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Abstract: Image time series of high temporal and spatial resolution capture land surface 

dynamics of heterogeneous landscapes. We applied the ESTARFM (Enhanced Spatial and 

Temporal Adaptive Reflectance Fusion Model) algorithm to multi-spectral images covering 

two semi-arid heterogeneous rangeland study sites located in South Africa. MODIS 250 m 

resolution and RapidEye 5 m resolution images were fused to produce synthetic RapidEye 

images, from June 2011 to July 2012. We evaluated the performance of the algorithm by 

comparing predicted surface reflectance values to real RapidEye images. Our results show 

that ESTARFM predictions are accurate, with a coefficient of determination for the red band 

0.80 < R2 < 0.92, and for the near-infrared band 0.83 < R2 < 0.93, a mean relative bias 

between 6% and 12% for the red band and 4% to 9% in the near-infrared band. 
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Heterogeneous vegetation at sub-MODIS resolution is captured adequately: A comparison 

of NDVI time series derived from RapidEye and ESTARFM data shows that the 

characteristic phenological dynamics of different vegetation types are reproduced well.  

We conclude that the ESTARFM algorithm allows us to produce synthetic remote sensing 

images at high spatial combined with high temporal resolution and so provides valuable 

information on vegetation dynamics in semi-arid, heterogeneous rangeland landscapes. 

Keywords: RapidEye; MODIS; ESTARFM; image fusion; data blending; vegetation 

dynamics; high spatial and temporal resolution; time series 

 

1. Introduction 

Time series of vegetation indices derived from remotely sensed data are readily used to monitor 

spatial and temporal dynamics of biophysical variables such as Leaf Area Index (LAI) or fraction of 

absorbed photosynthetically active radiation (fAPAR) [1,2], and phenological metrics such as day of 

green-up and duration of greenness [3]. Multi-temporal measurements of those variables provide 

information for spatially distributed environmental modelling across different scales, e.g., for yield 

forecasts, ecohydrologic cycles or land cover change [4]. 

Ecological studies often rely solely on field data, whose collection is time-consuming, cost-intensive 

and often limited in space and time. Remote sensing data play a supporting role, but only match poorly 

with small scale field measurements due to discrepancies in spatial resolution between the images and 

field data [5]. Furthermore, in-field ground truth measurements are hard to compare to remotely sensed 

data. Relevant processes may display a small-scale heterogeneity (e.g., spatially varying grazing intensities 

or heterogeneous abiotic site conditions [6]) that a selective sampling of species may not capture.  

Remotely sensed data exhibiting both high temporal and high spatial resolution show great promise for the 

exploration of processes taking place rapidly at scales similar to that of field assessments. Such data are 

available from different sensors like IKONOS, Quickbird, RapidEye or SPOT at over-flight intervals from 

1 to 5 days. However, these data are costly and may have disadvantages for mapping on medium to large 

scales due to a small image footprint or limited spectral resolution [7]. A variety of studies have instead 

relied on using the mid-resolution Landsat sensors. For all optical satellites, the continuous temporal 

data coverage can be interrupted by clouds, cloud shadows, haze or smoke from fires [7,8].  

The above-mentioned factors limit the use of remotely sensed data for detection of rapid surface changes, 

including spatial and temporal changes in vegetated surfaces [9]. Medium to low spatial resolution 

instruments such as MODIS, SPOT-Vegetation and AVHRR cover the earth on a daily basis over a wide 

field of view. This frequency is suitable for monitoring land cover dynamics at large scales [10].  

Spatial resolution ranges from 250 m to 1000 m, which is however not satisfactory for tracking changes 

(such as vegetation dynamics) and spatio-temporal patterns at ecologically relevant resolutions, 

especially in heterogeneous landscapes [11,12]. 

Fusion of remotely sensed data from different sensors with different spatial and temporal 

characteristics is an efficient solution to enhance the capability of remote sensing for the monitoring of 

land surface dynamics at varying scales [12,13]. Pohl and Van Genderen [14] define image fusion as 
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“the combination of two or more different images to form a new image by using a certain algorithm”. It 

promotionally blends multiple registered images having disparate and distinct yet complementary 

attributes. Image fusion aims at enhancing information included in the images and at improving 

reliability of the prediction. The outcome mitigates or exceeds the limitations of each dataset used as 

input [10,14]. The result may be a combined time series that exhibits both a high temporal and high 

spatial resolution [8]. There are numerous scientific papers suggesting the fusion of data from multiple 

sensors to provide both high spatial and high temporal resolution [4,15]. However, only few studies 

suggest techniques that compute calibrated outputs of spectral radiance or reflectance values, which is 

required to study vegetation dynamics or quantitative changes in reflectance over time [9,11]. 

Gao et al. [9] developed STARFM (Spatial and Temporal Adaptive Reflectance Fusion Model) to 

combine the spatial resolution of Landsat imagery with the temporal resolution of coarse-resolution 

sensors. A synthetic surface reflectance product at Landsat spatial resolution and high temporal 

resolution is obtained by combining spatial information from Landsat imagery and temporal 

 information from coarse-resolution imagery. STARFM achieves good results if non-mixed  

coarse-resolution pixels exist in the area of application (i.e., homogeneous, large land cover patches). 

However, performance deteriorates in complex mixtures of small patched land cover types such as  

small-scale agriculture [9]. Several studies successfully tested the fusion of Landsat and MODIS in 

different environments [8,10,11,16–19]. 

Zhu et al. [12] developed the ESTARFM (Enhanced Spatial and Temporal Reflectance Fusion Model) 

algorithm to improve this shortcoming of the original STARFM method, by using the observed 

reflectance trend between two points in time, combined with the spectral unmixing theory [20] to better 

predict reflectance in changing, heterogeneous landscapes. Results show that ESTARFM is capable of 

preserving spatial details better than STARFM. Emelyanova et al. [17] evaluated the performance of 

blending algorithms including STARFM and ESTARFM and found that ESTARFM performed better 

where/when spatial variance was dominant, whereas STARFM performed better under prevailing 

conditions of temporal variance. 

