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Abstract: Acquiring multi-temporal spatial information on vegetation condition at scales 

appropriate for site-specific agricultural management is often complicated by the need for 

meticulous field measurements. Understanding spatial/temporal crop cover heterogeneity 

within irrigated croplands may support sustainable land use, specifically in areas affected by 

land degradation due to secondary soil salinization. This study demonstrates the use of  

multi-temporal, high spatial resolution (10 m) SPOT-4/5 image data in an integrated change 

vector analysis and spectral mixture analysis (CVA-SMA) procedure. This procedure was 

implemented with the principal objective of mapping sub-field vegetation cover dynamics 

in irrigated lowland areas within the lowerlands of the Amu Darya River. CVA intensity and 

direction were calculated separately for the periods of 1998–2006 and 2006–2010. 

Cumulative change intensity and the overall directional trend were also derived for the entire 

observation period of 1998–2010. Results show that most of the vector changes were 

observed between 1998 and 2006; persistent conditions were seen within the study region 
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during the 2006–2010 period. A decreasing vegetation cover trend was identified within 38% 

of arable land. Areas of decreasing vegetation cover were located principally in the irrigation 

system periphery where deficient water supply and low soil quality lead to substandard crop 

development. During the 2006–2010 timeframe, degraded crop cover conditions persisted 

in 37% of arable land. Vegetation cover increased in 25% of the arable land where irrigation 

water supply was adequate. This high sub-field crop performance spatial heterogeneity 

clearly indicates that current land management practices are inefficient. Such information 

can provide the basis for implementing and adapting irrigation applications and salt leaching 

techniques to site-specific conditions and thereby make a significant contribution to 

sustainable regional land management. 

Keywords: change vector analysis; spectral unmixing; land degradation; site specific 

management; Uzbekistan 

 

1. Introduction 

The Central Asian countries of Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan 

are all strongly affected by the ongoing process of land degradation (LD). LD negatively impacts crop 

and livestock productivity, agricultural incomes, and the livelihoods of rural populations. The principal 

cause of cropland degradation within irrigated agricultural areas of these countries are inefficient 

irrigation and drainage practices that result in elevated groundwater tables which, in turn, leads to soil 

salinization and declining crop yields [1–3]. This problem is acute in Uzbekistan, where approximately 

30,000 ha of croplands are lost every year to excessive salt and waterlogging and 53% of the irrigated 

area is affected in some degree by soil salinity. Crop cultivation brings little or no profit in these areas [4]. 

In order to improve the efficiency of land rehabilitation and impact assessment measures, land managers 

require spatially explicit and timely information on land conditions [5]. Remote sensing techniques have 

been successfully applied at various spatial scales to assemble such information [6,7]. 

Very few spatially explicit LD assessments have been performed at regional or national scales in  

Central Asia. More attention has been paid to analyses of land-use and land-cover (LULC) changes in the 

region [8–10]. For example, spatial and temporal LD patterns were analyzed over the Ust-Urt Plateau in 

Kazakhstan using Landsat images and geostatistical methods [11]. Inter-annual changes in vegetation 

dynamics and their relationship to temperature and precipitation conditions in Central Asia were studied for 

the 1982–2003 period by Propastin et al. [12]. De Beurs and Henebry [13] assessed LULC changes in 

Kazakhstan during the periods of 1985–1988 and 1995–1999 using a normalized difference vegetation index 

(NDVI) satellite time series derived from Advanced Very High Resolution Radiometer (AVHRR) data. 

