to bottom are Band 1 (a–c), Band 3 (d–f), and Band 4 (g–i). 

 

Figure 12. Changes in land cover with time. (a) CASI image acquired on 29 June  

(DOY 181); (b) CASI image acquired on 8 July (DOY 190). 
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4.3. Visual Assessments of Normalizing the Angular Effects on the CASI Scale 

One important application of the land surface BRDF is to normalize multi-angular observations to  

a standard geometric condition, as it is necessary to take angular effects into account when comparing 

the long-term reflectance or reflectance-based indices (like NDVI) of pixels acquired with different 

observation geometries in satellite data [30], and even with airborne data [20]. An anisotropic factor Ω, 

as in Equation (12), can be used to correct the angular effects [32]. The CASI BRDF was used to 

normalize the observed CASI reflectance to a standard observation geometry at local noon illumination 
and nadir view (i.e., ߠs

ᇱ=15.71°, ߠv
′=0°, ϕs

′=177.15°, ϕv
' =0°) with the following Equation (13). 

v
v

v
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ˆ
s v s

s v s
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 (13)

where θs is the sun zenith angle, θv is the view zenith angle, ϕs is the sun azimuth angle, 	ϕv is the view 

zenith angle, ρො is the simulated reflectance of the BRDF model, and Rሺߠs
′, vߠ

′ , ϕs
′ , ϕv

' ሻ is the normalized 

reflectance in a standard geometry ሺߠs
′, vߠ

′ , ϕs
′ , ϕv

' ሻ corrected from the observed reflectance Rሺθs,θv, ϕs, ϕvሻ 
in the acquisition geometryሺθs,θv, ϕs, ϕvሻ. 

 

Figure 13. CASI reflectance images. (a) is before normalization, the flight lines are indicated 

by white-colored numbers; (b) is after normalization. 

Figure 13a shows a mosaic of eight different flight cast images (the flight track is shown in Figure 1) 

before angular normalization. Strong brightness contrasts can be observed where the flight strips  

were stitched together, revealing the anisotropic effects of the land surface’s reflectance. The eight  

north-south flight lines were made before local noon when the land was illuminated from the east.  

Back-scattering occurred when viewing to the west and forward scattering occurred when viewing to the 

east. The different observation geometry caused the western part of each flight line to be brighter than 

the eastern part. The anisotropic effects were strong for the six western flight lines (numbered 1–6), but 

weak for the two eastern lines (numbered 7 and 8). The two eastern lines were flown very near local noon, 

and thus, there was less difference between the forward and backward directions. In Figure 13b, the 
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angular normalization of the BRDF removed most of the anisotropic effects from the mosaic image. This 

indirectly shows the good performance of the LLBU-retrieved CASI BRDF parameters. 

4.4. Albedo Validation and Comparison 

4.4.1. CASI Albedo Validation 

The CASI Spectral BSA and WSA were calculated by integrating its BRDF following Equations (6) 

and (7), where the BSA, which depends on the solar zenith angle, was calculated at local noon.  

The shortwave albedo was estimated from the spectral albedo by spectral-to-broadband conversion [33] 

as in Equation (14). Finally, the blue-sky shortwave albedo was interpolated between the shortwave BSA 

and shortwave WSA weighted by the diffuse skylight fraction d, which was simulated by the atmospheric 

model 6S with in situ measured aerosol optical depth and water vapor. 

1 2 3 40.7738 0.4055 0.1420 0.2007 0.0081shortwave           (14)

where ashortwave is the shortwave albedo and a1 to a4 are the spectral albedo of Bands 1 through 4. 

Figure 14 shows the CASI shortwave albedo map of the FEA. It has a wide range of values which 

capture the detailed variations of the land surface albedo on a fine scale.  

 

Figure 14. The CASI albedo of the foci experimental area (red points locate the AWS sites locations). 