Our motivation for this study was to find a method that overcomes the low temporal resolution of 

time series and yet yields high spatial resolution that enables to capture spatial heterogeneity in 

vegetation dynamics. To achieve this we used an image fusion algorithm that blends high spatial 

resolution RapidEye data and high temporal resolution MODIS data. ESTARFM was selected as the 

algorithm of choice because (1) it explicitly improves the fusion accuracy of images especially in 

heterogeneous landscapes, and preserves spatial details, (2) it can be used for sensors other than Landsat 

and MODIS, (3) it does not require ancillary land cover data, and (4) it is freely available [12,17]. We 

are not aware of any study on the fusion of RapidEye with a coarse-resolution sensor. The research 

questions underlying this study are: 

1. Is the ESTARFM algorithm applicable for generating time series using the combination of 

RapidEye and MODIS? 

2. Is a time series combining real RapidEye with ESTARFM-computed synthetic images appropriate 

for detecting highly dynamic vegetation changes at different small scale bush density classes in 

semi-arid rangelands in South Africa? 
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2. Material and Methods 

2.1. The Study Area 

The study area is situated in the Northern Cape Province of South Africa and lies within the southern 

outreaches of the Kalahari (Figure 1). The landscape is a savannah biome, which covers about 1/3 of 

South Africa, including most of the far-northern part of the Northern Cape Province [21].  

Vegetation cover comprises a woody layer of mainly seasonally deciduous trees and shrubs, especially various 

species of the genus Acacia, and a ground layer of annual and perennial grasses and some forbs [22,23].  

The study area lies within the southern African summer rainfall zone (October–April). Winters are dry, 

with little to no precipitation. Mean annual precipitation is 423 mm with a coefficient of variation of 34% 

(calculated over 37 years). Low precipitation has favoured the use of land for pasture farming, since much of 

the land is unsuitable for crop cultivation [23]. Rainfall, fire and grazing are the three key driving forces for 

vegetation dynamics in the Kalahari ecosystem, as in many other semi-arid rangelands [22,24]. During the 

study time period, the area received 203 mm of precipitation (54% less than the long-term average). 

 

Figure 1. Location of study area. Subsets are indicated by black frames. The RapidEye 

image (true-colour RGB image using bands 3, 2 and 1) was acquired on 16 November 2011. 

Distinctive landmarks visible in the western part are sand dunes stretching from northwest 

to southeast and the Gamogara riverbed stretching from south to north. The eastern part 

shows the riverbed of Kuruman river stretching from west to east, and foothills of the 

Kuruman mountains stretching from southeast to northwest. 
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2.2. Data 

2.2.1. The RapidEye Data 

The RapidEye system consists of 5 identical satellites placed in a single orbit. Each satellite carries a 

5 band multi-spectral optical imager that captures radiation in the blue, green, red, red edge and  

near-infrared (NIR) spectral range. At nadir, ground sampling distance is 6.5 m and 5 m after 

orthorectification and resampling, respectively [25,26]. 

Twenty-three RapidEye images were used for our study. They were captured within the time period 

June 2011 to July 2012 (covering an entire vegetation growth cycle); with each scene not exceeding a 

cloud cover of 20%. Eight images cover the study area in its entirety or for the most part, 15 images just 

partially (either eastern or western part of the study area). We formed 2 subsets for ESTARFM input to 

reduce data load and shorten image calculation routines. The western subset with an extent of 24 km by 

24 km will be referred to as Subset 1, the eastern subset with an extent of 35 km by 24.5 km as Subset 2. 

Their respective location is indicated as black frames in Figure 1. The RapidEye images were 

orthorectified and atmospherically corrected using the automated processing chain CATENA developed 

and maintained by the German Aerospace Center [27]. CATENA relies on the physical model 

implemented in the ATCOR software to eliminate atmospheric effects [28]. Clouds in RapidEye images 

were masked manually. Areas affected were assigned no-data values and excluded from further analysis. 

Table 1 shows that RapidEye and MODIS have corresponding spectral bands, except for RapidEye’s 

Red Edge band at 690–730 nm. The study area is crossed by both sensors within a narrow time frame 

(RapidEye: 9:25 am–9:45 am GMT, MODIS on Terra: 7:30 am–9:30 am GMT). Both instruments 

provide 12 bit radiometric sensitivity. RapidEye products are delivered with 16 bit unsigned integer bit 

depth, MODIS with 16 bit signed integer bit depth. 

Table 1. RapidEye and MODIS band characteristics. 

Band Name Band No Spectral Range [nm] 

 RapidEye MODIS RapidEye MODIS 

Blue 1 3 440–510 459–479 

Green 2 4 520–590 545–565 

Red 3 1 630–685 620–670 

Red Edge 4 - 690–730 - 

NIR 5 2 760–850 841–876 

2.2.2. The MODIS Data 

To minimize the spatial resolution and acquisition time differences between the MODIS and 

RapidEye data, we selected the MOD09Q1 product. This product provides surface spectral reflectance 

as it would be measured at ground level in the absence of atmospheric scattering or absorption.  

It comprises bands 1 and 2 (red and NIR) on the Terra satellite at a 250 m resolution in an 8-day 

composite product, where each pixel contains the best possible observation during an 8-day period as 

selected on the basis of high observation coverage, low view angle, absence of clouds or cloud shadows, 

and aerosol loading ([29]). Additionally, each dataset contains a quality band that was used to assess the 
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quality of each pixel. Higher likeliness to encounter cloud-free pixels and a reasonable trade-off between 

workload and temporal resolution of fused products were the reasons why we chose the 8-day composite 

product for our study. Missing MOD09Q1 data was substituted by the product MOD09GQ, which provides 

bands 1 and 2 at 250 m resolution in a daily gridded product. For visualization purposes, band 4 (green 

spectrum) was extracted from the MODIS product MOD09A1. This product is computed at the same 

dates as MOD09Q1 and provides bands 1 to 7 at 500 m resolution in an 8-day gridded product. The 

MOD09A1 product contains the same observations as MOD09Q1 in band 1 and 2 (according to  

Gao et al. [9], pixels are aggregated to 500 m resolution), respectively. By checking the quality band of 

every MODIS product, we found that all MODIS images were provided at best quality. To reduce 

algorithm computing time, sensor bands not suitable for the purpose of this study were excluded from 

the datasets. Accordingly, only red and NIR bands were included for NDVI calculation (for MODIS 

input either from MOD09Q1 or MOD09GQ), plus the green band. The MODIS data were re-projected 

to the UTM Zone 34 South using the USGS LP DAAC’s MODIS Reprojection Tool Web Interface 

(MRTWeb) (https://mrtweb.cr.usgs.gov/). The implementation of ESTARFM requires MODIS data to 

be resampled to RapidEye 5 m resolution. No further processing was applied since the MODIS scenes 

were provided pre-corrected for atmospheric scattering and absorption. Co-registration of MODIS and 

RapidEye images was challenging because differences in spatial resolution were too large as to find 

reliable ground control points (GCPs). Visual inspection of 10 randomly selected MODIS and RapidEye 

images indicated a good overlay of distinguished landmarks, with none of the MODIS images requiring 

manual adjustment. 