LD trends in irrigated croplands were assessed in the lower Amu Darya River Basin, which is among 

the most salt-affected regions in Central Asia. Previous analyses have determined that land productivity 

decline has affected 94,835 ha (approximately 20%) of the arable land in this region. These figures have 

been calculated through use of a 250 m Moderate Resolution Imaging Spectroradiometer (MODIS) 

NDVI time series [14] as well as through use of indices derived from a Medium Resolution Imaging 

Spectrometer (MERIS) dataset [15]. Le et al. [16] indicated a similar proportion of degraded croplands 
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(26%) in Uzbekistan based on the spatial trend analysis of an 8km AVHRR NDVI time series covering 

the period of 1982–2006. These assessments reveal broad regional patterns and declining trends in 

cropland productivity. Soil salinity and its impacts on crop performance, land rehabilitation and 

management planning are highly spatially and temporally variable. Detailed, site-specific information 

derived from very high spatial resolution imagery can be of significant benefit in analyzing these 

phenomena and understanding this variability [17]. 

Gradual vegetation cover loss over time serves as an indication of biomass productivity decline and 

is often used as a proxy for LD [18]. Among a variety of existing methods, statistical trend analysis of 

vegetation index time series are, therefore, most commonly used for satellite-based LD 

assessment [6,19,20]. Trend analyses are most often applied to coarse scale imagery (such as AVHRR); 

use of fine scale imagery (e.g., Landsat) is less frequent [21]. High spatial resolution Landsat time series 

are required for field level assessments; however, such data are not yet available at the required temporal 

density for all geographic locations [22]. This prevents monitoring of LD at local scales as well as 

implementation of site-specific management actions. 

Alternative methods should be developed and implemented that would allow derivation of spatial 

information to identify and locate areas of crop cover damage and/or degradation at the level of individual 

agricultural fields [23]. One promising approach is based on the use of change vector analysis (CVA) [24]. 

CVA is a multispectral change detection technique effective in monitoring land cover and condition [25]. 

CVA uses as inputs two or more features associated with a given image pixel. These may include image 

spectral bands or their derivatives along with specific biophysical parameters, which allow for mapping of 

change direction and magnitude [26]. This method offers two principal advantages: it enables detection of 

gradual land cover changes, and it allows concurrent analyses of a given change in all data layers, rather 

than focusing on a few selected bands [27]. Although the utility of this technique has been clearly 

demonstrated [28], few studies currently exist documenting the use of CVA for assessment of land 

conditions in arid/drylands regions, even with the inclusion of high spatial resolution image data. 

Additionally, the potential of combining CVA with high spatial resolution imagery and sub-pixel mapping 

techniques to improve discrimination of land cover dynamics remains to be investigated [29]. 

This research follows the previous study described in Dubovyk et al. [23] in which an object-based 

CVA approach was proposed for detecting crop cover changes at a field level within irrigated  

agro-ecosystems. The main aim of this study is on the use of high spatial resolution satellite imagery to 

map sub-field crop cover dynamics within irrigated drylands areas in Uzbekistan. It was hypothesized 

that, in the study area: 

 Spatiotemporal patterns of crop cover dynamics within and between the agricultural fields can 

be detected by the analysis of multitemporal 10 m SPOT data. 

 The combined CVA-SMA procedure is suitable to monitor land conditions in irrigated croplands.  

 The derived spatial information could be used to assist cropland management decisions. 

2. Study Area 

The study area includes the southern part of the Autonomous Republic of Karakalpakstan (SKKP), 

which is located in northwestern Uzbekistan (Figure 1). This area lies approximately 200 km south of 
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the former shore of the Aral Sea and extends between latitude 40°62'N and 42°71'N and longitude 

60°02'E and 62°44'E. The region includes 140,000 ha of arable irrigated land [15]. 

 

Figure 1. Location of the study area, (a) in Central Asia, (b) in Uzbekistan and (c) study 

area in the south-eastern part of Autonomous Republic of Karakalpakstan. The SPOT image 

(acquired 13 August 2010) provides background image in (c). 

The study region is a part of the Central Asian semi-desert climate zone and is characterized by an 

extreme continental climate [30]. Annual precipitation averages 100 mm and generally occurs outside 

the April–October crop growing season [31]. Crop production in the region is dependent entirely on 

irrigation water from the Amu Darya River distributed through a dense network of irrigation canals and 

drains (Figure 1). The main crops are cotton and winter wheat, grown under a system of state direction. 