Kipp and Zonen Net Radiometers (CNR4) mounted on automatic weather station (AWS) towers 

measured the total downward and upward shortwave radiation (300 nm–2800 nm) and the in situ albedo 

was calculated as their ratios at local noon. The AWS radiometers were mounted approximately 3 m 

above the canopy and had a 26 m diameter footprint [34]. The 5 × 5 CASI pixels (25m × 25m) centered 

on these sites were aggregated to match these sites’ footprints. There are 18 sites distributed in the FEA 

which are shown in Figure 14. Figure 15 shows the comparisons between the field measurements and 

the CASI-retrieved albedo. Most of the points are concentrated along the line representing a 1:1 ratio. 

The RMSE is 0.013 with an average relative absolute bias (Rbias) of 7.62%. These results reveal that 

the CASI shortwave albedo is quite consistent with the in situ measurements. 
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Figure 15. Comparisons between the CASI albedo and in situ albedo. The dashed lines show 

the bias on the interval [−0.01, 0.01]. 

4.4.2. MODIS Albedo Comparison 

Figure 16a shows the MODIS albedo derived from the LLBU MODIS BRDF (denoted as MODISLLBU). 

To quantify the albedo on the MODIS scale, the well-qualified CASI albedo was aggregated to MODIS 

resolution as a reference albedo (denoted as the CASIagg_ori) shown in Figure 16b. A point spread 

function (PSF) was applied in the aggregation to account for the spatial characteristics of MODIS, which 

were approximated by a Gaussian function with a standard derivation of 274 m for MODIS 500 m 

resolution, as suggested by Barker, et al. [35]. 

 

Figure 16. The MODIS albedo. (a) is derived from the MODIS BRDF in LLBU denoted by 

MODISLLBU; (b) is aggregated from the CASI albedo denoted by CASIagg_ori; (c) is 

aggregated from the corrected CASI albedo by i  denoted by CASIagg_cor. 
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Comparing Figure 16a,b shows that these two MODIS-scale albedos had similar spatial distributions. 

The RMSE is 0.019. Nevertheless, the MODISLLBU image had a higher brightness than the CASIagg_ori 

image in general (depicted by circles in Figure 17). The MODISLLBU image seems to be a shift of  

a higher value of approximately 0.02 in comparison to the CASIagg_ori image. 

 

Figure 17. Scatterplots of the MODISLLBU and CASIagg albedos, where circles represent the 

results from the CASIagg_ori and MODISLLBU images, and crosses represent those from the 

CASIagg_cor and MODISLLBU images. 

The difference between the albedos of the MODISLLBU and CASIagg_ori was due to the difference in 

reflectance of the two kinds of sensors, which was very obvious during the retrieval of combining the 

MODIS and CASI BRFs. Table 3 presents the correctors i()	used in Equation (4) for aggregating the 

CASI isotropic kernel coefficients to MODIS pixels. Furthermore, we applied correctors to the CASI 

albedo aggregation (denoted as CASIagg_cor) as shown in Figure 16c. MODISLLBU has shown a perfect 

consistence with CASIagg_cor, as depicted by crosses in the scatterplots shown in Figure 17. 

Table 3. The correctors of different land cover types from Band 1 to Band 4. 

 Cropland Manmade Features Bare Soil Bushes 

Band 1 1.50 0.45 0.95 1.42 

Band 2 1.12 1.16 1.25 1.04 

Band 3 1.46 0.36 0.70 1.45 

Band 4 1.23 0.57 0.94 1.18 

According to Equation (4), if the two sensors’ reflectances are comparable, the values of the correctors 

will be approximately 1. In this paper, the correctors varied with land covers and bands, indicating their 

different spectral characteristics. This may be explained by the uncertainty of convolving the sparsely 

sampled hyperspectral CASI reflectance (half of the bandwidth is 7.5 nm) to the MODIS bands, and the 

uncertainty of the calibration and atmospheric correction in the two sensors. Another important factor 

was the noise, which could not be avoided, especially in low response bands such as the blue band  

(Band 3) and the red band (Band 1). This may be a partial explanation of why the correctors for  

Bands 1 and 3 varied more for the different land covers than those for Band 2. 
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The correctors for cropland and bushes had values greater than 1, suggesting that a higher reflectance 

was observed from MODIS than from CASI for the vegetation. Consequently, the MODISLLBU albedo 

was greater than CASIagg_ori for most of the pixels, as the FEA was mainly covered by vegetation. 

