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Abstract: The urban heat island (UHI) effect resulting from rapid urbanization generally 

has a negative impact on urban residents. Shijiazhuang, the capital of Hebei Province in 
China, was selected to assess surface thermal patterns and its correlation with Land Cover 

Types (LCTs). This study was conducted using Landsat TM images on the mesoscale level 

and airborne hyperspectral thermal images on the microscale level. Land surface 

temperature (LST) was retrieved from four scenes of Landsat TM data in the summer days 

to analyze the thermal spatial patterns and intensity of surface UHI (SUHI). Surface 

thermal characteristics were further examined by relating LST to percentage of imperious 

surface area (ISA%) and four remote sensing indices (RSIs), the Normalized Difference 

Vegetation Index (NDVI), Universal Pattern Decomposition method (VIUPD), Normalized 

Difference Built-up Index (NDBI) and Biophysical Composition Index (BCI). On the other 

hand, fives scenes of airborne TASI (Thermal Airborne Spectrographic Imager sensor) 

images were utilized to describe more detailed urban thermal characteristics of the 

downtown of Shijiazhuang city. Our results show that an obvious surface heat island effect 
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existed in the study area during summer days, with a SUHI intensity of 2–4 °C. The 

analyses reveal that ISA% can provide an additional metric for the study of SUHI, yet its 

association with LST is not straightforward and this should a focus in future work. It was 

also found that two physically based indices, VIUPD and BCI, have the potential to 

account for the variation in urban LST. The results concerning on TASI indicate that 

diversity of impervious surfaces (rooftops, concrete, and mixed asphalt) contribute most to 

the SUHI, among all of the land cover features. Moreover, the effect of impervious 

surfaces on LST is complicated, and the composition and arrangement of land cover 

features may play an important role in determining the magnitude and intensity of SUHI. 

Overall, the analysis of urban thermal signatures at two spatial scales complement each 

other and the use of airborne imagery data with higher spatial resolution is helpful in 

revealing more details for understanding urban thermal environments. 

Keywords: urban heat island (UHI); land cover types (LCTs); impervious surface area 

(ISA); thermal airborne spectrographic imager (TASI) 

 

1. Introduction 

LCTs have played a significant role in environmental change, and accurate and real-time 

information of LCTs is critical to environmental monitoring and management [1,2]. The interaction 

between LCTs and climatic variability is so complex that advanced models are required to describe 

this process, especially for urban–rural areas. Since the change from nature areas to impervious areas 

can result in significant regional climate changes, urban thermal environments have been identified in some 

studies from the perspective of the scientific community for meteorology and remote sensing [3–5]. The 

differences in surface temperature between urban areas and surrounding rural areas, a phenomenon 

termed as urban heat island (UHI) effect and due to urbanization, have been widely observed [6,7]. 

UHI considerably increases the energy demands and degrades the outdoor air quality especially in 

summertime, as accompanying the negative impact on the local mseteorology conditions. 

The utilization of remote sensing in the assessment of surface thermal properties as well as surface 

UHI has been carried out by various researchers. These studies can be conducted using satellite sensors 

such as Moderate Resolution Imaging Spectroradiometer (MODIS) and Advanced Very High 

Resolution Radiometer (AVHRR), which have been found to be feasible to describe the coarse thermal 

spatial distributions, yet, insufficient to investigate the accurate relationships between LST and surface 

characteristics [8–11]. On the other hand, satellite sensors of medium spatial resolution, such as 

Landsat Thematic Mapper (TM)/Enhanced Thematic Mapper Plus (ETM+) thermal infrared data and 

ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), have been extensively 

utilized for studies of SUHI at the local scale [12–14]. For example, [10] used ETM images to assess 

the thermal environment of major cities in Greece; Chen, et al. [15] examined the changes in LCTs and 

the associated intensity and spatial pattern of the SUHI effect in a rapidly changing area of the Pearl 