This system defines specific areas for cotton cropping and establishes yield targets for both crops 

according to cropland productivity characteristics. Typically, 50% to 70% of the arable land is allocated 

to cotton production and 20% to 30% is in winter wheat [32]. These cropping areas are prioritized for 

water allocation and procurement of other agricultural inputs. Annual nitrogen fertilizer inputs are 

substantial for both crops, ranging from 200–250 kg·ha−1 for wheat and 160–180 kg·ha−1 for cotton, and 

is typically applied several times during the growing season [1]. On land that is not under cotton or 

wheat, paddy rice, maize, sorghum, melons, sunflowers, and vegetables are grown [9]. Irrigation water 

is supplied to individual fields according to standard guidelines established for large-scale farming units 

during the Soviet era [33]. Irrigation allocations are influenced by seasonal water availability, which is 

significantly decreased during drought years. 



Remote Sens. 2015, 7 6767 

 

Irrigation has been ongoing in the region for decades characterized by insufficient natural and 

engineered drainage. This has caused elevated groundwater tables and enhanced capillary rise during 

the crop growing season. Resultant secondary soil salinization can be observed in irrigated croplands 

throughout the entire region [34]. Adverse impacts of soil and groundwater salinity on crop yields, as 

well as land abandonment due to LD are increasingly common in the study region. In an effort to control 

the increased salinity, annual water application prior to the April–October cropping season is practiced 

to leach salts down to lower levels within the soil profile. The drainage water from this process is then 

conveyed outside the cropland area through a network of drainage collectors. Land leveling is also 

essential in order to decrease local micro-relief variability and assure homogeneous water distribution 

throughout the fields for effective salt management. 

3. Datasets 

3.1. Satellite Imagery 

These analyses are based on high resolution Satellite Pour l’Observation de la Terre (SPOT) Level 1B 

imagery recorded in 1998, 2006 and 2010 (Table 1). We used the SPOT-5 multispectral data at the 

standard 10 m spatial resolution; the SPOT-4 multispectral data were pan-sharpened by the image 

provider to 10 m resolution using a High Pass Filter algorithm [35]. 

Table 1. Selected SPOT images covering southern Karakalpakstan in three time steps. 

Sensor Acquisition Date Denoted in Text 

SPOT-4 11 July 1998 1998 

SPOT-5 27 July 2006 2006 

SPOT-5 13 August 2010 2010 

All images were co-registered utilizing approximately 450 tie points per image, selected via an 

automated point matching algorithm [36]. The image co-registration procedure resulted in an overall 

positional error of less than 0.5 pixel. Atmospheric correction was performed using the ATCOR2 

(Version 10) software [37]. For CVA and SMA, data quality and image radiometric normalization 

impacts the change detection results, as both methods require radiometric similarity among 

multitemporal images [27]. All images were, therefore, radiometrically normalized using the Iteratively 

Re-weighted Multivariate Alteration Detection transformation [38]. 

Because crop growth is directly impacted by decreased water availability, a review of irrigation water 

statistics was made for the southern Karakalpakstan study area in order to identify years of comparable 

irrigation water supplies (Figure 2) [39]. The years 1998, 2006, and 2010 were selected for analyses. 

The choice of anniversary image acquisition dates, along with radiometric normalization of the image 

data minimized impacts of crop phenology and solar illumination conditions. 
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Figure 2. Total irrigation water use in southern Karakalpakstan during the vegetation periods 

of 1998–2010. 

3.2. Ancillary Data 

We have applied the field boundary mask to focus our analysis only on cultivated areas. Current 

cadastral maps covering the study area were collected and digitized. This map set was acquired from the 

regional offices of the Uzbek State Committee on Land Resources, Geodesy, Cartography and State 

Cadaster. Agricultural field boundaries were initially assumed to be identical in 1998, 2006 and 2010. 