5. Discussions 

Although the evaluation of LLBU has shown its accuracy in estimating the CASI BRDF and albedo, 

the bare soil archetypal BRDF may be not so reliable due to the MODIS angular samplings limitation. 

Considering the land cover change in a period, especially the change of the bare soil shown as in  

Figure 12, a time window of 5 days before and after the acquired date of CASI data (29 June) was set to 

collect the MODIS images. Only two days during the eleven-day period around 29 June were clear skies. 

Therefore, four MODIS images (from TERRA and AQUA on 29 June and 30 June) were used in this 

retrieval. For the cropland cover, the angular samplings are adequate because cropland is broadly 

distributed in the MODIS pixels, and thus the BRDF agrees well with the in situ measurements. But as 

shown in Figure 1, the bare soil coverage was spatially concentrated and mainly occurred in two adjacent 

MODIS pixels. Narrow angular samples of bare soil, caused by concentrated spatial distribution and a 

short time of MODIS observations accumulation, reduce the CASI BRDF accuracy to some degree. 

Furthermore, the algorithm is applied to retrieve CASI BRDF/Albedo at a spatial resolution of 5 m. 

Such a fine spatial resolution is assumed to capture the intrinsic length scale of the surface to utilize the 

kernel-driven model. A 5-meter footprint can well capture the land surface structure of land types like 

cropland and bare soil in FEA. However, the bushes land type of a single tree at CASI scale may cause 

some different archetypal BRDF while the bushes are of some grouped trees at MODIS scale. In FEA, 

the gap of the grouped trees is less than 5 m that leads a mixed canopy in a CASI pixel and thus reduces 

the archetypal BRDF differences between the CASI and MODIS scales.  

6. Conclusions 

The LLBU (land-cover-based linear BRDF unmixing) method presented in this paper, combines the 

spatial information from high-spatial-resolution data to characterize the within-class BRDFs variation, and 

the multi-angular information from coarse-spatial-resolution data to derivate the land-cover-specific 

archetypal BRDF. Thus, it determines land surface BRDF at two scales simultaneously. Its unmixing 

process allows anisotropic reflectance features to be extracted without identifying pure pixels on the 

coarse scale. In this way, it avoids the limitations of pure pixels or the scale mismatch when using the 

coarse scale BRDF product as priori-knowledge to estimate the fine scale BRDF in the current methods, 

especially in heterogonous land surfaces. Compared with the per-pixel retrieval mode of coarse scale 

data, like MODIS which accumulates multi-angular observations within a 16-day period, LLBU can 

shorten the length of time for gathering multi-angular information as it involves multi-pixel observations 

to retrieve. 

LLBU was applied to CASI and MODIS in the FEA (foci experimental area) of HiWATER (Heihe 

Watershed Allied Telemetry Experimental Research). It generates the BRDF and albedo of the  

two sensors simultaneously. For the CASI scale, its archetypal BRDF is in good agreement with the  

in situ BRDF for cropland. And the angular effect normalization of the CASI reflectance also indirectly 

indicates good performance in the BRDF retrieval by LLBU. The CASI albedo has high precision with 
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a RMSE of 0.013 validated by the in situ measurements. On the MODIS scale, the CASI scaled up BRDF 

with 60% of the pixels have similar BRDF shapes for all bands when compared to the results of the 

AMBRALS algorithm. Meanwhile, there is a RMSE of 0.019 when compared with the CASI upscaled 

albedo. These assessments have preliminarily confirmed the good performance of LLBU in general. 

LLBU is promising to estimate BRDF\albedo from other high-spatial-resolution data like the 

spaceborne LANDSAT/TM and HJ-1/CCD, which is important for the regional or local scale study. 