River Delta region in China. 
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Although satellite data are useful in analyzing SUHI effect at a coarse or medium scale, they cannot 

lend themselves to well establish a better understanding of what specific LCTs contribute to the SUHI 

effect. Analysis of thermal energy characteristics for discrete LCTs of the urban landscape generally 

requires being carried out at a very fine spatial scale, in order to adequately resolve these land cover 

features and their attendant thermal energy regimes. Compared with space-borne data mostly of 

medium spatial resolution, high spatial resolution thermal data obtained from aircraft can provide more 

detailed information and be used as an alternative approach to assess the SUHI effect carefully and  

profoundly [16,17]. Gluch, et al. [18] and Pu, et al.[19] for example used airborne thermal data to 

examine the thermal response of individual land covers in urban areas. According to this context, high 

spatial resolution thermal data is necessary to investigate and reveal to what extent typical LCTs within 

the city contribute to increases in urban thermal emissions or vice versa.  

Impervious surface area (e.g., asphalt, building and paved roads), featured by impeding the  

surface water infiltration, is often used as a major indicator of the urbanization and environmental  

quality [20,21]. Percentage imperviousness is reported to be one significant factor to increase heat 

emissions in urban areas, further justifying its practical application in assessing the urban thermal 

environment, since it can capture more spatial information on complex urban landscapes [22–24]. 

Although the positive correlation between ISA and urban LST has been known for a while, their  

roles and interactions across complex urban environments remain elusive. Therefore, a thorough 

understanding of the effect of the biophysical parameter of ISA% on LST needs to be further 

investigated, in order to effectively adapt to the urban land cover changes and climate changes. It was 

reported that thermal responses of urban landscapes vary with different biophysical properties 

especially of vegetation covers and building [4]. RSIs, which are largely determined by land cover 

types, can be used to characterize surface thermal patterns as well as SUHI [25,26], although these 

indices have both strengths and weaknesses. RSIs such as Normalized Difference Vegetation Index 

(NDVI), Normalized Difference Built-up Index (NDBI), and the Normalized Difference Water  

Index (NDWI) have been employed to establish their relationships with LST using regression  

analysis [15,27,28]. However, most of these relationships are subject to variation due to the 

predominantly bare ground surfaces or undestroyed vegetation covers [24,29]. Simple remote sensing 

indices alone may not be sufficient to quantitatively determine SUHI, and therefore more physically 

based indices need to be investigated to formulate the correlations between surface parameters and LST.  

To date, studies on the quantitative relationship between SUHI and typical LCTs based on  

multi-scale thermal remote sensing observations have not been publicly reported. In this study, a 

combination of aerial thermal data and spaceborne thermal data was used to investigate how LCTs 

influences the spatial pattern and intensity of the SUHI with a case study in Shijiazhuang, China. 

Analyses focusing on the mesoscale level with Landsat TM images and on the microscale level with 

airborne hyperspectral thermal data, respectively, were conducted to comprehensively discover urban 

thermal patterns in terms of LCTs, RSIs, ISA% and LST. Thermal sensors of the two different spatial 

resolutions were used to improve urban thermal study. The specific objectives of this research are:  

(1) analyzing the spatial patterns as well as the intensity of SUHI using four Landsat  

ETM+ images acquired in the summer of 2006, 2007, 2009 and 2010; (2) quantifying the correlations 

between LST and some indices (NDVI, VIUPD, NDBI, BCI, and ISA%) over the study region; and (3) 

discovering thermal values over individual land cover and capturing the spatial distribution of urban 
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thermal patterns, using the fine spatial resolution surface temperature derived from airborne thermal 

images (TASI) collected for the downtown of Shijiazhuang. 

2. Study Site and Datasets 

Shijiazhuang is a city located in North China (Lat. 38°03′N, Lon. 114°29′E). Situated in the low 

latitudes of Eurasia and having a semiarid monsoon climate, its annual average precipitation is only 

about 500 mm/year, mostly occurring in July and August. Shijiazhuang is the largest city of the Hebei 

Province with a population of around 5 million. In this research, the city of Shijiazhuang and its 

suburban area were selected as the study area (Figure 1). 

 
(a) (b) 

Figure 1. Study area in Shijiazhuang, China. (a) WordView-2 RGB color composite of the 

study area. Line 1 (Left) and 2 (Right) are two north–south direction profile transects.  