This was verified by local cadastral experts and by a visual assessment of the satellite images. This 

conclusion is further sustained by the agricultural structure in place in the region: A state-driven,  

area-based crop cultivation system that is wholly reliant on the regional irrigation drainage 

infrastructure [40]. In our case, it was not necessary to apply image segmentation to derive field objects 

as a cadastral map was available. However, for the cases when the cadastral information is missing, 

segmentation can be used to derive objects that match field parcels [41]. 

The following map sets were used to evaluate and interpret the output change maps: 

 an LD trend map calculated from a 250 m resolution MODIS time series covering the  

2000–2010 period [14];  

 a vegetation cover map and agricultural land use maps for 1998 and 2010 compiled using 30 m 

Landsat imagery [23]. 

4. Methodology 

4.1. Spectral Mixture Analysis 

Spectral mixture analysis (SMA) provides an accurate quantitative estimate of land covers at a  

sub-pixel level by decomposing the constituent ground cover components within a pixel [42]. Fractional 

images derived through SMA have been shown to be effective for detailed land cover monitoring 
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(e.g., [29]) and were selected as input features for the CVA performed in this study. The spectral 

unmixing approach is preferred for precision agriculture applications, as it provides a powerful means 

of capturing the spectral variation within a field caused by the various target components such as soil 

and vegetation [43]. 

As an input for the SMA, reference spectra or endmembers can be derived from spectral libraries [44], 

field spectra [45], the imagery itself [46], or simulated using radiative transfer models [47]. In this study, 

reference spectra (or endmembers) for the SMA was derived from the imagery itself [46] by the measuring 

extracted spectra at the identical scale as the remote sensing data [48]. In order to include only cropping 

areas in our analysis, a cadastral field boundary mask was used. A Minimum Noise Fraction (MNF) 

transform [49] was applied to the 2010 image to determine the inherent data dimensionality and to isolate 

noise in the image data. The three bands of the MNF images that contained the highest eigenvalues were 

then used to derive the endmembers by calculating the pixel purity index [50]. 

A linear constrained unmixing model was used to derive the fraction images for the three endmembers 

of vegetation (VT), soil (SL), and water [51]. The endmember model derived from the 2010 image was 

applied to all other images to ensure consistent estimates of the fractional covers and direct comparison 

of the fraction images [52]. Direct comparison of these images is important to determine the accuracy 

of change detection [53]. The accuracy of SMA is often quantified based on the fit between the modeled 

and observed mixed spectral signals. Model fit can be assessed by an error metric such as the Root Mean 

Square error (RMSE) [54] or by analyzing histograms of the fraction images [55]. In this study, the fit 

of the spectral unmixing model was assessed by calculating the root mean square error (RMSE) and 

analyzing histograms of the fraction images. 

4.2. Change Vector Analysis 

CVA allows the determination of change vector magnitude, or intensity, as well as change direction 

between two or more steps in the time series. The change vector magnitude, ∆C is calculated as the 

Euclidean distance of pixel spectra between two years in the feature space, the reference date (T1) and 

the target date (T2). In our case, the change magnitude is computed for the VT, SL and WT endmember 

metrics according to: 
2

TT
2

TT
2

TT )WT-WT()SL-SL()VT-VT(= 
212121

C  (1)

A decision on change is made when the change magnitude exceeds a certain threshold that can be 

defined quantitatively or qualitatively [56]. A value of one standard deviation was selected for this 

threshold after evaluating a number of thresholding algorithms and analyses of image 

distributions [25,57,58]. The change images calculated using the one standard deviation threshold were 

plausible, reinforcing the validity of this threshold value. 

