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Abstract: This study develops a modelling framework for utilizing very high-resolution 

(VHR) aerial imagery for monitoring stocks of above-ground biomass (AGB) in a tropical 

forest in Southeast Asia. Three different texture-based methods (grey level co-occurrence 

metric (GLCM), Gabor wavelets and Fourier-based textural ordination (FOTO)) were used 

in conjunction with two different machine learning (ML)-based regression techniques 

(support vector regression (SVR) and random forest (RF) regression). These methods were 

implemented on both 50-cm resolution Digital Globe data extracted from Google Earth™ 

(GE) and 8-cm commercially obtained VHR imagery. This study further examines the role 

of forest biophysical parameters, such as ground-measured canopy cover and vertical 

canopy height, in explaining AGB distribution. Three models were developed using: (i) 

horizontal canopy variables (i.e., canopy cover and texture variables) plus vertical canopy 

height; (ii) horizontal variables only; and (iii) texture variables only. AGB was variable 

across the site, ranging from 51.02 Mg/ha to 356.34 Mg/ha. GE-based AGB estimates were 
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comparable to those derived from commercial aerial imagery. The findings demonstrate 

that novel use of this array of texture-based techniques with GE imagery can help promote 

the wider use of freely available imagery for low-cost, fine-resolution monitoring of forests 

parameters at the landscape scale. 

Keywords: above-ground biomass; Angkor Thom; Google Earth; Fourier-based textural 

ordination; machine learning; support vector regression; LiDAR 

 

1. Introduction 

Although tropical forests cover only 6% of the Earth’s surface, they are a crucial reservoir of 

biodiversity, providing a multitude of ecosystem services from the local to the global scale, such as 

carbon storage and the provision of timber and non-timber forest products to local communities. Forest 

loss and associated anthropogenic disturbance contribute approximately 6% to 17% of global carbon 

emissions [1], with a significant proportion of global deforestation concentrated within the tropics. 

Tropical forest loss has been especially severe in Southeast Asia [2], especially in countries with 

turbulent political histories that experienced several decades of war (e.g., Cambodia, Laos and Vietnam). 

Post-war periods in these countries have seen a sharp rise in forest loss and illegal logging. Cambodia, in 

particular, has experienced some of the highest percentage rates of deforestation globally [3], with rates 

increasing through time [4], resulting in a loss of 12,600 km2 of forest between 2000 and 2012 [5]. 

Payments for ecosystem service (PES) instruments, such as Reduced Emissions from Degradation and 

Deforestation (REDD+), provide mechanisms to incentivise tropical forest conservation and avoid 

deforestation through payments that protect forest carbon stocks. The implementation of REDD+ 

strategies requires quantification of the above-ground biomass (AGB) stored in the forests, from which 

the carbon storage of a given ecosystem can be estimated. Remote sensing data play an important role in 

landscape-scale AGB estimation and the subsequent evaluation of land use change impacts on AGB 

stocks [6]. While remotely-sensed imagery allows us to obtain very high-resolution (VHR) data (pixel 

size <1 m) over inaccessible forest terrain, such as that found in Cambodia, it is usually expensive to 

procure, both as a vendor and a customer [7]. Recently, Google Earth™ (GE) has offered free public 

access to VHR Digital Globe imagery. Although GE has a huge repository of high-resolution imagery 

(including VHR over tropical forests), this has been underutilized in quantitative environmental research 

until recently [8]. 

Aerial imagery is a valuable tool for forest monitoring in tropical countries, offering the potential to 

characterize forest canopy cover, crown size distributions, AGB and other forest structure parameters. 

Forest loss and tree removal may influence the canopy structure, which, in turn, has a cascading impact 

on forest structure and AGB [9]. Furthermore, canopy structure and crown size distribution are 

intimately linked with forest succession and regeneration. Using aerial imagery, these variables can be 

characterized at the landscape scale [10]. Additionally, horizontal canopy structure, which is known to 

influence AGB stocks of open-canopied forest systems [11], can also be characterized via these data. 

