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Abstract: TRMM Multi-satellite Precipitation Analysis (TMPA) satellite precipitation 

products have been utilized to quantify, forecast, or understand precipitation patterns, climate 

change, hydrologic models, and drought in numerous scientific investigations. The TMPA 

products recently went through a series of algorithm developments to enhance the accuracy 

and reliability of high-quality precipitation measurements, particularly in low rainfall 

environments and complex terrain. In this study, we evaluated four TMPA products (3B42: 

V6, V7temp, V7, RTV7) against 125 rain gauges in Northern Morocco to assess the accuracy 

of TMPA products in various regimes, examine the performance metrics of new algorithm 

developments, and assess the impact of the processing error in 2012. Results show that the 

research products outperform the real-time products in all environments within Morocco, and 

the newest algorithm development (3B42 V7) outperforms the previous version (V6), 

particularly in low rainfall and high-elevation environments. TMPA products continue to 

overestimate precipitation in arid environments and underestimate it in high-elevation areas. 

Lastly, the temporary processing error resulted in little bias except in arid environments. 

These results corroborate findings from previous studies, provide scientific data for the Middle 

East, highlight the difficulty of using TMPA products in varying conditions, and present 

preliminary research for future algorithm development for the GPM mission. 
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1. Introduction 

Precipitation is one of the most important meteorological forcing parameters in hydrological 

investigations and land surface modeling, yet it is largely unknown or misused in water budgets and 

hydrologic models due to the lack of field-based monitoring systems that are required to estimate 

precipitation, runoff, and recharge [1–8]. Fortunately, recent advances in remote sensing have shown promise 

in addressing these inadequacies [9–15]. Satellite remote sensing datasets have been increasingly employed 

as an ancillary source of essential hydrologic measurements used for understanding and modeling 

hydrologic fluxes. The use of satellite precipitation data from various satellite sensors, missions, and 

algorithms (e.g., Tropical Rainfall Measuring Mission (TRMM), Special Sensor Microwave Imager 

(SSM/I), Climate Prediction Center Morphing Algorithm (CMORPH)) in scientific investigations has 

been on the rise due to the general paucity or unavailability of adequate rain gauge data for the majority 

of the Earth’s surface and their higher degree of accuracy due to algorithm development (e.g., TMPA 

V5–V7). As a result, TRMM satellite products are widely being used in many parts of the world and 

particularly in the Middle East and North Africa (MENA) region [11,16–19].  

One of the most widely used satellite-based precipitation products utilized is the TRMM  

Multi-satellite Precipitation Analysis (TMPA) [20]. The TMPA algorithm has evolved over the past few 

years by merging a variety of existing ground- and satellite-based observations to yield high spatial  

(0.25 × 0.25 degree) and temporal resolution (three-hourly instantaneous retrievals) observations with a 

higher degree of accuracy [20]. The two types of TMPA products are post-real-time research products 

(3B42V6 and 3B42V7), which are gauge adjusted and provide coverage from 50°N–50°S, and real-time 

(3B42RT). A brief description of the TMPA product versions and changes through time is presented here; 

refer to [20–25] for additional details.  

The TMPA algorithm merges a number of ground-based observations (in the non-real-time products) 

with two types of satellite-based observations (i.e., microwave [MW] and infrared [IR]). The MW sensors 

include the Advanced Microwave Scanning Radiometer-Earth Observing System (AMSR-E), Advanced 

Microwave Sounding Unit-B (AMSU-B), TRMM Microwave Imager (TMI), and the Spectral Sensor 

Microwave Imager/Sounder (SSMI/S, in 3B42V7 only), which combine to make the 3B40RT product. 

The IR observations combine the geostationary satellites (Geostationary Operational Environmental 

Satellite [GOES], METEOSAT, and GMS/MT-SAT). The MW and IR observations constitute the TMPA 

3B40RT and 3B41RT products, respectively. Together these products are used to generate the 3B42RT 

product, which when combined with the Global Precipitation Climatology Center (GPCC), TMI, TRMM 

Precipitation Radar, and the Climate Assessment and Monitoring System (CAMS, only in the V6 

algorithm) produce the post-real-time 3B42V6 and 3B42V7 products [24].  