(b) Location of the study area and Landsat TM imagery. 

The dominant land cover in this region is dense evergreen forest, agriculture, bare soil and diverse 

urban materials. Urban materials mainly consist of roof materials, concrete and asphalt surfaces with 

varying age, and bare soil and water pools either in the undeveloped areas or park. Other vegetation 

covers include small patches of urban lawns and wetlands. Overall, the high diversity of urban 

materials and a mixture of various vegetation types make it an ideal area to analyze SUHI effects. 

To quantitatively analyze the urban thermal patterns and explore the urban heat island intensity in the 

city of Shijiazhuang, four cloud-free TM images (5 September 2006; 23 August 2007; 12 August 2009; 

and 15 August 2010) from Landsat 5 were selected. Two scenes (Path/Row: 124/33, 124/34) were 

encompassed in the study region for each of the acquisition date. Landsat images provide six visible 
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and near infrared bands (1–5 and 7) with a spatial resolution of 30 m, and a thermal infrared band 

(band 6) with a spatial resolution of 120 m. Five high-resolution airborne images collected by a 

Thermal Airborne Spectrographic Imager (TASI) sensor were also acquired, as part of the National 

High Technology Research and Development Program of China (863 Program), to capture the urban 

thermal spatial distribution at the microscale level. The basic specifications of TASI are given in  

Table 1 [30,31]. These TASI images were acquired at an altitude of 0.5 or 1 km from 25 July 2010 to 

15 August 2010 including three time phases (morning, noon, and evening). The coverage of these 

airborne thermal images is centered at the downtown of Shijiazhuang, extending 10 km in north–south 

and 5 km in east–west. In addition, a WordView-2 (WV2) image was acquired in September 2010. 

WV2 provides a higher spatial (2 m MS and 0.5 m Panchromatic) resolution. A short-wave infrared 

image (0.9–2.5 um, 101 bands) collected by a Short-Wave-Infrared Airborne Spectrographic Imager 

(SASI) sensor on 15 August 2010, was used as ancillary data to identify specific landscape features. 

All data used in this study are listed in Table 2. 

Table 1. Thermal Airborne Spectrographic Imager (TASI) sensor characteristics. 

Parameters Value 

Spectral rang(um) 8–11.5 

Spectral resolution(um) 0.1095 

Band number 32 

IFOV 0.068° 

FOV 40° 

Across track pixels no 600 

Signal quantization level 14 bits 

Table 2. Characteristics of the data used in this study (the overpass time is in local time). 

ID Satellite Sensor Acquisition Time Resolution(m) 

1 Landsat TM 5 September 2006; 23 2007; 12 August 2009; 15 August 2010 30/120 

2 TASI 

Morning, 7 August 2010 (7:00–8:00); Noon, 7 August 2010 

(12:00–13:00); Noon, 15 August 2010 (13:00–14:00);  

Evening, 25 July 2010 (17:00–18:00); Evening, 27 July 2010 

(17:00–18:00) 

0.6/1.25 

3 SASI Noon, 15 August 2010 (13:00–14:00) 1.25 

4 WordView-2 15 September 2010 0.5/2 

3. Methodology 

As previously mentioned, the current study was conducted using Landsat TM images on the 

mesoscale level and airborne hyperspectral thermal images on the microscale level. The overall 

processing scheme is displayed in Figure 2. 

3.1. Image Pre-Processing 

The multi-temporal Landsat TM images were first geo-referenced to the Universal Transverse 

Mercator (UTM) coordinate system based on the high-resolution Google EarthTM images [32] and WV 
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imagery, and then re-sampled using the nearest neighbor algorithm with a pixel size of 30 m × 30 m 

for all bands, including the thermal band. The root-mean-square error (RMSE) of the rectification was 

less than one pixel in this study. Atmospheric correction was applied to the visible and near infrared 

bands using the Fast Line-of-Sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module 

in the ENVI 4.8 software. A mosaic of two Landsat TM images acquired during each day was 

compiled. The mosaic images were finally clipped to the study area. Assessing the accuracy of surface 

reflectance retrievals is significant for the calculation of various remote sensing indexes. In this study, 

we validated the obtained surface reflectance via comparisons with limited ground based reflectance 

observations. During the Landsat-5 overpass on 15 August 2010, we collected 15 ground measurements 

of surface reflectance spectra of dominant cover types using the ASD (Analytical Spectral Devices) 

spectroradiometer (covering the spectrum of 0.35–2.5 um). More detailed information of this ground 

measurements can be found in our previous study in [31]. By comparing the reflectance retrieval from 