2.3. The ESTARFM Algorithm 

The ESTARFM algorithm requires 2 pairs of fine-resolution and coarse-resolution images as input, 

with each pair (t1 and t2) captured at the same date. For the desired prediction date tp, 1 coarse-resolution 

image is required. ESTARFM yields a synthetic image at the prediction date tp with the same spatial 

resolution as the fine-resolution input images [12]. 

During the ESTARFM computation, four major steps take place: (1) Two fine-resolution images are 

used to search for pixels similar to the central pixel in a moving search window, (2) the spectral and 

spatial distance between each similar pixel and the predicted pixel are used to calculate weights of each 

similar pixel wi, (3) a linear regression of the coarse-resolution values in the two observed pairs (t1 and t2) 

against the fine-resolution values of the similar pixel is used to determine the conversion coefficient vi, 

which is then used to convert the change found from the coarse-resolution images to the fine resolution 

images, and (4) fine-resolution reflectance from coarse-resolution image at prediction date tp, predicted as: 

, , , , , , , ,  (1)

Here, F and C represent fine-resolution image and coarse-resolution image reflectance, (x,y) the 

location of the predicted pixel value while xi and yi is the location of ith similar pixel, and t0 is the date 

of 1 input pair (t1 or t2). N is the total number of similar pixels of the predicted pixel within a moving 

window. The algorithm is explained in detail in Zhu et al. [12]. 
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2.4. ESTARFM Implementation 

Synthetic images at RapidEye resolution were computed for both subsets using 14 RapidEye scenes 

captured between 28 June 2011 and 18 July 2012 as input (with 6 scenes covering both subsets and  

4 composites each consisting of two scenes acquired within a short period of time, covering either 

subset), combined with the corresponding MODIS images acquired at the closest possible date (i.e., 

forming 10 image pairs; see Figure 2). The MOD09A1 day of the year layer was used to determine the 

acquisition day of the majority of pixels, aiming at minimizing the time difference between the MODIS 

and RapidEye observations. For image pair formation, 3 MODIS MOD09Q1 products were not available 

in 2012 (10 February 2012, 14 April 2012 and 11 July 2012); the daily surface reflectance product 

MOD09GQ was used instead. Here, the same acquisition date as of the corresponding RapidEye image 

was chosen. Coarse-resolution information at prediction dates (tp) was provided by 39 (Subset 1) and 38 

(Subset 2) MODIS images within the time period 04 July 2011 until 03 July 2012, respectively. For 

prediction, 3 missing MOD09Q1 datasets in 2012 (02 February 2012, 05 March 2012 and 21 March 

2012) were substituted by MOD09GQ products. We chose the MODIS scene dated 14 April 2012 to 

only form an image pair with the RapidEye scene dated 19 April 2012 covering Subset 1, but not with 

the RapidEye scene acquired on 22 April 2012 (covering Subset 2) due to the major time lag. For this 

formation, we chose the MOD09GQ product of the same date instead and simultaneously used the scene 

for reflectance prediction of Subset 1. The outcome of this is the different number of prediction dates. The 

second image pair (i.e., at date t2) continuously served as first image pair in the next computation step (i.e., 

at date t1). Two temporally closest image pairs were always provided as bracketing images for ESTARFM 

prediction. The size of the moving window was set to the size of one MODIS pixel, i.e., corresponding to 

50 × 50 RapidEye pixels. 

2.5. Accuracy Assessment of ESTARFM Images 

The validation of the accuracy of the synthetic images was undertaken using a set of images 

independent from those that were used as ESTARFM input. Nine RapidEye scenes, each captured at a 

date bracketed by two consecutive RapidEye images used for ESTARFM processing, were used to 

compare pixel values in the predicted image with the corresponding pixels in the reference RapidEye 

image, on a band by band basis (following Walker et al. [10]). White and light grey coloured acquisition 

dates in Figure 2Error! Not a valid bookmark self-reference. indicate the image pairs used for cross-

comparison. Prediction quality was assessed for the entire sub-scenes, independent from land cover type 

or vegetation cover. This yielded a sample size of 24 million to 34 million pixels per image pair, depending 

on extent and cloud cover. Only one RapidEye image (captured on 17 January 2012) covered the study 

area completely, the others either Subset 1 or Subset 2. The accuracy assessment of our study was based 

on a scheme proposed by Wald et al. [30] and Thomas and Wald [31]. We employed the following 

quantitative criteria: 

1. The bias as well as its value relative to the mean value of the observed image should ideally be 0. 

The bias is the difference between the mean value of the observed RapidEye and predicted 

ESTARFM image. 
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2. The standard deviation of the difference image in relative value, i.e., divided by the mean of the 

reference image, should ideally be 0. This measure indicates the level of error at any pixel, 

throughout the entire image (thus hereafter referred to as per-pixel level of error). 

3. On a band by band basis, the coefficient of determination (R2) between the observed RapidEye 

and the synthetic ESTARFM image should be as close as possible to 1. This measures the  

pixel-wise similarity in the observed versus the predicted image. 

 

Figure 2. Timeline of acquisition dates of RapidEye and MODIS scenes used for this study. 