Change direction was decided based on sector coding as more than two spectral dimensions were introduced 

into the CVA. The change category was identified using a combination of minus symbols (−) for decrease and 

plus symbols (+) for increase of each metric [59]. A decrease in VT and increase in either or both SL and WT 

indicated a declined vegetation cover, whereas an increase in VT and decrease in either or both SL and WT 

signified increased vegetation cover. All other combinations of sector codes denoted increased, decreased or 

stable VT, SL and WT, indicating persisting land-cover conditions in a single time step. 
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The cumulative change magnitude was calculated per pixel as a sum of absolute values of amplitudes 

from 1998 to 2010. The cumulative magnitude is an indicator for a mean variability of cropland cover 

within a pixel over the monitoring period. The overall change direction was derived based on the fraction 

metrics between the 2010 end and the 1998 beginning of the monitoring period, also using a sector 

coding approach. The overall change direction is an indication of the general trend for the cropland cover 

throughout the observation period. 

4.3. Evaluation and Interpretation of the CVA-SMA Results 

To assess the CVA-SMA performance specifically in relation to vegetation cover decrease detection, the 

overall change direction map compiled here was compared to a LD map produced in a previous study [14]. 

This map was derived from a 250 m MODIS NDVI time-series data (2000–2010) based on linear trend 

analysis and it consists of a “LD” class—indicating a significant negative vegetation trend—and an “other 

trends” class. The overall accuracy of this map was 68% [14]. Two analogous classes from the current overall 

change map were directly compared: the “vegetation cover decrease” class and the “other” class. For this, 

the SPOT-based map was aggregated to the MODIS pixel size following [60]. The resampling was based on 

the majority rule assignment over the coarser grid cells. The maps were compared based on a random sample 

of 7503 pixels. The stratified weighted sampling was used that the share of samples of both classes in the 

number of all extracted samples was defined according to its percentage in the reference data set. 

The overall change map was further correlated to an additional series of available land use maps. 

These maps indicate the distribution of uncropped and cultivated areas within each individual field for 

1998 and 2010, as well as the types of cultivated crops growing in the fields in 2010. The map of 1998 

has an overall accuracy of 93% [61], the crop distribution map of 2010—86% [62]. We derived 

cultivated and fallow land for 2010 from the crop distribution map by reclassifying the classes. 

For cross comparison of these land use maps, an object-based overall change direction map was 

compiled for the 1998–2010 period. The object-based change image was derived followed the procedure 

described in Dubovyk et al. [23]. This map has the same classes as a pixel-based maps but calculated 

using the object-based approach, thus showing changes at a field parcel level. The same authors have 

proven that the produced change maps based on the CVA and SMA are robust to changes associated 

with changes in cropping patterns. 

5. Results and Discussion 

5.1. Results of Spectral Mixture Analysis 

Three endmembers were manually selected from the 2010 image feature space and coded as follows:  

 VT—associated with photosynthetically active vegetation within the crop fields; 

 SL—representing bare soil patches in the fields; 

 WT—referring mainly to waterlogged land. 

The number of endmembers was constrained to three due to the SPOT data spectral 

dimensionality [63]. Shadow effects were generally not detectable within the fields as these effects are 

reduced within the flat field areas in the study region (where slope values typically are less than 10%) 

and the fields are characterized by homogeneous or sparse canopies [64]. 
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Low root-mean-square error (RMSE) values reinforce the validity of the SMA results (Figure 3). 

Examination of the residual bands also revealed no systematic patterns, and the fraction image 

histograms were found to lie within the 0 to 1 range. The obtained results are comparable with those by 

Dubovyk et al. [23,65] who derived a 4-member model (green vegetation, bright soil, dark soil and 

water) based on the Landsat TM images for the area covering SKKP and Khorezm province of 

Uzbekistan. These authors also found good correlation of the SMA with the reference data that yielded 

R2-value of 0.80 in the study region. 

 
Figure 3. Subsets of fraction images derived from linear unmixing of the August 2010 

SPOT-5 image and their corresponding land cover elements: (a) bare soil, (b) water surfaces, 

(c) photosynthetically active vegetation, (d) root mean square error. 