Over the past decade, the TMPA algorithm produced at NASA has undergone three major improvements 

as a result of algorithm upgrades and the addition of new satellite sensors. The TMPA V5 product (not 

analyzed in this study) introduced the Advanced Microwave Scanning Radiometer (AMSR-E) and three 

Advanced Microwave Sounding Unit-B (AMSU-B) sensors into the algorithm in 2005 [24]. The V6 
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algorithm was released in 2009 and utilized the climatological calibration algorithm (CCA) to reduce 

systematic bias. The most recent upgrade in June 2012 (V7 release) made more substantial changes 

including: (1) inclusion of SSMI/S; (2) the latest release of GPCC; (3) data from the early part of the 

Microwave Humidity Sounder (MHS); (4) new IR brightness temperature data from the National Climatic 

Data Center (NCDC) GridSat-B1 from 1998 to 2000; and (5) the use of TRMM Precipitation Radar (PR) 

products (only in the TRMM combined product as a calibrator). More details on the most recent changes 

from V6 to V7 are discussed in Huffman et al. [26]. 

It is known that the precision of satellite products is dependent on a number of factors such as the terrain, 

precipitation type, and climate [15,27,28]. A number of studies have investigated the uncertainties of 

satellite precipitation over varying climatic, geographic, and topographic regimes, where it is known to 

both under- or overestimate actual precipitation [29–36]. Recent investigations have attempted to 

determine the optimal satellite rainfall product (e.g., [19,24,30]) and break down the errors [37–39], yet 

limited research has been done in arid environments and specifically the MENA region, due to the paucity 

of monitoring stations needed for statistical comparison.  

Unfortunately, the number of research studies integrating TMPA data into various scientific 

applications (e.g., water resources, rainfall analysis, climate change, hydrologic modeling, etc.)  

([19,40–59]; among others) has far outweighed those studying the accuracy, uncertainty, and validation of 

TMPA data ([13,18,24,45,60,61]; among others). Even less research has been conducted on the viability 

of TMPA rainfall products as an adequate substitute for field gauges in data sparse and arid to semi-arid 

environments [11,18]; arguably the area most critically in need of satellite rainfall.  

In addition, the transition from the 3B42V6 product to the 3B42V7 occurred in June 2012; however, 

due to the accidental omission of the AMSU calibration data in the V7 product an error was produced 

from June 2012 to November 2012, which resulted in the creation of a reprocessed product in December 

2012 (3B42V7a) to account for the minor correction [24,62]. The algorithm developers quickly reprocessed 

the data and provided the correct version in late January 2013. More details about this update can be 

found in Huffman and Bolvin [63]. A few months later this product reverted back to the original naming 

convention (3B42V7). For this paper, the original V7 data released from June 2012 to January 2013 is 

referred to as V7temp while the corrected version (V7a) will be referred to as V7 to match the current 

naming convention. A few studies utilized the original V7temp data [22], as well as investigated the 

follow-up version V7a without specifying the V7a by name [21]; however, to our knowledge there are 

no studies that quantify these errors or evaluate their impacts on the published scientific literature.  

This manuscript compares in situ rain gauge stations in Northern Morocco, a diverse topographical 

and climatic region, against multiple TRMM satellite precipitation products (TMPA 3B42 V6, 3B42 

V7temp, 3B42 V7, and 3B42 RT-V7) to address the aforementioned shortcomings by: (1) assessing the 

accuracy of the TMPA products to test whether they are reliable for hydrologic investigations and 

whether the TMPA algorithm enhancements have significantly improved the performance metrics in the 

MENA region; (2) evaluating the TMPA products in critical areas (diverse climate, complex terrain); 

(3) providing data and an assessment of the TMPA products in arid and data-sparse regions (e.g., Middle 

East & North Africa); and (4) examining and quantifying the bias during the processing errors from V6 

to V7 that resulted in the temporary product designation of V7a. 

The comparison involved a three-fold approach: (1) average annual precipitation values from  

125 widespread field gauges in Morocco were compared to the TMPA datasets; (2) gauges were grouped 
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into three elevation classes (Low: 0–500 m; Medium: 500–1000 m; and High: >1000 m) and 

precipitation/climate classes (Arid: 100–300 mm/year; Semi-Arid: 300–500 mm/year; and Humid:  

>500 mm/year) to evaluate the impact of rainfall magnitudes and elevation on satellite-based rainfall 

products; and (3) statistical analyses (e.g., RMSE, Percent Bias, Nash-Sutcliffe Efficiency, and Pearson 

Correlation Coefficient) were conducted for each TMPA product in each environment. 