MODIS MOD09Q1 product data come as an 8-day gridded product; the dates given in the 

figure are the first day of the 8-day period. For dates where the above-mentioned product was 

not available, the daily reflectance product MOD09Q1 was chosen, with the date equal to the 

correspondent RapidEye image acquisition date. Pairs used as ESTARFM input are indicated 

with Arabic numerals, pairs used for the accuracy assessment with Roman numerals. 

2.6. Bush Density Information 

The reflectance differences Δρ, measured by RapidEye and by MODIS in a given pixel location (x,y) 

for band B are composed of the orbit parameters, the location and spectral range of the bands, the 
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acquisition time (implying different sun illumination angles), the different atmospheric correction 

approaches, the viewing angles, the overlay (co-registration of images) and the spatial resolution of the 

sensor, resulting in pixels that are composed of a variety of reflectances. While it is difficult to investigate 

the influence of the separate components, the factor of spatial resolution may be analysed based on the 

following thoughts: One MODIS pixel exhibiting a spatial resolution of 250 m contains the average 

reflectance of all land cover types contained therein, whereas the RapidEye sensor is capable of 

dissolving these into 2500 different values (50 × 50 RapidEye pixels, perfect overlay given). Such high 

spatial resolution allows for better vegetation classification, and so determines the proportions of land 

cover each MODIS pixel is composed of. One basis for vegetation classification is the temporal behaviour 

of composited NDVI (Normalized Difference Vegetation Index) time series. Vegetation phenology shows 

distinct seasonal patterns in semi-arid savannahs since growth is water-limited [32]. This applies for both 

the bush and grass layer. According to Scholes and Walker [33], trees and bushes in southern African 

savannahs exhibit signs of growth before the first “effective” rainfall due to their ability to access 

subsurface moisture, whereas grasses respond to rainfall events and exhibit a shorter, more intensive 

growth pulse. 

The widely utilized unsupervised k-means cluster algorithm was used to classify the composited 

NDVI time series, derived from 15 (Subset 1) and 16 (Subset 2) RapidEye images used within our study 

(i.e., comprising RapidEye images used for algorithm input and for accuracy assessment). Large areas 

not used as rangeland were masked and excluded from the classification and further study. 

Clusters found by the algorithm were identified using expert knowledge and the above mentioned 

orthophotos, and subsequently merged into the user-defined vegetation type classes “grass cover” or 

“bush cover” or the type “asphalt, bare soil, non-dynamic surface” for non-vegetated areas. We then 

calculated the percentage area classified as “bush cover” falling into each MODIS pixel at 250 m 

resolution. Those areas at MODIS pixel resolution that intersected with the class “asphalt, bare soil,  

non-dynamic surface” were excluded to reduce the error of interfering signals. On a band by band basis, 

the coefficient of determination R² between the observed RapidEye and predicted ESTARFM images was 

calculated for every bush density class, thereby determining the prediction accuracy at sub-MODIS scale. 

2.7. Monitoring Vegetation Dynamics 

Despite its appearance to be a poor indicator of vegetation biomass for low ground cover, a number 

of studies confirm the usefulness of NDVI for monitoring vegetation dynamics in arid and semi-arid 

environments (e.g., Schmidt and Karnieli [34]; Weiss et al. [35]). To investigate the usability of 

ESTARFM for vegetation monitoring purposes, parallel time series of the Normalized Difference 

Vegetation Index (NDVI) were computed based solely on RapidEye, MODIS and ESTARFM images 

for the different bush density classes. 

3. Results 

3.1. ESTARFM Prediction Results 

The ESTARFM algorithm yielded 77 synthetic images (39 images for Subset 1, 38 images for Subset 2) 

at RapidEye resolution, covering the time period June 2011 until July 2012 (Figure 2). Figure 3 shows 
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an exemplary comparison of the images. Visual inspection revealed that spatial details are kept well by 

ESTARFM, including areas with heterogeneous land cover, differing vegetation or distinct land forms. 

Figure 4 shows scatter plots that represent per-pixel comparisons between the observed RapidEye 

and predicted ESTARFM images used for the accuracy assessment as illustrated in Figure 2. A random 

sample consisting of 10% of all pixels was drawn from each scene. The analysis was performed on all 

of the 9 validation pairs. For the ease of presentation, we have selected examples from different dates. 

Please note that, contrary to all other RapidEye images, the scene captured on 17 January 2012 covers 

the entire study area. Thus, an accuracy assessment of the predicted ESTARFM images for both subsets 

was possible (plots E–H). 

The relationship between the observed and predicted pixel values shows a close adherence to the 1:1 

line in all cases in both the red and NIR band, proving that reflectance is accurately predicted by 

ESTARFM for each image. The slopes of the regression lines range from 0.79 to 0.98 for the red band 

and from 0.76 to 1.0 for the NIR band. This indicates only little differences between the observed and 

predicted images. Extreme outlying pixels were checked and visually compared to orthophotos. We found 

that in most cases outliers resulted from single pixels displaying objects exhibiting high reflectance, such 

as corrugated sheet roofs or patches of bare bright rocks and sand. Parts of the scatter plots (E), (F) and 

(H) deviate downwards from the 1:1 line, indicating lower predicted pixel values than actually observed. 

Affected pixels mainly comprise vegetated areas, suggesting phenological changes between beginning 

of January and middle of February 2012 that were not well captured by ESTARFM. Table 2 shows the 

pixel-based, band by band results of the accuracy assessments for the two subsets. Here, the relative 

mean bias is normalized to the observed reflectance of each band, thus facilitates a comparison between 

the different wavelengths. A value of 0.1 for instance indicates that the predicted image overestimated 

the mean reflectance in the observed image by 10% [11]. ESTARFM both under-and overestimated 

mean reflectance in the red and NIR band, commonly between 0 and 16%. The most apparent difference 

among the results, evaluated on the basis of the acquisition dates, is the relatively poor performance of 

the image predicted for 24 October 2011. The mean reflectance for the corresponding RapidEye image 

of 31 October 2011 is underestimated by 39% in the red and 40% in the NIR band, with high values of 

the absolute mean bias (red: 656.42, NIR: 1102.68). 