5.2. Vegetation Cover Changes in the Study Area 

The overall change map highlights general directional trends in vegetation cover change throughout the 

observation period. Vegetation cover trends in the study area were as follows: (1) vegetation cover 

decrease was detected on 38% of arable land; (2) vegetation conditions remained unchanged (persisted) 

on 37% of arable land, and; (3) vegetation cover increased on 25% of arable land (Table 2; Figure 4a). The 

majority of increased vegetation cover is found alongside the main irrigation channels and in fields located 

in close proximity to the Amu Darya River, in locations with better access to irrigation water supply [14]. 
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Fields characterized by decreased vegetation cover cluster mainly in peripheral portions of the irrigation 

system as well as along the borders with the Kyzyl-Kum desert, to the north and east of the study region. 

Near the desert, impeded water supply and sandy soils with low water holding capacity produce poor crop 

development [15]. Due to marginal returns, farmers are less likely to cultivate such lands and they are often 

abandoned [66]. Comparison of the land-use maps confirmed this trend. The 19% (7049 ha) of the cropland 

area with decreased vegetation cover was under cultivation in 1998 and left fallow in 2010 (Figure 5). A 

significant cluster of declining vegetation cover was also observed in the northwestern part of the SKKP, 

a region where the drainage infrastructure is commonly known to be inadequate [32]. 

Table 2. Distribution of vegetation cover changes in relation to agricultural land-use changes 

in 1998 and 2010. 

Land Use Changes  

(1998–2010) 

Vegetation Cover Decrease Vegetation Cover Increase Persisting Conditions 

Number  

of Fields 

Area  

(ha) 

% of  

Irrigated Area

Number 

of Fields

Area 

(ha) 

% of  

Irrigated Area

Number  

of Fields 

Area  

(ha) 

% of  

Irrigated Area

Cropped in 1998 and  

cropped in 2010 
6532 26,773 27 4424 17,982 18 17,748 19,427 20 

Fallow in 1998 and  

fallow in 2010 
402 1990 2 194 574 1 965 3788 4 

Cropped in 1998 and  

fallow in 2010 
764 7049 7 382 1405 1 1779 3442 3 

Fallow in 1998 and  

cropped in 2010 
510 1860 2 1443 4816 5 2536 10,227 10 

TOTAL 8208 37,672 38 6443 24,777 25 23,028 36,884 37 

 

Figure 4. Cont. 

a
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Figure 4. Results of change vector analysis based on the fraction images calculated from 

multitemporal 10 m SPOT data: (a) Overall change direction map for the years  

1998–2010; (b) Change direction map for the years 2006–2010; (c) Change direction map 

for the years. 1998–2006. 

b

c
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Figure 5. Spatial distribution of field parcels with decreased vegetation cover in relation to 

land-use changes between 1998 and 2010. 

CVA results show that the majority of regional vegetation cover changes occurred during the period 

between 1998 and 2006. Persistent vegetation conditions were prevalent during 2006–2010 in the study 

area (Figure 4b,c). Beginning in 1991, restructuring of the agricultural system has taken place in 

Uzbekistan. During the initial phase of this process (1991–1998), the principal agricultural production 
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units established during the Soviet era—large collective farms called kolhozes—were generally 

preserved [67]. The second and the third phases of farm restructuring took place in 1998–2003 and 

2003–2008, and a number of significant changes occurred during these years. Numerous kolkhozes were 

transformed into agricultural cooperatives called shirkats, large farm operations were fragmented and 

private farms were initiated. Most of the changes in cropping patterns in the study region thus occurred 

after 1998, as these more commercially oriented private farms began emphasizing the production of cash 

crops such as rice. The area under winter wheat has significantly increased in the region since the year 