This research addresses one of the major difficulties facing hydrologists and demonstrates the 

opportunities and challenges of using TMPA precipitation in these critical areas and for supplying 

rainfall data in the data sparse regions of the World. It also quantifies the errors associated with the 

various TMPA products and releases and provides a platform for enhanced algorithm development in 

the new Global Precipitation Measurement (GPM) era. 

2. Site Description 

The study area is characterized by a climate that represents a transition between the temperate climate 

in Europe and the very dry climate of the Saharan desert. The Moroccan climate varies from sub-humid 

at the Mediterranean coastal zones, to semi-arid in the center, and to arid and hyper-arid in the south. 

Generally, the precipitation decreases from north to south and from west to east [64]. The spatial and 

temporal precipitation distributions are affected by the Atlantic Ocean, the Mediterranean Sea, and the 

Sahara and Atlas Mountains [65]. Several studies demonstrated strong correlations between inter-annual 

precipitation variability and the North Atlantic Oscillation (NAO), the Atlantic Multi-Decadal 

Oscillation (AMO), and the El Niño-Southern Oscillation (ENSO) indices [65–68]. Therefore, both local 

and large-scale factors impact the precipitation that is characterized by a strong irregularity in time and 

space. This variability is reflected particularly in the amounts of water availability/capita/area; the basins 

in the NW parts of the country provide 2000 m3/capita/year, whereas those in the SE yield less than  

150 m3/capita/year. The general lack of information on the Middle East and North Africa region coupled 

with the variable climate and complex terrain of Northern Morocco, make it a suitable location for 

evaluating the performance of the TMPA products.  

In this study, we used precipitation data from 125 stations located in the Moulouya basin, Sebou 

basin, Oum Er Rbia basin, and the Rif watersheds (Figure 1). The Oum Er Rbia basin area is 37,881 km2 

and encompasses the longest river of Morocco (i.e., the Oum Er Rbia River) [69]. The Oum Er Rbia 

annual precipitation is around 340 mm and elevations in the catchment range from 3986 m in the High 

Atlas to 0 m in the coastal Meseta plain.  

The Melouya basin extends over 55,910 km2 with an average annual precipitation of 240 mm. The 

Moulouya River originates from the High Atlas in the south, the high plateau in the east, the Middle  

Atlas in the west, and the eastern Rif in the northwest, to reach the eastern Mediterranean coast of 

Morocco [70]. Elevations in the basin reach a maximum elevation of 3727 m. 

The Sebou basin is characterized by a strong rainfall gradient with a mean annual rainfall of 560 mm. 

The Sebou basin extends over an area of 38,835 km2, with elevations ranging from 0 m to 3047 m. The 

basin is one of the most populated regions of Morocco and represents the country’s most important 

agricultural region with more than 19,200 km2 of irrigated land [70]. 

The Rif Mountains are characterized by steep slopes and demonstrate complex structural and 

topographic features creating numerous small-sized catchments. Sixty-six watersheds originate in the 
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Rif Mountains and drain toward the Mediterranean Sea or the Atlantic Ocean, ranging in size between 

20 and 3730 km2. The western Rif catchments receive very high precipitation, exceeding on average  

750 mm/year, while the eastern catchments receive an average of 350 mm/ year. 

 

Figure 1. Northern Morocco with locations of ~125 rain gauges (black stars) covering the 

period 1930–2012, provided by the Loukous, Oum Er Rbia, Sebou, and Melouya Hydraulic 

Basin Agencies. 