TM with the ASD measurements aggregated using the Landsat 5 TM spectral response functions, it 

was demonstrated that the reflectance of all six bands agrees well. The absolute errors in terms of root 

mean squares error are 0.044 for the infrared bands and 0.018 for the visible bands. Given the 

uncertainty of the ASD measurements, aerosol scattering model, and slight surface heterogeneity over 

the test sites, the accuracy of the surface reflectance retrieval is reasonable. 

 

Figure 2. Overall process flow. 

Based on the assumption that the radiometric response function is linear, TASI images were 

calibrated using coefficients retrieved by measuring two known standard black-body sources. 

Atmospheric correction on the basis of the radiative transfer calculation was performed to transform 

the radiance into surface radiance. The atmospheric upwelling and downwelling radiance and the 

atmospheric transmittance required for the atmospheric correction were obtained using the MODTRAN 
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radiative transfer code and local atmospheric profiles in the study area. The atmospheric profiles of air 

temperature and humidity were retrieved from near real time NCEP reanalysis data. In addition, the in situ 

air temperature measurements obtained from a local weather station and the in situ atmospheric column 

water vapor content measured by a CE318 automatic sun tracking photometer were used to correct the 

profiles of air temperature and humidity. Other parameters were set as following: ozone (mid-latitude 

summer) and carbon dioxide (from MODTRAN simulations). The retrieved spectra of welling path 

radiance and downwelling sky radiance were both integrated to TASI channels on the basis of the 

corresponding filter function. More detailed information about the data pre-processing can be found in 

our previous study [33]. 

3.2. Retrieval of Impervious Surface Area from Landsat TM Images 

Many methods have been developed in the literature for estimating ISA% based on remotely sensed 

imagery [34]. Spectral mixture analysis, an image-processing method that determines the fraction of 

fundamental components, provides a suitable approach to extract ISA% [35]. A physical image-processing 

method integrating normalized spectral mixture analysis (NSMA) [36] with multiple endmember spectral 

mixture analysis (MESMA) [37] was used to estimate ISA from Landsat images in this study [31]. This 

method involves endmember selection, unmixing analysis, and calculation of fraction images. 

First, the pixel purity index (PPI) approach was combined with an N-dimensional visualizer to 

identify the major candidate imagery endmember, referring to the vegetation-impervious surface-soil  

(V-I-S) model [38]. Endmember spectral containing high albedo, low albedo, bare soil, and vegetation 

were selected from the image itself, resulting in a total of 8, 8, 7, 7 endmembers for each image of 2006, 

2007, 2009, and 2010, respectively. Specially, water area was masked out and not considered in this 

process. Second, NSMA was applied to all endmember combinations (in total 47, 47, 35, 35 combinations 

for each image). Of all the endmember combinations for each pixel, the one that brought about all  

non-negative endmember fractions and the lowest root mean squared error was considered the optimal 

combination. ISA fraction was finally calculated by summing up the low albedo and high albedo fractions.  

To assure the quality of the retrieved impervious surface area, the estimated result was evaluated by 

comparing the Landsat-based ISA% with that obtained from high spatial resolution imagery. A total of 

150 sample plots with 3 × 3 pixels (i.e., 90 m × 90 m) were identified on the impervious fraction image 

of August 2010, while the corresponding actual ISA% was digitized from the WV2 image.  

In order to investigate the inherent relationship between imperviousness density distribution and 

urban thermal pattern, the urban landscape was divided into different classes based on the 

imperviousness density. According to a rule-based analysis, pixels were classified as urban when the 

percent ISA were greater than 30%, whereas those pixels of less than 30% were considered non-urban. 

Moreover, three ISA threshold values were used to define different levels of the urban development:  

30%–50% for low density; 50%–75% for medium density and >75% for high-density.  