2000 in an effort to achieve the state mandated goal of grain self-sufficiency. This increase in wheat 

cultivation has displaced a portion of fodder crop production [68]. As these changes have taken place, 

however, the state commitment to the cultivation of cotton and winter wheat has continued and high 

productivity cropland areas have been reserved for these strategic crops since 1991 [67]. It is important 

to understand this background in combination with a number of additional factors, including the system 

of area-based state crop mandates, the standard production guidelines for crop irrigation and fertilizer 

application and the adequate water supplies in place in 1998 and 2010. The 2010 regional crop cover 

decline observed in the cotton and winter wheat growing areas should therefore be attributed to LD, 

rather than to any reduction in agricultural inputs in these areas (Figures 2 and 5). 

The decreased vegetation cover observed on the land left fallow in 1998 and 2010 (Table 2; Figure 5) 

are likely a result of overgrazing of the natural vegetation as herding livestock on uncultivated cropland 

areas is a common practice in the SKKP [69]. The reduced vegetative cover apparent in previously 

fallow lands that have been returned to cultivation in 2010 may be explained by the pre-cropping 

clearance of halophytic shrubs and grass that tend to dominate long-term fallowed areas. Causes of the 

vegetation cover decline observed in the remaining 15,247 ha of cropping area in the region must be 

verified through further in situ field investigation. Attention should be directed at both LD processes 

such as soil salinization as well as changes in agricultural management practices [70]. 

5.3. Evaluation of the Change Detection Results 

The overall 1998–2010 change direction map indicates an agreement of 84% with the  

MODIS-based LD trend map. This reinforces the effectiveness of the CVA-SMA analytic approach in 

identifying lands affected by a significant vegetation cover decline. For the “other trends” map class, 

producer’s accuracy was calculated at 82%, with user’s accuracy at 91%. This strongly suggests that the 

two maps are in overall agreement for this class. Both of these metrics were lower for the “LD” class, 

however (producer’s accuracy = 69%; user’s accuracy = 62%). This underestimation of vegetation cover 

decline in both change maps highlights a disadvantage of applying bi- or multi-temporal change 

detection procedures rather than trend analyses, which monitor gradual land cover processes based on 

continuous information from satellite time series data [71]. Trend analysis, on the other hand, depends 

upon the availability of high spatial resolution image time series data, which is not available for all 

regions of the world, including Central Asia [22]. 

The CVA approach has been shown to be effective and accurate for mapping land cover changes within 

managed and naturally arid landscapes at high spatial detail [28,29]. Although SPOT imagery is effective 

for land cover change detection in a number of applications, a multi-resolution approach that combines 

both coarse and fine scale data sets is more effective for characterization of vegetation dynamics in 
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irrigated cropland environments as described here. Fundamentally, it should be noted that the general 

approach based on vegetation monitoring applied in this research is currently the only operational LD 

analytic methodology which may be effectively implemented across extensive areas [72–74]. 

The types of change maps produced in this study must also be interpreted with care, preferably in 

conjunction with ancillary data such as the agricultural land use maps used in this work. Secondary 

datasets and expert knowledge are very important for the identification of environmental and land 

management issues (particularly for irrigated lands) that may be integral to the agricultural system. In 

the SKKP study area, reduced cropland productivity as reflected in losses of vegetation cover through 

time can be attributed to LD resulting from soil salinization as well as interruptions in cropping activity. 

Whether vegetation cover loss may be attributed to deteriorating soil conditions or decreased cultivation 

(or a combination of the two), it represents a decline in the economic productivity of irrigated croplands 

and a decrease in their overall productive function [23]. The developed approach is deemed suitable for 

irrigated croplands of post-soviet Central Asia where irrigated agricultural land management and 

cultivation patterns as well as associated LD problems are similar. The applicability of the same 

approach outside this region should be further tested. 