Nevertheless, several issues within the algorithm itself remain to be addressed. The scaling mechanism 

of LLBU is based on the geospatial aggregation of subpixels (i.e., CASI) to the coarse-scale pixel  

(i.e., MODIS). Uncertainties arising from adjacent scattering effects, geo-location precision, classification 

errors and different spectral responses are all sources of uncertainty in LLBU. Consequently, more 

evaluations are needed to further assess the performance of LLBU in future. 
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Appendix 

A. Nomenclature 

Θ view geometry 

s illumination direction 

v viewing direction 

θ zenith angle 
 azimuth angle 

λ wavelength or waveband 

F archetypal BRDF 

kvol volumetric scattering kernel 

kgeo geometric-optical kernel 

fiso, fvol, fgeo coefficients of isotropic, volumetric, and geometric-optical scattering 

R  BRF of MOIDS 

X  geographical location 

i land type index 

n number of land types 

Ai area of land type i in a MODIS pixel 
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A area of a MODIS pixel 

ξ error item 

ρ BRF of CASI 

αi, βi the slope and intercept item of correctors for land type i 
 similarity indicator of BRDF shapes  

p iteration index 
a broad-band blue-sky albedo 

d ha  broad-band back-sky albedo 
h ha  broad-band white-sky albedo 

d diffuse sky light fraction of the total illumination 

Ω  anisotropic factor 
ρ̂  simulated reflectance of the BRDF model 

B. Abbreviations 

AMBRALS 
the Algorithm for Modeling (MODIS) Bidirectional Reflectance Anisotropies 

of the Land Surface 

BRDF Bidirectional reflectance distribution function 

BRF bidirectional function factor 

CASI Compact Airborne Spectrographic Imager 

CAR Cloud Absorption Radiometer 

CCD Charge-Coupled Device 

DOY Day of Year 

FEA Foci Experimental Area 

HiWATER Heihe Watershed Allied Telemetry Experimental Research 

HJ HuanJing satellite 

LAI index/leaf area index 

LB land-type-based 

LLBU Land-cover-based linear BRDF unmixing 

MODIS Moderate Resolution Imaging Spectroradiometer 

MISR Multi-angle Imaging Spectroradiometer 

NDVI Normalized Difference Vegetation Index 

PB Pixel-Based 

POLDER Polarization and Directionality of Earth Reflectance 

RSP Research Scanning Polarimeter 

RVI Ratio Vegetation Index 

SZA Sun Zenith Angle 

TM Thematic Mapper 

VZA View Zenith Angle 

 

  



Remote Sens. 2015, 7 6805 

 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Schaepman-Strub, G.; Schaepman, M.; Painter, T.; Dangel, S.; Martonchik, J. Reflectance quantities 

in optical remote sensing—Definitions and case studies. Remote Sens. Environ. 2006, 103, 27–42. 

2. Croft, H.; Anderson, K.; Kuhn, N. Reflectance anisotropy for measuring soil surface roughness of 

multiple soil types. Catena 2012, 93, 87–96. 

3. Chen, J.M.; Leblanc, S.G.; Miller, J.R.; Freemantle, J.; Loechel, S.E.; Walthall, C.L.; Innanen, K.A.; 

White, H.P. Compact Airborne Spectrographic Imager (CASI) used for mapping biophysical 

parameters of boreal forests. J. Geophys. Res.: Atmos. 1999, 104, 27945–27958. 

4. He, L.; Chen, J.M.; Pisek, J.; Schaaf, C.B.; Strahler, A.H. Glofbal clumping index map derived from 

the MODIS brdf product. Remote Sens. Environ. 2012, 119, 118–130. 

5. Li, X.; Strahler, A.H.; Woodcock, C.E. A hybrid geometric optical-radiative transfer approach for 

modeling albedo and directional reflectance of discontinuous canopies. IEEE Trans. Geosci. 

Remote Sens. 1995, 33, 466–480. 

6. Schaaf, C.B.; Gao, F.; Strahler, A.H.; Lucht, W.; Li, X.; Tsang, T.; Strugnell, N.C.; Zhang, X.; Jin, Y.; 

Muller, J.-P. First operational BRDF, albedo NADIR reflectance products from MODIS. Remote 

Sens. Environ. 2002, 83, 135–148. 

7. Bréon, F.-M.; Vermote, E. Correction of modis surface reflectance time series for BRDF effects. 

Remote Sens. Environ. 2012, 125, 1–9. 