Indeed, a criticism of remote sensing for monitoring tropical forest AGB is that variables related to 

horizontal canopy structure have not been adequately incorporated or accounted for [10]. 
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Horizontal forest structure and AGB can be determined by texture analysis of high-resolution 

remote sensing data [10,11]. Texture is a qualitative characterization of a given object in terms of its 

spatial and structural attributes. Statistical texture measures, notably grey level co-occurrence metrics 

(GLCMs), are widely used in remote sensing studies of tropical forest AGB and structure [11] and 

have been applied to moderate-resolution remote sensing data to derive landscape-scale AGB models 

in Indonesia [12] and the Brazilian Amazon [13]. However, Singh et al. [9] indicate that while GLCM 

textures are strong predictors for AGB values of forests that have undergone varying rounds of 

logging, they tend to underestimate field-measured AGB values due to data saturation at higher AGB 

values. A less common canopy texture technique is Fourier-based textural ordination (FOTO). This 

method uses a combination of Fourier transforms and ordination approaches (such as principal 

component analysis (PCA)) to quantify canopy structure and AGB heterogeneity and how this 

influences AGB variations [10]. This method has been used for quantifying AGB stock variability in 

varied tropical forested ecosystems, such as coastal mangrove forests [14] and natural and plantation 

forests [10,15]. Wavelet-derived texture methods are also increasingly used to characterize different 

forest types, particularly their areal delineation. For example, discrete wavelet transforms (DWT) were 

used to differentiate five tropical forests with similar canopy heights [16]. Gabor wavelets have been 

used to delineate different temperate forest types in the Swiss Alps [17]. However, wavelet-based 

texture analysis holds great promise for the quantification of AGB stocks and forest structure 

variations. In addition to texture-based methods, machine learning-based modelling techniques are 

increasingly utilized in AGB modelling. ML is a data-centric analysis technique that provides a robust 

means of modelling forestry data for both classification and predictive analysis-related tasks, such as 

estimation of AGB values [18,19]. 

2. Goal and Objectives 

This study examined the utility of three-band remote sensing imagery obtained from two different 

sources—50-cm resolution Digital Globe imagery (extracted from Google Earth™) and 8-cm VHR 

aerial imagery—in examining variation in AGB stocks. Different texture-based and machine learning 

(ML) techniques were used to: (i) compare the utility of GLCMs, Fourier and Gabor wavelet-based 

texture measures for predicting AGB from both 50-cm and 8-cm aerial data; (ii) identify which of the 

two ML algorithms, random forest (RF) or support vector regression (SVR), produces better AGB 

estimation models; and (iii) examine whether the inclusion of height-related variables and canopy 

cover data improves AGB estimates. These results can facilitate the development of a remote sensing-

based AGB monitoring framework that utilises a combination of low-cost/free high-resolution aerial 

imagery, field data and novel modelling techniques. 

3. Materials and Methods 

3.1. Study Area 

Angkor Thom in northwest Cambodia is a 3 km × 3 km walled city (originally built in the 12th to 

13th century AD) located within the Angkor Archaeological Park, much of which is forested (Figure 1). 
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Figure 1. (A) Regional setting; and (B) Angkor Thom and the location of the 25, 1-ha  

above-ground biomass (AGB) field plots. 

The surrounding forests are semi-evergreen forests dominated by dipterocarp tree species, ranging in 

height from 25 m to 40 m [20]. While Cambodia has distinct dry and wet seasons (like much of 

continental SE Asia), these forests are mostly dominated by evergreen tree species. Given its deep 

cultural significance, historical evolution and current land use changes, Angkor Thom and its associated 

forests can be considered a “living landscape”. Although these forests enjoy a high level of protection 

owing to Angkor Thom’s UNESCO World Heritage designation, the issue of tree removal and 

degradation persists within these forests [21]. 

3.2. Field Data Collection 

Field data collection was conducted from December, 2013, to January, 2014. Twenty five  

randomly-stratified 1-ha plots were established in the forested portion of Angkor Thom (Figure 1), as per 

the RAINFOR protocol [22]. One-hectare plots were chosen, as smaller plot sizes may increase the 

dominance of larger trees, causing an increase in the root-mean-square error (RMSE) [23,24]. 

Stratification was conducted on the basis of the four forest quadrants that lead to the north, south, east 

and west gateways of Angkor Thom. All of the forested areas leading inwards have faced different levels 

of anthropogenic disturbance and have been occupied by different disturbance niches. Plots were 

randomly located within each of the quadrants. Diameter at breast height (DBH) was recorded for all 

trees where DBH ≥10 cm. The tree height (H) of 150 trees was measured using a clinometer. A  

DBH-to-tree height relationship was derived using field-measured tree heights and DBH, which, in turn, 

was used to estimate the heights of trees for which only DBH was measured. For more detail, see Tables 

S1–S3. AGB stocks were estimated from tree height and DBH measurements using the following 

allometric equation recommended by Chave et al. [25]: 

0.0509  (1)

Here, ρ represents specific wood density, where a mean value of 0.57 Mg/m3 was used [26]. Aside 

from the required variables in Equation (1), canopy cover was estimated in each 1-ha plot from 20 to 