3.3. Derivation of Remote Sensing Indices from Landsat TM Images 

Four remote sensing indices were utilized in this the application to demonstrate the significance in 

discovering the urban thermal patterns. 

NDVI [39] is widely used to estimate the density of vegetation and can be expressed as: 
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4 3 4 3( ) / ( )NDVI        (1)

where ρ4 and ρ3 represent the reflectance value of near-infrared band (band 4) and red band (band 3), 

respectively, both from the Landsat images. 

NDBI [40] is an index that can describe the information of built-up areas. It can be noted as: 

5 4 5 4( ) / ( )NDBI b b b b    (2)

where b5 and b4 represent the digital value of mid-infrared band (band 5) and near-infrared band  

(band 4), respectively, for the Landsat images. 

VIUPD is a vegetation index that is computed based on the universal pattern decomposition  

approach [41]. The index can reflect some biophysical factors, such as vegetation concentrations and 

the degree of terrestrial vegetation vigor, more sensitively than the NDVI and EVI. More importantly, 

VIUPD is sensitive to bare soil and dead vegetation coverage. Unlike the traditional broadband 

vegetation indices usually computed with near-infrared and red bands, VIUPD is constructed on the basis 

of the all observed wavelengths. It can be computed as a combination of four pattern decomposition 

coefficients (the patterns of vegetation, soil, water, and supplementary) and can be derived as: 

4V S

W V S

C a C C
VIUPD

C C C

  


 
 (3)

where Cv, C5, Cw and C4 represent the respective standard pattern reflectance of vegetation, soil, water, 

and supplementary yellow-leaf; a is the coefficient according to the standard soil pattern. 

Information of biophysical composition information is essential in delineating urban ecological 

morphology for environmental modeling and management. Traditional methods to obtain biophysical 

composition information were either dependent on various land cover classification approach or too 

complicated to carry out. BCI [25] is a biophysical index proposed for effectively extracting urban 

biophysical compositions. By means of Tasseled Cap (TC) transformation and V-I-S triangle model, 

the formula of BCI can be given as: 
  ( ) / 2

( ) / 2

H L V
BCI

H L V

 


   
(4)

where H is the representative spectral response of high albedo; L is the representative spectral response 

of low albedo; and V is the representative spectral response of vegetation. These three factors can be 

retrieved with the following formula: 

min

max min

1 1

1 1

TC TC
H

TC TC





 (5)
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2 2
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V
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(6)

min

max min

3 3

3 3

TC TC
L

TC TC




  
(7)

where TCi (i = 1, 2, and 3) are the three normalized TC components, representing high albedo, 

vegetation, and low albedo, respectively; TCmax and TCmin are the maximum and minimum values of 

the ith TC component. 
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3.4. Derivation of Surface Temperature  

3.4.1. Retrieval of Surface Temperature from Landsat TM Images 

The derivation of LST from Landsat TM data mainly involves three steps: radiometric calibrations, 

atmospheric and surface emissivity corrections, and characterization of spatial variability. The digital 

number of geometrically corrected Landsat TM band 6 (10.44–12.42 um) were first converted to 

spectral radiance using Equation (8), and then converted to at-sensor brightness temperature with 

Equation (9): 

0.0056322 0.1238L DN    (8)

2

1(( / ) 1)b

K
T

ln K L



 (9)

where Tb is the brightness temperature in Kelvin, L is spectral radiance; K1 and K2 are the calibration 

constants in m·W·cm−2·sr·μm−1 (K1 = 60.776, K2 = 1260.5). Since the brightness temperature obtained 

above is according to a black body, corrections for spectral emissivity were required to retrieve the 

surface temperature [42]. The formula is as follows: 

1 (λ / ρ) ε
b

b

T
LST

T ln


 
 (10)

h c



  (11)

where λ is the wavelength of emitted radiance (λ = 11.5 μm), σ is the Boltzmann constant  

(1.38 × 10−23 J/K), and h is the Planck’s constant (6.626 × 10−34 Js), C is the velocity of light  

(2.998 × 108 m/s). 