Correlation is high—Indicating a very strong relationship (red: 0.88, NIR: 0.89)—And the scatter 

plot (Figure 4C,D) does not show strong deviations from the 1:1 line. It arises from the accuracy 

assessment for the predicted image on 09 January 2012 that ESTARFM underestimates the mean 

reflectance in the red band by 7%, whereas NIR reflectance is overestimated by 2%. Generally, better 

prediction results were found for the NIR bands than for the red bands. Per-pixel levels of error vary 

between 0.06 and 0.012 (standard deviation of 6% to 12%) for the red band and between 0.04 and 0.08 

for the NIR band, also indicating a better performance of ESTARFM in the longer waveband. Correlation 

between observed and predicted images is generally high. For all dates, the NIR band yielded better 

results than the red band (Red: 0.80 < R2 < 0.92, NIR: 0.83 < R2 < 0.93). Prediction accuracy was lowest 

for the scene predicted for 17 January 2012 (which also shows strong deviations downwards from the 

1:1 line in the scatter plot, Figure 4E–H), while precision improves for the antecedent and precedent 

scenes, with the best results found for the scenes predicted for 24 September 2011 and 30 June 2012. 



Remote Sens. 2015, 7 6520 

 

 

 

Figure 3. Exemplary comparison between observed RapidEye scenes (left column), 

observed MODIS scenes (central column), and ESTARFM predicted RapidEye scenes 

(right column) for Subset 2 for 3 acquisition dates in April and May 2012. First and last 

row (A,E) show images used as bracketing pairs t1 and t2. All images are shown as  

false-colour datasets (NIR-Red-Green). 
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Figure 4. Cont. 
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Figure 4. Per-pixel comparison between observed and predicted RapidEye reflectance for the 

assessment pairs as listed in Figure 2. The 1:1 line is shown in red, the regression line in green. 

Plots (left column) illustrate the reflectance values for the red band, plots (right column) the 

values for the NIR band. The x-axis displays the values of the respective RapidEye image, the 

y-axis the values of the correspondent predicted ESTARFM image. 

 



Remote Sens. 2015, 7 6523 

 

 

Table 2. Results for the pixel-based, band by band accuracy assessment of the RapidEye 

images against the ESTARFM computed predicted images. Numbers are rounded. Subset 1 

has a sample size of 23,072,682 pixels, Subset 2 a size of 34,592,816 pixels. The Absolute 

Mean Bias is given in surface reflectance units. 

RapidEye MODIS Subset Band 
Absolute 

Mean Bias 

Relative 

Mean Bias 

Per-Pixel Level 

of Error 
R2 

17-07-2011 12-07-2011 2 
Red −14.18 −0.01 0.12 0.85 

NIR −2.15 0.00 0.08 0.86 

24-09-2011 22-09-2011 2 
Red 43.82 0.03 0.07 0.91 

NIR 19.05 0.01 0.04 0.93 

31-10-2011 24-10-2011 1 
Red −656.42 −0.39 0.06 0.88 

NIR −1102.68 −0.40 0.05 0.89 

02-12-2011 25-11-2011 1 
Red 118.9 0.07 0.07 0.87 

NIR 161.42 0.06 0.05 0.92 

17-01-2012a 09-01-2012a 1 
Red −115.52 −0.07 0.09 0.80 

NIR 52.47 0.02 0.07 0.84 

17-01-2012b 09-01-2012b 2 
Red −295.36 −0.15 0.10 0.81 

NIR −31.98 −0.01 0.07 0.83 

03-03-2012 26-02-2012 2 
Red −240.98 −0.16 0.09 0.89 

NIR −173.41 −0.06 0.05 0.92 

09-04-2012 06-04-2012 2 
Red −139.35 −0.10 0.10 0.89 

NIR −190.03 −0.07 0.05 0.92 

10-05-2012 30-04-2012 1 
Red −40.25 −0.04 0.11 0.82 

NIR −9.63 0.00 0.06 0.90 

30-06-2012 25-06-2012 2 
Red 21.6 0.01 0.09 0.91 

NIR 92.57 0.04 0.05 0.92 

3.2. Analysis of Reflectances Time Series 

Time series of MODIS, RapidEye and ESTARFM reflectance for red and NIR bands are shown in 

Figure 5. Each time series represents average values for each date of an image observation and image 

subset. Only those pixels falling into MODIS pixels containing less than 5% of bush cover (i.e., with 

grass as the main ground cover) were considered. We chose this approach to select relatively 

homogeneous areas large enough to compare the time series directly, assuming that these areas exhibit 

“pure”, comparable signals. The RapidEye time series consists of both the images used for the fusion 

process and the ones used in the accuracy assessment. The general behaviour of the ESTARFM and the 

RapidEye time series in both subsets aligns well for both the red and NIR band. MODIS observations 

have a strong influence on the ESTARFM predictions. Amplitudes of the ESTARFM curves are highest 

when the offset between MODIS and RapidEye bracketing images is little and constant, and MODIS 

images used for prediction simulate a sharp increase or decrease in reflectance, whereas the RapidEye 

suggests only a moderate change. The MODIS time series exhibit an unexpected oscillating pattern 

within the seasonal curve, with sharp amplitudes in December and January 2012. The RapidEye time 

series do not show this feature, but a rather uniform increase over extended periods of time. 
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Tables 3 and 4 compare observed RapidEye and predicted ESTARFM images for the red and NIR 

bands, summarized for the bush cover classes and the study area subset, respectively. As already 

observed in the accuracy assessment conducted for the entire scenes, by the majority the coefficient of 

determination between observed and predicted images is higher for the NIR band than for the red band. 

R2 values are generally lower than those found in the accuracy assessment. Scenes of low prediction 

accuracy in the assessment also show low correlation values in the bush cover classification. 

Figure 5. Time series of MODIS (green), RapidEye (blue) and ESTARFM (red) reflectance 

for the red (left column) and near-infrared (right column) band for those pixels falling into 

MODIS pixel size extents classified as “Less than 5% bush density”. 

Table 3. Pixel based regression of the observed RapidEye scenes against the correspondent 

ESTARFM predicted images for Subset 1, summarized for bush cover classes. The bias is 

given as its value relative to the mean value of the observed image. Numbers in brackets 

show number of pixels at RapidEye resolution. 