3. Methodology 

A three-fold approach was conducted to: (1) determine if TRMM satellite precipitation data is  

capable of accurately characterizing the spatial and temporal variability of rainfall in Northern Morocco; 

(2) investigate whether the recent TMPA algorithm developments had a positive impact on the statistical 

correlation with field gauges in Morocco; (3) statistically evaluate the TMPA products in varying rainfall 

and elevation environments; and (4) quantify the bias in the temporary V7 product (V7temp). More 

specifically, (1) average annual precipitation values from 125 wide-spread field gauges in Morocco were 

utilized and compared against the merged TMPA daily-derived products (3B42-V6, 3B42-V7temp, 

3B42-V7, and 3B42-RT); (2) gauges were grouped into three elevation classes (Low: 0–500 m (64 gauges); 

Medium: 500–1000 m (32 gauges); High: >1000 m (24 gauges)) and precipitation/climate classes (Arid: 

100–300 mm/year (29 gauges); Semi-Arid: 300–500 mm/year (49 gauges); Humid: >500 mm/year  

(52 gauges)) to evaluate the impact of rainfall magnitudes and elevation on satellite-based rainfall products 

(Figure 2); and (3) statistical correlations (e.g., RMSE, Percent Bias, Nash-Sutcliffe efficiency coefficient, 

and Pearson Correlation Coefficient) were determined for each TMPA product in each environment. 
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Figure 2. (a) Elevation classes of Northern Morocco; (b) Average annual precipitation 

(climate) classes in Northern Morocco. 

Data Acquisition and Processing 

Rain Gauge and Satellite Data 

Data from 179 rain gauges over the Oum Er Rbia, Moulouya, Rif, and Sebou Watersheds located in 

Northern Morocco was acquired from local water agencies (e.g., Oum Er Rbia Hydraulic Basin Agency, 

Moulouya Hydraulic Basin Agency, Loukkos Hydraulic Basin Agency, and Sebou Hydraulic Basin 

Agency). The precipitation data collection, storage, analyses, and correction were completed according 

to the World Meteorological Organization standard code WMO-N 168 [71]. The rain gauge data (179 in 

total) ranges from 1978 to 2012, though the analysis was restricted to the 125 stations that had temporal 

coverage that overlaps the existence of TRMM (1998–Present) (Figure 1). Annual precipitation totals 

were then computed and checked for accuracy from the 125 stations. The gauge data were divided into 

three climatic classes (Arid: 100–300 mm/year; Semi-Arid: 300–500 mm/year; Humid: >500 mm/year). 

The classification scheme is based on total annual rainfall [72] and was adapted to Morocco by 

considering the UNEP’s distribution of arid zones [73,74]. The annual precipitation amounts were 

computed using the rain gauges and grouped into the classification zones using ArcGIS. Similarly, the gauge 

data was divided into three elevation classes (Low: 0–500 m; Medium: 500–1000 m; High: >1000 m), 

using a quantile classification for the study area. 

Four different TMPA precipitation product versions (3B42V6, 3B42V7temp, 3B42V7, and 3B42RT) 

were acquired from NASA Mirador for the period 1998–2012, with the exception of 3B42V6, which 

was replaced on 30 June 2011, and the 3B42RT, which was evaluated starting in 2001 after its first full 

year. All files were processed and daily, monthly, and annual values were computed by simple 

summation of the individual files using ENVI and ArcGIS. The 3B42RT is the TMPA near-real-time 

product that is not gauge corrected and thus should show the most variation in correlation.  
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Analysis and Comparison of Rainfall Products 

The comparison of ground-based observations (e.g., rain gauges) to satellite products is difficult given 

the different spatial and temporal uncertainties. The intent of this research was to demonstrate the lower 

threshold of accuracy and therefore gauges (point measurements) were compared directly to gridded 

satellite products (0.25 × 0.25 degree cells) regardless of position within the grid point. A comprehensive 

set of statistical measures (Pearson Correlation Coefficient (PCC), Nash-Sutcliffe Efficiency Coefficient 

(NSE), Root Mean Square Error (RMSE), and Percent Bias (PBIAS)) were performed on an annual time 

scale to evaluate the performance of the different TMPA products. 

The Nash-Sutcliffe efficiency (NSE) compares the relative magnitude of residual difference to the 

measured data difference [75]. The NSE value is based on the dispersion of variants around the line of 

equal values and indicates how well the plot of observed versus estimated data fits the 1:1 line. NSE 

values can range from 	∞ (poor fit) to 1.0 (perfect fit). A more detailed performance rating breakdown 

for the NSE values can be found elsewhere [76]. The expression for NSE is shown in Equation (1): 

	1
∑

∑
 (1) 

where  is the gauge-based precipitation measurement, the  is the satellite-based precipitation 

measurement, and  is the mean of the gauge-based precipitation measures. 