25 canopy cover readings using a densitometer. More specifically, 20 to 25 canopy cover readings 

were recorded from random locations within each of the 1-ha plots (Table S2). 
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3.3. Analysis of Aerial Imagery Data 

Fifty-centimetre resolution Digital Globe data (images dated 26 December 2012) were extracted over 

Angkor Thom, north-western Cambodia directly from Google Earth™ using Google Satellite Map 

Downloader® (Version 7.20) [27]. These data have three spectral bands (red, green and blue (RGB)) and 

covered the entire Angkor Thom area (Figure 1). Eight-centimetre resolution aerial multispectral data 

were acquired in April 2013, using a 40-megapixel Leica RCD105 medium-format camera, collected by 

a helicopter at a flying height of 800 m above ground level. Aerial multispectral data also consisted of 

three RGB spectral bands. The wavelengths of RGB bands for high-resolution aerial data, including 

those from Google Earth™, are 0.45 to 0.52 nm, 0.52 to 0.60 nm and 9.62 to 0.69 nm, respectively. 

Radiometric, atmospheric and geometric corrections were conducted by the data provider. Figure 2 

shows the 50-cm GE and 8-cm VHR image over a portion of Angkor Thom. 

 

Figure 2. Aerial imagery used in the study: (A) Google Earth™ (GE) imagery and (B) 

very high-resolution (VHR) imagery (provided by Damian Evans) coverage over a portion 

of Angkor Thom 

Airborne LiDAR data were collected in conjunction with the aerial multispectral RGB data. The 

LiDAR data consisted of four returns and a point density of 12 points per square metre. Figure 3 shows 

the LiDAR point cloud-based 3D structure of the forest canopy. The blue regions represent the lowest 

elevations, while orange to red regions stand for the high tree elevations in the plot. 

LiDAR data were used to develop a canopy height model (CHM) as a three-dimensional (3D) 

representation of the vertical canopy structure. CHMs were generated using FUSION software and are 

the product of subtracting the digital surface model (DSM) from the assumed digital terrain model 

(DTM); first and last return, respectively. The LiDAR point cloud-derived products (DTM, DSM and 

CHM) all had a resolution of 0.5 m. FUSION/LDV is freely available software for processing LiDAR 

point clouds [28]. In turn, CHM was used for deriving tree heights at the plot scale. See Figure S1 for a 

detailed workflow. 
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Figure 3. (A) Top view and (B) Side view of LiDAR point cloud-based 3D structure of forest canopy. 

3.4. Texture Analysis of Aerial Imagery  

3.4.1. Grey Level Co-Occurrence Matrix 

GLCMs quantify the tonal variability of image pixels. There are two main kinds of GLCM texture 

measures used in the image analyses: (i) first-order or occurrence metrics; and (ii) second-order or  

co-occurrence metrics. First-order occurrence metrics quantify pixel values at a given location, ignoring 

the relationship between adjacent pixels (e.g., common statistical measures, such as mean and standard 

deviation). Second-order co-occurrence metrics account for the relationship between pixels, as well as 

the probability of pixel occurrence in a given direction. This includes measures, such as entropy and the 

angular sum of moment [29]. GLCM values were extracted from the three different bands of the VHR 

and GE aerial imagery using a window size of 3 × 3 in the ENVI image processing software. Details of 

the GLCM metrics extracted using ENVI can be found in Singh et al. [9]. 

3.4.2. Fourier-Based Textural Ordination 

FOTO aims to identify the gradients of textural variation by coupling two-dimensional (2D) Fourier 

spectra describing the spatial frequency distribution of image variance in canopy scenes. FOTO 

algorithms decompose the spatial information contained in an image into its frequency components by 

applying a 2D fast Fourier transform (FFT), where canopy structure variability can be encompassed 

within a few spatial frequencies [30]. The spectral and spatial information in the image is decomposed 

into the frequency domain characterized by F(p, q), which travel in the X and Y directions. This, in turn, 

is used to obtain Fourier coefficients. In order to best represent the extracted features/associated 

greyscale variance, a power spectrum was computed by squaring the amplitude of the FFT transform. 
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Averaging was carried out across all orientations to obtain the r-spectrum, which contains the mean 

values of each frequency [16]. The r-value quantifies the number of times that a pattern is repeated, 

which, in turn, represents the spatial structure of the canopy within a given window using a select few 

spatial frequencies obtained by the 2D FFT [10]. The r-spectrum also captures the coarseness  

gradient-related textural properties, which, in turn, may be related to underlying forest structure 

properties. Principal component analysis (PCA) was applied to the r-spectrum. The first three principal 

axes were taken to be the texture indices, which, subsequently, can be used to correlate the stand 

parameters and biomass dynamics of the different land-use types [14]. In our study, the first PC axis 

explained around 98% of the variance, while the second PC axis explained 1.2% of the variance. The 

third PC axis explained 0.2% of the variance. The PC axis beyond this did not explain any variance and, 

hence, was excluded. The various steps involved in this algorithm are detailed in the flowchart shown in 

Figure S2. 