Accurate land surface emissivity (LSE) is essential in retrieving LST and various approaches have 

been utilized to acquire LSE [43,44]. An easy-to-apply method, called NDVI Thresholds Method 

(NDVITHM), was applied to obtain emissivity values. This method is a modified semi-empirical 

approach and more detailed description is available at [45].   

3.4.2. Retrieval of Surface Temperature from TASI Images 

Temperature Emissivity Separation algorithm (TES) reported by [46] was employed to obtain 

surface temperature for TASI images. This method is accomplished by three modules: Normalized 

Emissivity Method (NEM), Ratio (RATIO), and Maximum-Minimum Difference (MMD). In TES, 

NEM is used to estimate spectral contrast for all TASI bands with an initial LSE (typically 0.98). The 

NEM derived emissivity is rationed to relative spectral in the RATIO module and variations of 

emissivity spectral MMD can be characterized through a logarithmic function of the minimum 

emissivity value εmin. Yang, et al. [30] established a semi-empirical relationship among εmin and MMD 

for TASI data, and the result of statistical regression was expressed as: 

0.972
min 0.992 0.917 MMD     (12)
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3.5. Retrieval of Land Cover Patterns from Landsat and TASI Images 

Image classification was performed to map LCTs patterns for Landsat TM images acquired on  

5 September 2006, 23 August 2007, 12 August 2009 and 15 August 2010. Referring to the previous 

researches of LCTs classification regarding to UHI [15], five distinctive surface types (i.e., vegetation, 

bare soil, water bodies, built-up areas, and large rooftops) were identified. Large rooftops were 

regarded as a single land-use type since a diversity of manufactory, markets, factories, and planned 

residential areas were covered with huge metal material. The supervised signature extraction with the 

support vector machine (SVM) algorithm was employed to extract main landscapes. Training the SVM 

with a Gaussian radial basis function requires two critical parameters: C is a regularization parameter 

that controls the trade-off between maximizing the margin and minimizing the training error, while γ 

describes the kernel width [47]. These two input parameters were tuned using a 10-fold cross 

validation method with the help of library LIBSVM [48], and the C and γ was set to 300 and 3. 

Accuracy assessment of classification is important; thus, the statistical measures involving overall 

accuracy (OA) and Kappa statistic (KC) were calculated for different image data using a variety of test 

samples collected from WV2 and Google EarthTM, as shown in Table 3. 

Table 3. Accuracy assessment of classification of Landsat TM images of 2006–2010. 

Date OA (Overall Accuracy %) KC (Kappa Coefficient) Total of samples 

5 September 2006 90.47 0.92 1039 

23 August 2007 91.09 0.93 1148 

12 August 2009 90.33 0.93 1362 

15 August 2010 91.71 0.92 1190 

Table 4. Land Cover Types (LCTs) for classification using WordView-2 image and SASI image. 

Land Cover Type Description 

Rooftop Metal rooftop 

Concrete Concrete built-up areas  

Water body Rivers, lakes 

Bare soil Bare soil, fallow 

Mixed asphalt  Asphalt and old concrete built-up areas  

Vegetation Farmland, grass 

Tree Farmland trees, roadside trees, trees around water bodies 

In order to further examine the spatial patterns of the thermal emission in the urban at the 

microscale level, a high-resolution classification map was produced using the WV2 image and the 

SASI image. In this context, a method on the basis of SVM classifier in combination with an  

object-oriented approach was used to identify different urban categories (Table 4). A watershed 

approach integrating the texture gradient with a marker selection was implemented to perform image 

segmentation, the result of which was fused with the SVM classification map [49,50]. The input 

parameters required for running SVM were fixed using a 10-fold cross validation method through 

library LIBSVM, and the slack trade-off C and bandwidth γ for radial basis kernel function was set as 

8 and 1. More specifically, the SASI image acquired on 15 August 2010 was used to finely 
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discriminate concrete from mixed asphalt based on distinctive spectrum features in infrared. Accuracy 

assessment was conducted using the test samples collected from field survey, WV2 and Google 

EarthTM for the classification result, and the OA and KC was 88.37% and 0.902, respectively. 