The Pearson Correlation Coefficient (PCC) is the average product of the deviation of two variables 

from their respective means divided by the product of the standard deviations of those variables. The 

equation for the correlation coefficient is: 

	
∑

∑ ∑

 
(2) 

where  is the gauge-based precipitation measurement, the  is the satellite-based precipitation 

measurement,  is the mean of the gauge-based precipitation measurements, and  is the mean of 

the satellite-based measurements. 

The root-mean-square error (RMSE) is a measure of the differences between predicted and observed 

values. The RMSE serves to combine the magnitudes of the errors in predictions for various times into 

a single measure of predictive power. The RMSE is calculated with Equation (3): 

∑
 (3) 

where  is the gauge-based precipitation measurement, the  is the satellite-based precipitation 

measurement, and n is the total number of pair (gauge, satellite) measurements. 

We normalized the RMSE to conduct an objective comparison between the various classes. The 

normalized root-mean-square error (NRMSE) is calculated with Equation (4): 

 (4) 

where Ymax and Ymin are the maximum and minimum precipitation amounts respectively, over the 

evaluated class. 
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Percent bias (PBIAS) measures the average tendency of the simulated data to be overestimated or 

underestimated versus observed data measurements [76,77]. PBIAS is calculated with Equation (5): 

	
∑ 100

∑
 (5) 

where  is the gauge-based precipitation measurement and  is the satellite-based precipitation 

measurement. 

Accurate comparisons are indicated by low-magnitude PBIAS values (0.0). Underestimation and 

overestimation biases are indicated by negative and positive PBIAS values, respectfully.  

4. Results and Discussion 

Using the aforementioned statistical tests we examined the correlation, bias, spatial, and temporal 

variations of the four products (V6, V7temp, V7, RT) overall and in the previously specified pre-defined 

classes (rainfall, elevation). These results are shown in the following sections. 

4.1. TMPA Statistical Correlations 

4.1.1. Unclassified (Entire) Data 

Findings indicate the best overall correlation between gauge-based and satellite-based rainfall 

measurements is the TMPA V7 (PCC: 0.875; NSE: 0.729; NRMSE: 0.072) product, followed by TMPA 

V7temp (PCC: 0.840; NSE: 0.706; NRMSE: 0.072), then TMPA V6 (PCC: 0.805; NSE: 0.566; NRMSE: 

0.088), and finally TRMM RT (PCC: 0.715; NSE: 0.462; NRMSE: 0.104) (Table 1). Only 8 out of  

112 statistical evaluations, regardless of the classification scheme, deviated from this order (V7 or  

V7temp > V6 > RT) (Table 1: highlighted in yellow). This trend is also seen in the scatter plots of the three 

different products, where the values better fit the trend line (Figure 3). 

TMPA tends to either over- or under-estimate precipitation depending on the various product version, 

climate, and elevation as seen in the percent bias calculations (PBIAS) (Table 1). These results show an 

overall underestimation in nearly all of the TMPA products (V6: −17%; V7temp: 0.4%; V7: −3.8%; and 

RT: −13%) (Table 1: “Unclassified”). Again, the TMPA V7 product exhibits a limited bias in  

Northern Morocco. 

4.1.2. Elevation-Based Classification 

The elevation-based classification results showed a decrease in correlation with an increase in elevation 

(Table 1; Figure 4). The average PCC for the low, mid, and high elevations is 0.84, 0.80, and 0.45, 

respectively. The average NSE and NRMSE results echoed the PCC results where the best correlations 

were in the low elevation areas (Low—NSE: 0.66, NRMSE: 0.08; Mid—NSE: 0.51, NRMSE: 0.10; and  

High—NSE: 0.37, NRMSE: 0.14). These results suggest that TRMM sensors can accurately estimate 

precipitation events in elevations less than 1000 m but struggle with higher elevations, as was the case 

in similar high-altitude studies [21,24]. Areas with high snow content are problematic due to the 

sensitivity to the surface emissivity in passive microwave sensors (e.g., TMI, SSM/I, SSMIS, AMSU, 

AMRS-E), which produces signals similar to those of precipitation [21,78,79]. 
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Figure 3. Scatter plots of the various TMPA products (RT: purple crosses, V6: red triangles, 

V7temp: blue squares; V7; green squares) versus gauge precipitation (mm) data for the entire 

unclassified network. 
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Figure 4. Scatter plots of the various TMPA products (RT: purple crosses, V6: red triangles, 

V7; green squares) versus gauge precipitation (mm) data for the elevation-based classification. 