3.4.3. Gabor Wavelet-Based Texture Measures 

Unlike FOTO-based methods, wavelet-based methods belong to the family of spatial frequency-based 

analysis. Spatial frequency decomposition breaks down imagery data into multiple scales and 

orientations. The variations in scale and orientation of a given image help capture the textural variation 

of its pixels, as provided in Equation (2): 

,
, exp ,

2
exp , exp

2
 (2)

where σ = 2π and θ and ν represent the orientation and scale, respectively, of the Gabor wavelet in a 

given spatial domain. Gabor wavelet analysis produces both real and imaginary parts. The real part 

encapsulates the texture variation of the canopy and repetitiveness and was retained for analysis [17]. 

3.5. Machine Learning to Model AGB  

3.5.1. Support Vector Regression 

SVR accounts for the nonlinearity, non-normality and complexity of ecological data by using kernel 

functions to map the original input space into a higher-dimension feature space. In Equation (3), y is 

the variable whose values we seek to predict, and x represents predictor variables that are mapped into 

the bespoken higher-dimensional feature space using a nonlinear function ϕ(x). That is, 

∙  (3)

where ω is the weight and b is the bias of the regression function. C is a constant used to account for 

penalized loss when training errors occur [31], as shown in Equation (4): 

, 	 ,
0 | , |

| , |
 (4)

SVR then seeks to minimize the square of the weight function and the sum of the permitted errors, ε. 

The value of ϕ(x) is not known, and kernel functions are used for mapping the predictor variables into 

higher dimensions [32]. Radial basis function (RBF) is a kernel function that is commonly used to 
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account for such data and which produces robust results compared to other kernels [33,34]. Linear and 

polynomial kernels were tested statistically, as per Kuhn et al. [35], using correlation coefficients and 

RMSE to evaluate model performance. The correlation values between field AGB and predicted AGB 

obtained from different kernels was comparable; however, the lowest RMSE values were obtained 

from the RBF kernel; thus, linear and polynomial kernels were not used. The RBF kernel function is 

used for fitting hyper-planes, which allows increasing the separability of the input variables. The 

purpose of a basic support vector algorithm is to discover a hyper-plane that maximizes the distance 

between the input variables. The points from each class closest to the hyper-plane are support vectors. 

By projecting data into a higher dimension, nonlinear data can be visualized to be functioning as linear 

data. This facilitates the establishment of mathematical relationships between variables [36]. 

3.5.2. Random Forests Models 

RF models fit multiple decision trees to input data using a random subset of the input variables for 

each tree constructed. For a dataset with n features, square root of n may be used in each subset. A 

multitude of trees are constructed, and their average is used to construct a new predictive model [37]. RF 

offers the advantages of being non-parametric, handling a large number of input variables and skewed 

data and preventing over-fitting [38]. Both of the above modelling techniques were implemented using 

the caret package in the R programming language. For biomass modelling purposes, 14 of the 25 plots 

were randomly used for training/calibration purposes, and the remaining 11 plots were used for 

testing/validation purposes. Plots were randomly assigned to the training or testing set via the “random” 

function available in R. Prior to relating texture measures to field AGB, the strongly correlated predictor 

texture variables were removed using the built-in functionalities provided within the caret package. 

Including strongly correlated predictor variables in the training model leads to the problem of multi-

collinearity and over-fitting. The resulting model has limited generalizability and does not strongly 

predict the unseen validation data. However, by removing the strongly correlated predictors, we can 

build a parsimonious model containing a small subset of uncorrelated texture variables, which, in turn, 

helps build robust predictive models. 

Training our initial model development used the 14 training plots with 25 iterations for  

bootstrap-based resampling (these are built-in within the “train” function used to build a model). The 

final predicted model was used with the test data (in this case, 11 plots) to generate predictions for the 

target variable. Two ML algorithms were used for generating predictions of field AGB using vertical 

canopy height, canopy cover and texture measures derived from different methods. The performance of 

the three models—(i) included vertical canopy height, horizontal canopy structure and texture variables 

as predictors; (ii) with canopy cover and texture variables; and (iii) with texture variables only—was 

compared using two different aerial datasets and ML algorithms. 