8. Weyermann, J.; Damm, A.; Kneubuhler, M.; Schaepman, M.E. Correction of reflectance anisotropy 

effects of vegetation on airborne spectroscopy data and derived products. IEEE Trans. Geosci. 

Remote Sens. 2014, 52, 616–627. 

9. Liang, S.; Stroeve, J.; Box, J.E. Mapping daily snow/ice shortwave broadband albedo from 

Moderate Resolution Imaging Spectroradiometer (MODIS): The improved direct retrieval 

algorithm and validation with greenland in situ measurement. J. Geophys. Res.: Atmos. 2005, 110, 

doi:10.1029/2004JD005493. 

10. Martonchik, J.; Diner, D.; Kahn, R.; Ackerman, T.; Verstraete, M.; Pinty, B.; Gordon, H. 

Techniques for the retrieval of aerosol properties over land and ocean using multiangle imaging. 

IEEE Trans. Geosci. Remote Sens. 2002, 36, 1212–1227. 

11. Martonchik, J.; Diner, D.; Pinty, B.; Verstraete, M.; Myneni, R.; Knyazikhin, Y.; Gordon, H. 

Determination of land and ocean reflective, radiative, and biophysical properties using multiangle 

imaging. IEEE Trans. Geosci. Remote Sens. 2002, 36, 1266–1281. 

12. Martonchik, J.; Pinty, B.; Verstraete, M. Note on an improved model of surface BRDF-atmospheric 

coupled radiation. IEEE Trans. Geosci. Remote Sens. 2002, 40, 1637–1639. 

13. Bacour, C.; Bréon, F.-M. Variability of biome reflectance directional signatures as seen by polder. 

Remote Sens. Environ. 2005, 98, 80–95. 

14. Hautecœur, O.; Leroy, M.M. Surface bidirectional reflectance distribution function observed at 

global scale by POLDER/ADEOS. Geophys. Res. Lett. 1998, 25, 4197–4200. 



Remote Sens. 2015, 7 6806 

 

15. Shuai, Y.; Masek, J.G.; Gao, F.; Schaaf, C.B. An algorithm for the retrieval of 30-m snow-free albedo 

from Landsat surface reflectance and MODIS BRDF. Remote Sens. Environ. 2011, 115, 2204–2216. 

16. Román, M.O.; Gatebe, C.K.; Schaaf, C.B.; Poudyal, R.; Wang, Z.; King, M.D. Variability in surface 

brdf at different spatial scales (30 m–500 m) over a mixed agricultural landscape as retrieved from 

airborne and satellite spectral measurements. Remote Sens. Environ. 2011, 115, 2184–2203. 

17. Gatebe, C.K.; King, M.D.; Platnick, S.; Arnold, G.T.; Vermote, E.F.; Schmid, B. Airborne spectral 

measurements of surface-atmosphere anisotropy for several surfaces and ecosystems over southern 

Africa. J. Geophys. Res.: Atmos. 2003, 108, doi:10.1029/2002JD002397. 

18. Román, M.O.; Gatebe, C.K.; Shuai, Y.; Wang, Z.; Gao, F.; Masek, J.G.; He, T.; Liang, S.;  

Schaaf, C.B. Use of in situ and airborne multiangle data to assess MODIS-and Landsat-based estimates 

of directional reflectance and albedo. IEEE Trans. Geosci. Remote Sens. 2013, 51, 1393–1404. 

19. Knobelspiesse, K.D.; Cairns, B.; Schmid, B.; Roman, M.O.; Schaaf, C.B. Surface brdf estimation 

from an aircraft compared to MODIS and ground estimates at the southern great plains site. J. Geophys. 

Res. Atmos. (1984–2012) 2008, 113, doi:10.1029/2008JD010062. 

20. Feingersh, T.; Ben-Dor, E.; Filin, S. Correction of reflectance anisotropy: A multi-sensor approach. 

Int. J. Remote Sens. 2010, 31, 49–74. 