In addition, both a climate and elevation bias exists. The elevation-based classification showed there 

is no consistent positive or negative precipitation bias for the four products; however, the general trend 

is an underestimation of precipitation in the varying elevation classes. The largest average bias (−18%) 

is found in the mid-elevations (e.g., 500–1000 m), as compared to the low (−9%) and high (−12%) 

elevation classes. In particular, the TMPA RT product showed an overestimation of precipitation that was 

not seen in any other product. The lowest variance in bias was seen in the low elevation classes, supporting 

the literature documenting the difficulty of TRMM in complex topography [21,24]. 
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Table 1. Statistical summary of the TMPA products analyzed in this study. 

 TMPA Product/Classification NSE PCC NRMSE  PBIAS 

C
li

m
at

e-
B

as
ed

 C
la

ss
if

ic
at

io
n

 

TMPA 6: Arid −0.3107 * 0.5460 0.1561 14.8306 * 

TMPA 7temp: Arid −1.4170 0.6810 0.1826 46.9815 

TMPA 7: Arid −0.5129 0.6970 0.1494 28.4758 

TMPA RT: Arid −1.6529 0.5620 * 0.2066 38.6636 

TMPA 6: Semi_Arid −0.0829 0.4940 0.1448 * −12.1629 

TMPA 7temp: Semi_Arid 0.0052 0.5490 0.1486 10.5142 

TMPA 7: Semi_Arid −0.0248 0.5480 0.1512 5.9406 

TMPA RT: Semi_Arid −0.4581 0.3050 0.1806 4.6038 * 

TMPA 6: Sub_Humid 0.2747 0.7550 0.1171 −23.4304 

TMPA 7temp: Sub_Humid 0.5764 0.7900 0.0921 −8.4049 

TMPA 7: Sub_Humid 0.6006 0.8160 0.0902 −10.4856 

TMPA RT: Sub_Humid 0.1829 0.7280 0.1331 −24.9839 

E
le

va
ti

on
−

B
as

ed
 C

la
ss

if
ic

at
io

n 

TMPA 6: Low_Elev 0.6092 0.8180 0.0910 −14.0130 

TMPA 7temp: Low_Elev 0.7385 0.8620 0.0734 3.4305 

TMPA 7: Low_Elev 0.7677 0.8790 0.0710 −0.3870 

TMPA RT: Low_Elev 0.5292 0.8020 0.1032 −17.7135 

TMPA 6: Mid_Elev 0.4465 0.8100 0.0994 −27.0902 

TMPA 7temp: Mid_Elev 0.5874 0.8220 0.0863 −10.0360 

TMPA 7: Mid_Elev 0.5968 0.8430 0.0909 −16.5857 

TMPA RT: Mid_Elev 0.4095 0.7180 0.1127 −17.7744 * 

TMPA 6: High_Elev −0.0434 0.4420 0.1459 −22.8784 

TMPA 7temp: High_Elev 0.3306 0.5850 0.1175 −1.9493 

TMPA 7: High_Elev 0.3229 0.5980 0.1251 −7.0437 

TMPA RT: High_Elev −0.7576 0.2250 0.1742 14.2622 * 

U
n

cl
as

si
fi

ed
 

TMPA 6: All 0.5664 0.8050 0.0878 −17.5836 

TMPA 7temp: All 0.7057 0.8400 0.0720 0.4033 

TMPA 7: All 0.7295 0.8570 0.0720 −3.7902 

TMPA RT: All 0.4624 0.7150 0.1038 −13.2630 * 

* Data that do not follow the expected trend (i.e., V7 (or V7temp) are better than V6, and V6 is better than RT). 