4. Results 

4.1. GLCM-Derived AGB Estimates 

The GLCM method achieved strong to very strong positive correlations between SVR-predicted AGB 

and field-measured AGB for both the 50-cm resolution GE imagery and the 8-cm resolution aerial 
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multispectral imagery, with r-values (Pearson’s product-moment correlation coefficient) ranging from 

0.630 to 0.888. Pearson’s correlation was chosen in order to identify any relationship between the field-

measured and SVR predicted AGB [39]. As evident in Figures 1 and 2, comparatively high r-values and 

low RMS errors are obtained from GE imagery compared to those from VHR imagery. For both datasets, 

the same trend can be observed; correlation coefficient (r) was highest and RMSE was lowest when both 

horizontal canopy variables (HCV) and vertical canopy height (VCH) were included in the analysis. 

AGB estimates from VHR imagery yielded r-values of 0.757 and 0.639 and RMS errors of 55.76 and 

70.90 Mg/ha for the first (Figure 4A) and second (Figure 4B) GLCM-derived models, respectively. No 

significant strength of association was detected for the third GLCM model extracted from GE imagery, 

which only used texture variables for AGB prediction. Conversely, the AGB estimates from GE imagery 

yielded: (1) r = 0.892 and RMSE = 33.73 Mg/ha for the first GLCM-derived model, which combined 

HCV and VCH as predictors (Figure 5A); (2) r = 0.834 and RMSE = 42.66 Mg/ha for the second model, 

which only accounted for HCV (Figure 5B); and (3) r = 0.697 and RMSE = 74.89 Mg/ha for the third 

model, which used texture variables (TV) alone (Figure 5C). 

 

Figure 4. Support vector regression (SVR)-predicted AGB vs. field-measured AGB, as 

derived from VHR imagery via the grey level co-occurrence metric (GLCM) method using 

(A) horizontal canopy variables (HCV) + vertical canopy height (VCH) and (B) HCV only. 

Solid black lines represent regression lines; red dashed lines represent 1:1  

correspondence lines. 

Visual comparison of Figures 4 and 5 revealed that the two GLCM models derived from VHR 

imagery exhibit more pronounced deviations from their respective 1:1 correspondence lines than did the 

three GE models. All five GLCM models, however, underestimated AGB at lower field values  

(AGB < 200 Mg/ha) and overestimation at higher values (AGB > 250 Mg/ha). 

Furthermore, when the GLCM method was employed in conjunction with random forest regression 

(RFR), the resulting RFR-predicted AGB also displayed strong to very strong positive associations with 

field-measured AGB, although the RFR-based r-values were slightly lower than their SVR counterparts. 

Specifically, for GE imagery, RF regression yielded: (1) r = 0.793 and RMSE = 54.34 Mg/ha for the first 

GLCM model, incorporating HCV + VCH; (2) r = 0.786 and RMSE = 60.7 Mg/ha for the HCV-only 

model; and (3) r = 0.47 and RMSE = 76.07 Mg/ha for the TV-only model. For VHR imagery, the  
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RFR-derived values were r = 0.783 and RMSE = 57.51 Mg/ha for the HCV + VCH model. Except for 

this last RMSE value, all of the other RFR-based RMS errors are higher than their SVR counterparts. 

 

Figure 5. SVR-predicted AGB vs. field-measured AGB, as derived from Google Earth™ 

imagery via the GLCM method using (A) HCV + VCH, (B) HCV only and (C) texture 

variables (TV) only. Solid black lines represent regression lines; red dashed lines represent 1:1 

correspondence lines. 

4.2. FOTO-Derived AGB Estimates 

The results of the FOTO analyses were comparable to those of the GLCM analyses, establishing 

strong to very strong positive associations between FOTO-derived AGB estimates and field-measured 

AGB, e.g., with SVR-based r-values of 0.537 to 0.864 and corresponding RFR-based r-values of 0.695 

to 0.864. 

Trends in both r and RMSE values were similar to those of the GLCM-derived models (Figure 6), 

where: (1) the HCV + VCH model had the highest r and lowest RMSE, followed by (2) the HCV-only 

model and (3) the TV-only model with the lowest and highest RMSE. These trends were observed for 

both SVR-based and RFR-based values: the r-values of Models (1), (2) and (3) for the SVR-based AGB 

estimates were 0.864, 0.830 and 0.537, respectively, with corresponding RMS errors of 37.79, 48.70 and 

78.10 Mg/ha. For the RFR-based AGB estimates, the respective r-values of Models (1), (2), and (3) were 

0.745, 0.695 and 0.503, with corresponding RMS errors of 55.63, 64.25 and 76.63 Mg/ha. 