Bush Density Band Date 

  31-10-2011 02-12-2011 17-01-2012 10-05-2012 

  R2 Bias R2 Bias R2 Bias R2 Bias 

≤5% 

(79,354) 

Red 0.70 −0.05 0.79 0.07 0.83 −0.12 0.71 −0.04 

NIR 0.75 −0.04 0.87 0.08 0.83 −0.03 0.88 0.00 
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Table 3. Cont. 

Bush Density Band Date 

  31-10-2011 02-12-2011 17-01-2012 10-05-2012 

  R2 Bias R2 Bias R2 Bias R2 Bias 

>5%, ≤20% 

(356,336) 

Red 0.74 −0.04 0.83 0.06 0.69 −0.08 0.73 −0.08 

NIR 0.82 −0.07 0.90 0.06 0.74 −0.01 0.87 0.01 

>20%, ≤35% 

(569,186) 

Red 0.76 −0.03 0.85 0.06 0.60 −0.07 0.77 −0.08 

NIR 0.83 −0.06 0.91 0.05 0.70 0.01 0.88 0.01 

> 35%, ≤50% 

(553,589) 

Red 0.77 −0.03 0.85 0.07 0.62 −0.09 0.80 −0.07 

NIR 0.79 −0.07 0.89 0.05 0.74 0.01 0.90 0.00 

> 50%, ≤65% 

(634,875) 

Red 0.82 −0.03 0.85 0.07 0.70 −0.09 0.77 −0.06 

NIR 0.86 −0.07 0.90 0.05 0.82 0.01 0.89 0.00 

> 65%, ≤80% 

(862,093) 

Red 0.84 −0.03 0.86 0.07 0.72 −0.10 0.78 −0.06 

NIR 0.86 −0.07 0.91 0.05 0.82 0.01 0.89 0.00 

> 80%, ≤95% 

(1,620,701) 

Red 0.80 −0.02 0.83 0.08 0.73 −0.09 0.78 −0.05 

NIR 0.82 −0.06 0.90 0.05 0.83 0.02 0.87 0.00 

> 95% 

(27,787) 

Red 0.80 −0.02 0.79 0.08 0.69 −0.08 0.80 −0.04 

NIR 0.86 −0.07 0.90 0.05 0.86 0.03 0.86 0.00 

Table 4. Pixel based regression of the observed RapidEye scenes against the correspondent 

ESTARFM predicted images for Subset 2, summarized for bush cover classes. See Table 3 

for further information. 

Bush Density Band Date 

  17-07-2011 24-09-2011 17-01-2012 

  R2 Bias R2 Bias R2 Bias 

≤5% 

(375,469) 

Red 0.58 −0.02 0.73 0.06 0.47 −0.10 

NIR 0.68 0.00 0.79 0.02 0.53 0.01 

> 5%, ≤20% 

(903,438) 

Red 0.67 −0.02 0.81 0.05 0.55 −0.10 

NIR 0.75 0.00 0.86 0.01 0.55 0.01 

> 20%, ≤35% 

(884,540) 

Red 0.66 −0.01 0.81 0.04 0.59 −0.10 

NIR 0.74 0.00 0.85 0.01 0.60 0.01 

> 35%, ≤50% 

(725,780) 

Red 0.66 −0.01 0.81 0.04 0.59 −0.11 

NIR 0.73 0.00 0.85 0.01 0.53 0.00 

> 50%, ≤65% 

(838,079) 

Red 0.64 −0.01 0.79 0.03 0.64 −0.12 

NIR 0.73 0.00 0.84 0.01 0.58 0.00 

> 65%, ≤80% 

(963,657) 

Red 0.62 −0.01 0.77 0.03 0.60 −0.13 

NIR 0.71 0.00 0.82 0.00 0.53 0.00 

> 80%−≤ 95% 

(1,098,853) 

Red 0.57 −0.01 0.75 0.02 0.59 −0.14 

NIR 0.67 0.00 0.79 0.00 0.53 0.00 

> 95% 

(453,262) 

Red 0.57 −0.01 0.63 0.02 0.56 −0.19 

NIR 0.63 0.00 0.62 0.01 0.48 −0.04 

 
03-03-2012 09-04-2012 30-06-2012 

R2 Bias R2 Bias R2 Bias 

≤5% 
Red 0.77 −0.14 0.83 −0.09 0.77 0.01 

NIR 0.89 −0.05 0.88 −0.06 0.88 0.04 
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Table 4. Cont. 

Bush Density Band Date 

  17-07-2011 24-09-2011 17-01-2012 

  R2 Bias R2 Bias R2 Bias 

> 5%, ≤20% 
Red 0.73 0.14 0.81 −0.09 0.77 0.01 

NIR 0.86 −0.05 0.87 −0.06 0.87 0.04 

> 20%, ≤35% 
Red 0.75 −0.15 0.80 −0.10 0.79 0.01 

NIR 0.87 −0.06 0.87 −0.07 0.88 0.04 

> 35%, ≤50% Red 0.68 −0.16 0.80 −0.10 0.77 0.01 

 NIR 0.83 −0.06 0.87 −0.07 0.86 0.04 

> 50%, ≤65% 
Red 0.71 −0.16 0.78 −0.10 0.78 0.01 

NIR 0.85 −0.07 0.87 −0.07 0.87 0.04 

> 65%, ≤80% 
Red 0.70 −0.17 0.78 −0.11 0.76 0.02 

NIR 0.85 −0.07 0.87 −0.07 0.85 0.04 

> 80%, ≤95% 
Red 0.71 −0.18 0.76 −0.11 0.74 0.02 

NIR 0.84 −0.08 0.86 −0.07 0.84 0.04 

>95% 
Red 0.71 −0.24 0.74 −0.11 0.72 0.03 

NIR 0.84 −0.09 0.83 −0.08 0.80 0.04 

3.3. Vegetation Index Time Series Analysis 

Since the resulting ESTARFM predicted red and NIR bands were of good quality, the data were used 

to calculate ESTARFM NDVI time series suitable for comparison to NDVI time series derived from 

RapidEye images. No temporal filtering was applied. Figure 6A,B show ESTARFM and RapidEye 

NDVI time series derived from averaging all pixels at RapidEye resolution found within MODIS pixel 

size extents that contain less than 5% bush cover, with the corresponding error bars representing the 

standard deviation. The general behaviour of the vegetation dynamics captured by the time series 

coincides visually well over time for both subsets. NDVI values for grass cover were low (around 0.23) 

during the southern hemisphere winter and spring months (June to November). At this time, green cover 

was little and ground cover comprised considerable amounts of standing dead material of senescent 

grasses, causing decreases in NDVI values [35]. NDVI values increased during the summer months from 

December to February, indicating a growing period induced by increased rainfall and higher 

temperatures, reaching its peak in late summer to early autumn (February-March, with NDVI values 

around 0.36 up to 0.4). This period was followed by a steady decline of NDVI values in autumn (drying 

off period lasting from March to May), eventually reaching values of the preceding year. 