4.1.3. Climate-Based Classification 

The climate-based classification confirms the deficiencies in estimating low precipitation events  

often found in arid (Average PCC: 0.62) and semi-arid (Average PCC: 0.47) areas, with the TMPA V7 

data outperforming the other datasets (Figure 5). The sub-humid areas had the highest correlation 

(Average PCC: 0.77). The results of the average NSE and NRMSE for the arid (NSE: −0.96; NRMSE: 

0.17), semi-arid (NSE: −0.14; NRMSE: 0.16), and sub-humid (NSE: 0.41; NRMSE: 0.11) were generally 

consistent with the PCC results, as also seen in the elevation-based classification. The sub-humid 

classification resulted in the only positive NSE correlation as well as the highest PCC and smallest 

NRMSE. This is attributed to the fact that TRMM was designed to estimate precipitation in wet and 

humid tropical areas. 

TMPA overestimates precipitation in arid environments (average PBIAS: 30%) and underestimates 

it in sub-humid climates (average PBIAS: −16%), whereas the semi-arid climates exhibited little bias 

(average PBIAS: −3%). This is consistent with other findings in these environments [21,24]. 
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Figure 5. Scatter plots of the various TMPA products (RT: purple crosses, V6: red triangles, 

V7; green squares) versus gauge precipitation (mm) data for the climate-based classification. 

4.2. Temporal Variations of TMPA 

Inspection of Figure 6 shows temporal variations in precipitation between the gauge data and the 

various TMPA products, and validates the superiority of the TMPA V7 (green line) product as compared 

to the other products (V6 and RT). Overall, the best performing TMPA product order is the V7 (green 

line), V6 (Red line), then RT (purple line) (Figure 6). The highest correlation coefficients overall are 

seen in “wet” years (2003, 2008–2010); while the lowest correlations are seen in “dry” years (e.g., 2001, 

2005, 2011). 
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Figure 6. Time series of the overall Pearson Correlation Coefficients for the TMPA products 

(Primary Axis—RT: purple line; V6: blue line; V7: green line) and rainfall data (Secondary 

Axis—dashed line). 

4.3. Spatial Variations of TMPA 

An evaluation of the correlation coefficient spatially throughout the study area confirms the previous 

findings in Section 4.2 (Figure 7). The RT product performs the worst (Figure 7a: blue areas) while the 

TMPA V7 has the best correlation with rain gauges (Figure 7d: red areas). Figure 7 also validates the 

TMPA algorithm development as the amount of least correlated areas (blue areas) decreases from V6 

through the most recent product, TMPA 7. The spatial map of correlation coefficients also highlights the 

successful (i.e., sub-humid) and problematic areas (i.e., mountains).  

Zone 1 is characterized by a high correlation for each version including TMPA RT, which performs 

the worst (Figure 7). This zone is characterized by high rainfall (Figure 2b), due to a combined influence 

of the Atlantic Ocean and the Mediterranean Sea, leading to a sub-humid climate in this zone. Zone 1 is 

also characterized by various elevation ranges (Figure 2), which suggests that rainfall is the biggest 

contributing factor to the performance of the satellite products. Zone 2 is characterized by low correlation 

in all versions including TMPA V7, which outperformed the other product versions (Figure 7). This is 

possibly due to the limited number of gauges in Zone 2 (7 gauges) as compared to Zone 1 (35 gauges). 

This area is characterized by high elevations (i.e., the Atlas Mountains) with high snow content and low 

rainfall (Figure 2). All of these are known problematic environments for TMPA products and thus not 

surprisingly this area was a low correlation zone for all of the products studied in this manuscript. The 

rest of the study area picture elements are characterized by various combinations of topographical and 

climatic conditions between these two end members (i.e., Zone 1 and Zone 2), thus leading to 

correlations ranging between the two extremes in all TMPA versions. 
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Figure 7. Interpolated Pearson Correlation Coefficients of the TMPA products in the study 

area. Interpolations were restricted to 50 km from a gauge location. (a) RT; (b) V6; (c) V7temp; 

(d) V7. Areas in red represent high correlation, and blue areas represent low correlation. Zone 1 

corresponds to high correlation areas for all four products while Zone 2 represents an area 

of all low correlations. 