For the SVR-predicted AGB, from GE imagery via the FOTO method, the first model (HCV and 

VCH as predictors) yielded r = 0.835 and RMSE = 41.91 Mg/ha (Figure 7A), while the second model 

(HCV alone) yielded r = 0.845 and RMSE = 40.37 Mg/ha (Figure 7B). For analogous analyses using 

RFR, the corresponding results were: (1) r = 0.764 and RMSE = 51.063 Mg/ha for the HCV + VCH 

model; and (2) r = 0.864 and RMSE = 48.89 Mg/ha for the HCV-only model. 

In the case of FOTO-derived AGB estimates from GE imagery, the second model (which excludes the 

vertical canopy height) exhibited the strongest positive association between SVR-predicted AGB and 

field-measured AGB, as well as between RFR-derived AGB and field-measured AGB. For FOTO 
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models extracted from VHR imagery, no significant association was detected for the third model, which 

only used texture variables for AGB prediction. 

 

Figure 6. SVR-predicted AGB vs. field-measured AGB, as derived from VHR imagery via 

the Fourier-based textural ordination (FOTO) method using (A) HCV + VCH, (B) HCV 

only and (C) TV only. Solid black lines represent regression lines; red dashed lines 

represent 1:1 correspondence lines. 

 

Figure 7. SVR-predicted AGB vs. field-measured AGB, as derived from Google Earth™ 

imagery via the FOTO method using (A) HCV and VCH, and (B) TV only. Solid black 

lines represent regression lines; red dashed lines represent 1:1 correspondence lines. 

4.3. Gabor Wavelet-Derived AGB Estimates 

Figure 8 presents three scatter plots corresponding to three Gabor wavelet-derived models obtained 

from VHR imagery using different combinations of forest biophysical parameters. The following trends 

in both r and RMSE values are similar to those of the GLCM- and FOTO-derived models: (1) the HCV + 

VCH model has the highest r and lowest RMSE, followed by (2) the HCV-only model and  

(3) the TV-only model with the lowest r and highest RMSE. More specifically, the r-values of  
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Models (1), (2) and (3) for the SVR-based AGB estimates are 0.870, 0.737 and 0.216, respectively, with 

corresponding RMS errors of 34.40, 57.75 and 76.48 Mg/ha, respectively. 

 

Figure 8. SVR-predicted AGB vs. field-measured AGB, as derived from VHR imagery via 

the Gabor method using (A) HCV + VCH, (B) HCV only and (C) TV only. Solid black 

lines represent regression lines; red dashed lines represent 1:1 correspondence lines. 

Figure 9 presents three scatter plots corresponding to three Gabor wavelet-derived models obtained 

from GE imagery using different combinations of forest biophysical parameters. The trends in both r and 

RMSE values were similar to that of the GLCM- and FOTO-derived models (0.877, 0.820 and 0.480, 

with corresponding RMS errors of 33.76, 41.21 and 76.55 Mg/ha, respectively). 

 

Figure 9. SVR-predicted AGB vs. field-measured AGB, as derived from Google Earth™ 

imagery via the Gabor method using (A) HCV + VCH, and (B) HCV only and (C) TV 

only. Solid black lines represent regression lines; red dashed lines represent 1:1 

correspondence lines. 
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4.4. Mapping AGB 

Field-measured AGB values for Cambodia showed considerable variation (range: 44.55 to 323 Mg/ha, 

mean 181.1 ± 16.6 Mg/ha). This study developed different GLCM-derived and FOTO-derived models in 

conjunction with SVR and RFR, many of which capture AGB variations to a high level of accuracy. 

Table 1 summarizes the various method and model combinations and their corresponding r and RMSE 

values for both Google Earth™ and commercial VHR imagery. 

Table 1. Summary of the different method and model combinations used in AGB 

prediction. RF, random forest. 