5.4. Implications for Site-Specific Cropland Management 

The use of very high 10m spatial resolution SPOT imagery within the context of the CVA-SMA 

analytic approach enabled us to characterize specific conditions within the SKKP study site at very high 

levels of spatial detail. This allowed information to be gathered and evaluated regarding regional 

agricultural irrigation and leaching applications and thus to make practical contributions to water saving 

practices [31]. The combined CVA-SMA procedure identified within-field vegetation cover variability, 

as shown in Figure 6 (left and middle columns) and may by compared to the traditional whole-field 

approach (Figure 6, right column). If identical agricultural inputs are assumed across the fields, the 

observed differences in crop performance must be a function of soil salinity and the variability identified 

within the fields indicates inefficient management of this problem [3]. 

Management of soil salinity could be significantly improved by refining land leveling operations. In 

particular, the use of laser guided devices prior to salt leaching would allow more uniform 

microtopography and water distribution within fields and enhance the salt management efficiency [31]. 

Additional research should focus on linking our findings to in situ soil salinity measurements, using, for 

example, electromagnetic induction measurements. Volumes of water required for salt leaching can be 

significantly reduced by site-specific targeting that quantifies actual soil salinity in the crop root-zone [3]. 

The availability of sub-field information on soil and crop conditions should also allow reductions in 

excessive nitrogen fertilizer inputs by focusing applications on areas of greatest need, thus helping to 

optimize yields [75]. The subsequent reduction in percolation of nitrogen fertilizers down to the 

groundwater table would also decrease the environmental pollution associated with intensive agriculture. 

Further refinement of the CVA-SMA approach tested here should proceed in close cooperation with 

local agricultural planners, land managers, and scientists to accommodate local needs and to assure 

applicability of results. It is also important to conduct additional ground measurements in the SKKP 

study region in order to further validate our results and to establish a suite of quantitative in situ data. 
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Figure 6. Subsets of the change direction maps (left column) and change magnitude images 

(middle column) showing sub-field pixel-wise changes of vegetation cover and object-based 

change direction maps. 

6. Conclusions 

Irrigated agro-ecosystems in Central Asian drylands have experienced an observable decline in 

cropland productivity and overall high within-field heterogeneity in crop performance. Considering the 

importance of maps availability to support sustainable land management as well as land restoration 

efforts, this research bridged a current gap by providing spatially-explicit sub-field information on land 

cover changes for the irrigated lowlands of the Amu Darya River in Uzbekistan. This paper also 

contributes to the development of methods that will support future assessments in similar landscapes via 

elaborating a combined change vector analysis and spectral unmixing (CVA-SMA) procedure based on 

multitemporal high spatial resolution (10 m) SPOT imagery. 
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Overall, our results confirmed the utility of the SPOT data as well as proposed combined  

CVA-SMA procedure for monitoring crop cover dynamics at sub-field and field level in the study area. 

Inter-annual crop cover changes during the period of 1998–2010 were driven by a complex set of 

interrelated environmental factors, including harsh climatic conditions, poor or fragile soils,  

micro-topography and location. These variables also impacted land management decisions and long-

term agricultural planning. Within this context, the vegetation cover changes that were identified in the 

study area generally reflect to certain extent the farm restructuring processes that started in Uzbekistan 

after independence in 1991. We conclude, however, that the declines in cropland cover that were 

identified in this study can be more directly attributed to the impact of regional soil salinity conditions. 

Excess soil salinity affects crop growth and precludes farmers from cropping in areas where salinity 

levels are unmanageable. In addition, problems of secondary soil salinization are also a consequence of 

long-term land and irrigation water mismanagement in the study area which have been ongoing since 

the 1950s era. 

The approach described here may be implemented in additional cases where spatial information is 

required at scales appropriate for site-specific management interventions in such activities as irrigation, 

salt leaching, and fertilizer applications. The high level of spatial detail makes such spatial information 

useful at the individual sub-field level. Further research should focus on linking these high spatial 

resolution remote sensing approaches with in situ measurements to support their acceptance and 

utilization in precision agriculture. 
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