RapidEye time series show a time of maximum NDVI at a later point than that captured by the 

ESTARFM series. The RapidEye time series displaying the vegetation dynamics consist of 15 and 16 

images respectively, captured between June 2011 and July 2012 and thus exhibit a high temporal 

resolution. However, a lengthy gap occurs between February and April 2012 (with the bracketing scenes 

captured on 11 February 2012 and 19/22 April 2012), resulting in a uniform increase of NDVI values 

between the dates. Contrary, the ESTARFM time series suggests a sudden drop followed by vegetation 

regrowth, indicating an unknown process that took place and was not captured by the RapidEye time 

series alone. The original MODIS images were checked, and did not show signs of disturbance, such as 
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fire or dust. The variability in standard deviations of NDVI values is low in both the RapidEye and 

ESTARFM time series during times of low dynamics. Higher standard deviations can be observed during 

increment, peak and decrement of the curve, with ESTARFM showing higher deviations than RapidEye 

during the vegetation growth. Corresponding to Figure 6, Figure 7A,B depict a comparison of NDVI 

time series derived from RapidEye and ESTARFM averaged pixels falling into MODIS pixel sized cells 

classified as >95% of bush cover. 

(A) (B) 

Figure 6. Time series of mean NDVI values calculated for all MODIS pixel size extents 

classified as containing ≤5% bush cover, derived from RapidEye and synthetic ESTARFM 

imagery. The error bars represent the standard deviation. (A) subset 1; (B) subset 2. 

(A) (B) 

Figure 7. Time series of mean NDVI values calculated for all MODIS pixel size extents 

classified as containing >95%. See Figure 6 for detailed description of sub-plots. (A) subset 1; 

(B) subset 2. 

The period of low NDVI values is short, suggesting a dry period that lasts only from September to 

November 2011. With values around 0.26, values are comparably higher than at grass-dominated sites. 

According to Wagenseil and Samimi [32], higher values result from higher amounts of dry matter.  

This is followed by a period of NDVI increase (December to February), with its peak occurring 

simultaneously to grass covered sites. A decrease can be seen as of spring, with differences exhibited by 

the time series. Generally, the decline in green cover at bush-dominated sites occurs slower than at  
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grass-dominated sites. The dip in NDVI values in February 2012 followed by an increase can be 

observed in the ESTARFM time series, but not in the RapidEye one (Figure 7A,B). 

And again, variability in standard deviations is low during times of no growth, but shows a 

discrepancy in phases of vegetation greening. Figure 8A,B shows a comparison of NDVI time series for 

the averages of those pixels falling into MODIS pixels containing mixed vegetation communities, with 

a percentage of area of bush cover between >50% and ≤65%. Despite the heterogeneity, the overall 

compliance of the ESTARFM and RapidEye NDVI time series is good. The curves feature all 

characteristics that are mentioned above, in connection with the NDVI values found in homogeneous 

areas. Standard deviations exhibit similar dimensions during phases of non-dynamics, and diverge 

during times of vegetation growth. 

(A) (B) 

Figure 8. Time series of mean NDVI values calculated for all MODIS pixel size extents classified 

as containing >50% and ≤65% bush cover. See Figure 6 for detailed description of sub-plots.  

(A) subset 1; (B) subset 2. 

4. Discussion 

4.1. Band Differences 

We found strong correlations between the observed and predicted RapidEye reflectance values, for 

both the red and NIR bands (R2 values range from 0.80 to 0.92 for the red band and from 0.83 to 0.93 

for the NIR band). Results suggest that precision is best during phases of low vegetation dynamics, and 

deteriorates during phases of strong vegetation growth (December, January). Notably, predictions 

generally achieved better results for the NIR band than for the red band. This may be because the 

reflected radiation in the NIR is higher for vegetated land surfaces than in the visible wavelength and 

hence proportionally less affected by radiation variations. Roy et al. [36], using a different fusion 

approach with MODIS and Landsat imagery, observed the same behaviour in their study. They attribute 

this to greater influence of atmospheric effects at shorter wavelengths. Rayleigh scattering affects shorter 

wavelength more seriously than longer wavelengths [37], and aerosol scattering is frequently more 

significant at shorter wavelengths [36]. These findings are also confirmed by Hilker et al. [11], who 

found STARFM predictions of shorter wavebands to be less precise than those made for the NIR region 

at a coniferous dominated study site in central British Columbia, Canada. Contrary, Walker et al. [10] 

observed higher R2 values for the red band than for the NIR band, using STARFM to create synthetic 
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imagery for semi-arid dryland forest and grassland in central Arizona, USA. This suggests that further 

testing of the fusion method is needed for a range of sensors/environmental settings to enable the 

application value of this approach. 

Although we carefully masked out cloud pixels in the RapidEye images, remaining deviating pixel 

values might have affected ESTARFM predictions and results of the accuracy assessment, caused by 

variations in aerosol loadings and water vapour variations not taken into account by the atmospheric 

correction procedure. Furthermore, Schmidt et al. [8] found that erroneous MODIS flag files and data 

gaps in the MODIS 8-day image product caused outlying STARFM prediction values. This could be as 

well the case in our study. 

In almost all cases, the relative mean bias was not equal to 0, with sets of both positive and negative 

numbers. We interpret this to be noise likely due to atmospheric and BRDF effects. These results were 

also found in the studies by Gao et al. [9]; Hilker et al. [11] and Singh [38]. 