Model Combination 

50 cm Google Earth 8 cm Aerial Multispectral 

RMSE (Mg/ha) 
Association with 

Field AGB (r) 
RMSE (Mg/ha) 

Association with 

Field AGB (r) 

GLCM 

HCV + VCH 
SVR 33.73 0.892 55.76 0.757 

(RF) (54.34) (0.793) (57.8) (0.787) 

HCV only 
SVR 42.66 0.834 70.90 0.639 

(RF) (60.78) (0.78) n/a n/a 

TV only 
SVR 74.89 0.697 n/a n/a 

(RF) (76.07) (0.47) n/a n/a 

FOTO 

HCV + VCH 
SVR 41.91 0.835 37.79 0.864 

(RF) (53.2) (0.758) (56.039) (0.732) 

HCV only 
SVR 40.37 0.845 48.70 0.830 

(RF) (44.23) (0.86) (57.32) (0.72) 

TV only 
SVR n/a n/a 78.10 0.537 

(RF) n/a n/a (74.061) (0.52) 

Gabor 

HCV + VCH 
SVR 33.76 0.87 34.40 0.870 

(RF) 46.8 0.742 54.3 0.808 

HCV only 
SVR 41.21 0.820 57.75 0.737 

(RF) 60.18 0.625 n/a 0.68 

TV only 
SVR 76.55 0.480 76.48 0.216 

(RF) 61.1 0.54 n/a 0.17 

Of all the remote sensing models presented in this study, the AGB estimates derived via a 

combination of vertical canopy structure, ground canopy cover variables and GLCM texture variables 

within an SVR modelling framework showed the strongest association with field-measured AGB  

(r = 0.892). Figure 10 shows the resulting spatial distribution of AGB in Angkor Thom, as derived 

using all of the aforementioned parameters. 

AGB exhibits a distinct pattern across Angkor Thom, with the highest values recorded at the 

northeast corner and the lowest in the southwest corner (Figure 3). 
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Figure 10. Spatial distribution of above-ground biomass in Angkor Thom, based on a best-fit 

SVR + vertical canopy + horizontal canopy + GLCM model. 

5. Discussion 

5.1. Spatial Patterns of AGB in Angkor Thom 

AGB stocks differed across the Angkor Thom landscape, with some areas holding high AGB stocks 

(up to 300 Mg/ha), while other areas held much lower stocks. A distinct pattern of AGB stock 

distribution can be seen across the site, with the southern portion (especially the southwest) having a 

much lower AGB stock value. Since the southern portion of Angkor Thom serves as the main access to 

most of the historical buildings in the area, it receives a significant flow of tourists. This massive inflow 

of people is likely to cause anthropogenic disturbance, thereby influencing AGB in the area. However, as 

one moves toward the archaeological sites, there is an increased level of security (restricted tourist 

access, presence of security guards), dramatically reducing the chances of illegal forest loss. 

The variation in AGB distribution may be seen as a problem of “leakage” that is usually associated 

with protected areas. A similar situation has been observed in the buffer zones around tropical 

protected areas [31]. Closer proximity to the core of the protected area affords a much higher level of 

protection as compared to buffer zones; core areas are thus subject to lower rates of forest loss and 

resource extraction. Another major cause of AGB loss that is apparent not only in Angkor Thom, but 

also in other parts of tropical Asia [32] is the proximity of an area to various sources of anthropogenic 

disturbance, such as roads. 
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5.2. The Effectiveness of Different Model Combinations for Estimating AGB 

5.2.1. The Importance of Structural Parameters 

The present study employed several model combinations to estimate AGB stocks and their spatial 

distribution. Previous studies have utilized solely multispectral sources to estimate AGB [10,15], 

although in the majority of the texture models—GLCM, FOTO and Gabor wavelets—the inclusion of 

vertical height data provided marginally improves AGB estimates. However, ground-measured canopy 

cover percentage was strongly associated with field AGB values (r = 0.698). Previous studies in the 

tropics using different datasets, and modelling approaches have established the role of vertical canopy 

height in producing accurate estimates of AGB [23]. However, the corresponding role of the percentage 

of canopy cover was not previously examined in the literature. While this study establishes the role of 

canopy cover in explaining AGB variation, there are no universally accepted protocols for measuring 

canopy cover, either in the field or using remote sensing data. This makes the comparison of our canopy 

cover-based results with other research difficult.  

5.2.2. Performance of Different Modelling Approaches 

In all cases, the SVR-based models outperformed the RFR-based models. SVR also produced more 

robust estimates of AGB variation than did multiple regression models [40]. ML methods, such as SVR, 

are capable of producing robust and generalizable models of forest parameters. Furthermore, they can 

characterize forest structural complexity at finer scales, which is poorly captured by traditional linear and 

non-linear regression models. This enables detailed AGB models that can facilitate monitoring and 

conservation activities. In addition to the efficacy of ML models, it was found that GE aerial imagery (in 

conjunction with different texture measures) can produce robust AGB estimates. 