21. Colgan, M.S.; Baldeck, C.A.; Féret, J.-B.; Asner, G.P. Mapping savanna tree species at ecosystem 

scales using support vector machine classification and brdf correction on airborne hyperspectral and 

lidar data. Remote Sens. 2012, 4, 3462–3480. 

22. Sandmeier, S.; Müller, C.; Hosgood, B.; Andreoli, G. Physical mechanisms in hyperspectral brdf 

data of grass and watercress. Remote Sens. Environ. 1998, 66, 222–233. 

23. Luo, Y.; Trishchenko, A.P.; Latifovic, R.; Li, Z. Surface bidirectional reflectance and albedo 

properties derived using a land cover-based approach with moderate resolution imaging 

spectroradiometer observations. J. Geophys. Res.: Atmos. 2005, 110, doi:10.1029/2004JD004741. 

24. Li, F.; Jupp, D.L.; Reddy, S.; Lymburner, L.; Mueller, N.; Tan, P.; Islam, A. An evaluation of the 

use of atmospheric and brdf correction to standardize landsat data. IEEE J. Sel. Top. Appl. Earth 

Observ. 2010, 3, 257–270. 

25. Li, X.; Cheng, G.; Liu, S.; Xiao, Q.; Ma, M.; Jin, R.; Che, T.; Liu, Q.; Wang, W.; Qi, Y.  

Heihe watershed allied telemetry experimental research (hiwater): Scientific objectives and 

experimental design. Bull. Am. Meteorol. Soc. 2013, 94, 1145–1160. 

26. Vermote, E.F.; Tanré, D.; Deuze, J.-L.; Herman, M.; Morcette, J.-J. Second simulation of the 

satellite signal in the solar spectrum, 6s: An overview. IEEE Trans. Geosci. Remote Sens. 1997, 35, 

675–686. 

27. Wang, Z.; Liu, L. Assessment of coarse-resolution land cover products using CASI hyperspectral 

data in an arid zone in northwestern China. Remote Sens. 2014, 6, 2864–2883. 

28. Khlopenkov, K.; Trishchenko, A.; Luo, Y. Analysis of brdf and albedo properties of pure and mixed 

surface types from terra misr using landsat high-resolution land cover and angular unmixing.  

In Proceedings of the Fourteenth ARM Science Team Meeting, Albuquerque, New Mexico,  

22–26 March 2004. 
  



Remote Sens. 2015, 7 6807 

 

29. Li, F.; Jupp, D.; Lymburnera, L.; Tana, P.; McIntyrea, A.; Thankappana, M.; Lewisa, A.; Held, A. 

Characteristics of MODIS BRDF shape and its relationship with land cover classes in Australia.  

In Proceedings of the 20th International Congress on Modelling and Simulation, Adelaide, Australia, 

1–6 December 2013. 

30. Wanner, W.; Li, X.; Strahler, A. On the derivation of kernels for kernel-driven models of bidirectional 

reflectance. J. Geophys. Res.: Atmos. 1995, 100, 21077–21089. 

31. Strahler, A.H.; Muller, J.; Lucht, W.; Schaaf, C.; Tsang, T.; Gao, F.; Li, X.; Lewis, P.; Barnsley, M.J. 

MODIS BRDF/Albedo Product: Algorithm Theoretical basis Document Version 5.0; MODIS Doc.; 

1999. Available online: http://modis-sr.ltdri.org/publications/MODIS_BRDF.pdf (accessed on 26 

May 2015). 

32. Wu, A.; Li, Z.; Cihlar, J. Effects of land cover type and greenness on advanced very high resolution 

radiometer bidirectional reflectances: Analysis and removal. J. Geophys. Res.: Atmos. 1995, 100, 

9179–9192. 

33. Liang, S. Narrowband to broadband conversions of land surface albedo I: Algorithms. Remote Sens. 

Environ. 2001, 76, 213–238. 

34. Sailor, D.J.; Resh, K.; Segura, D. Field measurement of albedo for limited extent test surfaces.  

Sol. Energy 2006, 80, 589–599. 

35. Barker, J.; Burelhach, J. MODIS image simulation from landsat TM imagery. Glob. Chang. Educ. 

ASPRSACSMRT 1992, 92, 156–165. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