The bias is a global measurement criterion where the location of the pixel value is not taken into 

account. On the contrary, the per-pixel level of error and coefficient of determination are criteria very 

sensitive to value changes in the pixel location [31]. A low R2, high per-pixel level of error and a bias of 

close to zero would thus mean that pixel values in their location have changed, but the overall distribution 

of values has not. This might have occurred in the predicted image dated 09 January 2012, as the relative 

mean bias is comparatively low (0.02 and −0.01), but the per-pixel level of error is high (0.07 and 0.07) 

and R2 is low (0.84 and 0.83). Visual inspection of the input MODIS image, however, did not reveal any 

deviations. The band by band comparison of observed and predicted images for different bush density 

classes shows strong relationships, suggesting a good performance of ESTARFM at sub-MODIS scale. 

Overall, R2 values are lower than those found in the accuracy assessment conducted for the entire image, 

indicating a decline in quality over vegetated areas. 

4.2. Evaluation of NDVI Time Series 

The comparison of the NDVI time series derived from ESTARFM and RapidEye data shows that the 

ESTARFM-predicted temporal sequence reproduces the characteristic phenological dynamics of 

different vegetation communities well. The good agreement of RapidEye and ESTARFM-derived curves 

for heterogeneous vegetation cover (bush cover between 50% and 65%) indicates good prediction 

behaviour at MODIS sub-pixel scale. This assumption is supported by the good correlations found, 

although it shows a decline in prediction accuracy with increasing bush density. The comparison 

furthermore indicated that the fusion approach provides additional information that would not have been 

captured by either MODIS or RapidEye series alone. This is remarkable, because the time series derived 

from RapidEye data already contains information from 15 (Subset 1) and 16 (Subset 2) images respectively, 

throughout a period of 12 months. However, the ability to predict changes in the fine-resolution images 

depends on the capacity of MODIS to capture these changes. If they are too subtle to be captured, 

particularly when originating from vegetation structure, stand composition or at sub-pixel ranges, no 

algorithm will be able to predict any changes [9,11]. 

Generally, the NDVI is subject to known and well-documented limitations, such as soil coverage and 

soil moisture effects on rangelands and its spatial discontinuity. Additionally, the signal may be hindered 

by noise arising from varying atmospheric conditions (such as clouds, ozone, dust and other aerosols) 
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and sun-sensor-surface viewing geometries. A broad variety of strategies, such as data smoothing 

techniques, exist to reduce the impacts of these issues [39]. 

4.3. BRDF Effects 

The MODIS MOD09GQ product is generated by selecting pixels matching different criteria from a 

number of images collected over a period of 8 days, preferably those taken at a low viewing angle, which 

minimizes angular effects. In some images, the reflectance values for adjacent pixels were collected at 

different illumination intensities and at different viewing angles and so are subject to high differences. 

BRDF effects may also explain the oscillating behaviour of the MODIS time series curve in Figure 5. 

Furthermore, the seasonal devolution of the MODIS offset could be caused by these effects. The time 

series derived from RapidEye data, whose images are also prone to effects caused by different 

illumination and viewing angles (but to a lesser extent due to the swath width of 77 km only), shows less 

amplitude, indicating a good performance of the atmospheric correction algorithm. However, the usage 

of the NDVI should limit the impact of directional effects, as the signatures in the red and NIR are quite 

similar [40]. Walker et al. [10] evaluated the effect of BRDF-adjustment on the accuracy of fused 

MODIS-Landsat imagery using STARFM. They found that for NDVI the 8-day composite results were 

similar to those of the Nadir BRDF-Adjusted Reflectance (NBAR) 16-day composite data, indicating 

that compositing effects only play a minor role for the derivation of indices. The impact of angular effects 

on the results is an important topic for a consequent study and could be addressed via radiative transfer 

modelling or by using a simple model based on BRDF parameters [40]. To enhance usability and 

practical value of medium resolution datasets from MODIS, either BRDF correction should be inherently 

included in these products or operational automated tools for BRDF correction should be developed by 

the image providers. 

4.4. Co-Registration of MODIS and RapidEye Images 

We relied on the georeferences provided with the MODIS and RapidEye data. This might have 

introduced an error of unknown extent in case good sub-pixel alignment was not achieved between the 

datasets. However, the investigation of errors caused by insufficient co-registration was beyond the 

scope of this study, but may offer a foundation for further research. We furthermore assume that 

ESTARFM’s moving window is able to reduce the effect of co-registration error to some extent. 

5. Conclusions and Outlook 

The ESTARFM algorithm could successfully be applied for the generation of a high spatio-temporal 

vegetation time series by fusing RapidEye and MODIS imagery. The ESTARFM prediction accuracy is 

good for the red and NIR bands during phases of little vegetation dynamics, but deteriorates during times 

of quick vegetation growth. The NIR band generally yields better prediction results than the red band. 

ESTARFM algorithm applied to MODIS and RapidEye imagery shows strong prediction performance 

at sub-MODIS scale in heterogeneous vegetated areas, with best results during phases of low vegetation 

dynamics. Strategies to reduce noise of NDVI time series may be helpful in future research to reduce 

errors caused by variations in atmospheric conditions and BRDF effects. 
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The ESTARFM derived NDVI time series reproduces the characteristic phenological development of 

different vegetation types well and inherits more information than either MODIS or RapidEye alone. 

The derivation of a complete series of high resolution satellite imagery from both real and synthetic 

RapidEye scenes allows to capture temporal variation of vegetation characteristics estimates throughout 

the growing season which otherwise cannot be obtained. Due to the combination of large spatial coverage 

of the sensor with short term observation intervals and fine spatial resolution, the response of vegetation 

to environmental factors and to management can be much better observed and interpreted. So, employing 

ESTARFM using the combination RapidEye-MODIS allows for the coverage of spatio-temporal patterns 

of vegetation dynamics at small scale that must remain undetected without this technique. Our results 

and conclusions might apply to semi-arid rangelands only. The transferability to other landscapes and 

vegetation covers can be subject to further studies. An expansion to a longer time series is favourable 

and may give further insight to small scale trends over long time periods. 
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