5.2.3. Performance of Google Earth™ Imagery vs. VHR Imagery for AGB Estimation 

GLCM-, Gabor- and Fourier-based texture variables derived from GE and VHR imagery (along with 

vertical canopy height and canopy cover) showed a strong association with field-measured AGB. In all 

cases, SVR-predicted AGB values were more similar to field AGB with lower RMSE than were  

RF-predicted AGB values. SVR is known to produce accurate AGB estimates [40] and to outperform 

other ML techniques, such as RF regression [41]. On the basis of the results obtained using both ML 

techniques, textural variables, both statistical and Fourier-based, are powerful predictors of AGB stock 

variation. The strength of association did not decline considerably between models that used both 

horizontal and vertical variables and those that used horizontal variables (canopy cover and texture 

metrics) only. Thus, in open-canopied forest ecosystems, such as the one in our study area, consideration 

of vertical canopy structure does not significantly improve AGB estimates, while inclusion of percentage 

canopy cover estimates is more important. However, models that used a combination of percentage 

canopy cover and texture variables (derived from either of the methods) tended to underestimate AGB 

values, especially for lower AGB values, whereas the inclusion of vertical canopy height improved the fit 

between predicted AGB and the 1:1 line. Texture variables themselves had limited utility for AGB 

prediction. AGB predicted using GLCM variables derived from GE imagery, VHR-based Fourier texture 



Remote Sens. 2015, 7 5072 

 

and Gabor wavelet variables had a moderate strength of association with field AGB values and deviated 

considerably from the 1:1 line. 

Ground canopy cover is often ignored in most tropical forest inventories, whereas this study makes a 

strong case for its inclusion in AGB monitoring. Vertical canopy height is an important variable in its 

own right, but its collection either through LiDAR surveys or field measurements can be expensive 

and/or cumbersome. 

5.3. Implications of Freely Available Remote Sensing Imagery for Conservation 

This study has shown the utility of freely available remote sensing sources, such as GE and other 

Digital Globes, for robust, quantitative mapping of forest parameters, such as AGB, although this is 

rarely conducted. However, see Ploton et al. [42] for an example of AGB estimation using GE for forests 

in the Western Ghats, India. Such data sources could allow regular and cost-effective monitoring of 

tropical forested ecosystems. 

While high-resolution GE imagery is not available for the entire Asian tropics (especially some 

inaccessible forested areas), its coverage is increasing. Other endeavours, such as the Digital Globe 

Foundation, offer free/low-cost VHR imagery for researchers. Structural parameters, such as canopy 

height, improve the accuracy of AGB estimations, but are relatively difficult and expensive to obtain. 

Thus, multispectral-only models derived from VHR Digital Globe imagery could play an important role 

in the repeated monitoring of tropical landscape-scale AGB stocks. Repeated monitoring is vital for 

accurate reporting, monitoring and verification of forest carbon stocks for conservation instruments, such 

as REDD+, to support enforcement and enable reliable accounting of ecosystem service provision [43], 

especially at sites and in ecosystems that are dynamic and affected by surrounding land use decisions and 

external stressors [44]. However, there is a need to test these models in other ecosystems (notably, 

closed-canopy forests, mangroves) at different spatial scales, different plot sizes and with other VHR 

data to improve their general applicability. Finally, not much is known about the data quality of the 

different image sources present within the GE database, acquisition errors and pre-processing algorithms 

applied to them. Detailed information relating to acquisition conditions and pre-processing protocols are 

needed for aerial data (including GE acquired data) to improve the interpretability of results. 

6. Conclusions  

This study highlights the potential to harness the power of freely-available Digital Globe imagery, 

such as Google Earth™, in conjunction with novel methods, such as grey level co-occurrence metrics, 

Gabor wavelets and Fourier-based textural ordination, to quantify biophysical forest parameters of 

importance to conservation. This study was unique in the range of texture methods utilized, in addition to 

the comparison of freely available and commercial imagery. Combinations of these techniques were able 

to quantify fine-scale changes and gradients in forest parameters, such as AGB across a disturbed, open 

canopy site that is experiencing several threats to forest permanence. 

The testing and comparison of GE-derived results against traditional remotely-sensed data sources 

highlights its potential utility as part of a framework for robust, low-cost, fine-resolution, quantitative 

mapping of forest parameters, such as above-ground biomass, at the landscape scale in open-canopied 

forests. The use of freely available data sources, such as GE, could allow regular and cost-effective 



Remote Sens. 2015, 7 5073 

 

monitoring of imperilled tropical forested ecosystems in the future. Future studies should focus on the 

use of the presented framework for repeated monitoring, comparing the different modelling methods to 

see which best represent changes in forest parameters through time.  
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