5. Conclusions and Summary 

We evaluated the performance of various rainfall satellite products (TMPA 3B42 V6, 3B42 V7temp, 

3B42 V7, and 3B42 RT) using 125 rain gauges in Morocco. This study supports the conclusion that the 

bias in the TMPA precipitation products depends on the rainfall pattern and elevation [21,24,80]. Overall, 

of the TMPA products studied here, the findings of the statistical analysis of the various regions can be 

interpreted as follows:  

(1) Generally, the newer and refined satellite products have achieved their intended purpose and 

outperform previous versions. The TMPA research products (3B42 V6 and V7) performed better 

than the real-time product (3B42 RT). The PCC (V6: 0.81; V7: 0.86), NSE (V6: 0.57; V7: 0.73), 

NRMSE (V6: 0.08; V7: 0.07), and PBIAS (V6: −17%; V7: −4%) statistics of the research 

products outperformed the real-time product (RT—PCC: 0.72; NSE: 0.46; NRMSE: 0.10; 
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PBIAS: −13%). This was also true regardless of the classification scheme as 104 out of 112 

statistical analyses demonstrated the V7 products performed better than V6, and V6 outperformed 

the RT product. It should be noted that the RT version offers near-real-time products, which is an 

advantage compared to the research products. This validates the efforts and purpose of the recent 

algorithm developments and is consistent with similar findings [21,24]. 

(2) A relatively low correlation was found between satellite observations and gauge data in areas 

receiving less than 500 mm/yr, consistent with recent investigations in other locations [21]. The 

analyses demonstrate that V7 still has an overestimation bias in arid environments (trend line 

slope: 1.13), and an underestimation bias in both semi-arid environments (trend line slope: 0.60) 

and sub-humid environments (trend line slope: 0.68). Results suggest that all versions are 

consistently better correlated with field gauges in sub-humid environments (PCCs—V6: 0.755; 

V7temp: 0.790; V7: 0.816; and RT: 0.728) than in semi-arid environments (PCCs—V6: 0.494; 

V7temp: 0.549, V7: 0.548; and RT: 0.305) or arid environments (PCCs—V6: 0.546; V7temp: 0.681; 

V7: 0.697; and RT: 0.562). Moreover, the arid environments had negative NS values for every 

product, suggesting that the mean observed value is a better predictor of observed rainfall than 

TMPA. Though this is the first TMPA comparison study in North Africa, the difficulty in 

estimating precipitation in arid environments was still apparent and is attributed to the land 

surface properties of the desert, which impact the upwelling microwave radiation [81]. These 

issues should be reduced in the GPM era because of the higher frequency channels on the GPM 

Microwave Imager (GMI) and Dual-Frequency Precipitation (DPR) sensors. 

(3) The elevation of the area contributes to the accuracy and reliability of the satellite observations. 

The lowest elevation resulted in the highest degree of correlation between all of the products with 

an average PCC of 0.84 as compared to the mid-elevation (PCC: 0.80) and high-elevation (PCC: 

0.45). This study showed a potential altitude threshold exists as the correlation is drastically reduced 

in the highest elevations (>1000 m), though these were also the low rainfall or snow accumulation 

areas. In general, TMPA products underestimated the precipitation throughout the different 

elevation regimes with the mid-elevations showing the worst bias (PBIAS—Low: −9%; Mid: 

−20%; and High: −12%), though the RT product exhibited an overestimation bias in the  

high-elevation classification. Similar studies have outlined the low performance of TMPA 

products in high-altitude environments and identified the possible cause to be the bright band, 

ground clutter, or the attenuation of the PR reflectivity [21,78,79]. 

(4)  The temporary processing error (V7temp) from June 2012 to January 2013 resulted in a percent 

bias of ~4% overall between the V7 and V7temp data, though a much larger error (PBIAS: 18%) 

was seen in arid environments. This is consistent with NASA’s claim of a 5%–8% error, though 

it underscores the importance of researchers publishing during that time being cautious about the 

results they found if they were for low-rainfall environments.  

This study demonstrates the accuracy of TMPA precipitation products and highlights the opportunities 

and challenges of their use in data-scarce regions of the world. The results show the potential for using 

publicly available remote sensing datasets in lieu of field gauges for data-sparse and inaccessible regions. 

This study also highlights and could potentially guide the algorithm development of the Global 

Precipitation Mission (GPM) satellite launched in 2014. Moreover, training satellite-retrieved precipitation 
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algorithms on data from Morocco or other similar data scarce regions will lead to more accurate 

estimations across the MENA region. 
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