Additionally, the classification result was further checked visually and refined manually, in order to 

have the most reliable product for the next step.  

4. Result analysis 

4.1. Analysis of the Urban Thermal Patterns at the Mesoscale Level 

4.1.1. Spatial Pattern of Urban Thermal Environment 

Figure 3a,b show the two examples of the classified map in 2006 and 2010. The percentage of 

impervious surface areas retrieved from the improved spectral mixture analysis in 2006 and 2010 is 

mapped and shown in Figure 3c,d.  

(a) (b) 

(c) (d) 

Figure 3. LCTs patterns and percent impervious surface area distribution derived from 

Landsat TM image in the study area on 5 September 2006 and 15 August 2010, (a) LCTs 

patterns on 5 September 2006; (b) LCT patterns on 15 August 2010; (c) percent impervious 

surface area on 5 September 2006; (d) percent impervious surface area on 15 August 2010. 

The results of LST map and associated descriptive statistics are shown in Figure 4 and Table 5, 

respectively. In 2006, the maximum mean LST was recorded for metal rooftop, followed by built-up 

areas and bare soil. Compared with other land cover features, the vegetation had a lower average LST 

of 23.5 °C. For the other three years, similarly to the results of 2006, the vegetation all exhibited a 

lowest average LST, while impervious surface and bare soil both had an average LST over 33 °C. This 

is attributed to the thermal capacities of vegetation which allows it to easily release heat stored through 
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canopy transpiration especially in hot weather. Especially, influenced by microclimate factors and the 

surrounding ecosystem, bare soil distributed in the North China Plain usually has low thermal inertia 

due to the low moisture content, which means that less energy is stored effectively and it is more 

readily dissipated as sensible heat, resulting in a similar thermal response behavior as that of the urban 

impervious surface. It should be noted the temperatures of water were higher than vegetation for all 

four years. This phenomenon can be attributed to various reasons. First and foremost, the type of 

cropland in our study area was irrigable land, which emits less thermal energy than most other farmed 

areas. Second, the small area of water bodies and wetlands, especially in sub-urban regions of 

Shijiazhuang usually surrounded by large area of bare soils, could easily be identified as mixed pixels 

and classified as water at the 30 m resolution of TM. Third, the vegetation covers in our study area 

included a considerable fraction of forest, which has much lower LST than water due to the fact that 

the dense vegetation reduced the amount of heat stored through transpiration. Both of these factors 

mean the cropland tends to behave slightly like water bodies. It should be mentioned that [51,52] 

reported this phenomenon in another city (Beijing), which is located also in North China and close to 

Shijiazhuang. In addition, a large area of rooftop surfaces was converted from fallow land or 

vegetation areas and showed the maximum average LST and standard deviation (SD). This clearly 

indicated the process of urbanization, in which much of the land cover changed from pervious to 

impervious surfaces, giving rise to an increase in LST. Interestingly, the SD value was relatively large 

for water compared to vegetation, implying that the surface temperature of water actually had a higher 

variation. This may be caused by the fact that water bodies in the study area included diverse 

compositions such as rivers, lakes, reservoirs and ponds, the LST value of which all varied greatly. 

 
(a) (b) 

 
(c) (d) 

Figure 4. LST distribution in the study area derived from Landsat TM image on  
(a) 5 September 2006; (b) 23 August 2007; (c) 12 August 2009; and (d) 15 August 2010.  
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Table 5. Descriptive statistics of LST (in	 °C) derived from Landsat TM images over 

different land cover types. 

Date Statistics Bare Soil Water Vegetation Built-Up Metal Rooftops 

5 September 2006  
MEAN  25.3 24.1 23.5 25.4 28.6 

SD  1.23 2.35 0.66 1.77 2.54 

23 August 2007  
MEAN 33.7 30.7 28.3 32.7 35.2 

SD 3.04 2.9 1.34 1.99 2.18 

12 August 2009  
MEAN  36.6 33.4 32.1 36.7 37.6 

SD  2.56 3.07 1.33 2.34 3.04 

15 August 2010 
MEAN  34.2 30.6 29.5 33.3 34.3 

SD  2.36 2.93 1.19 2.03 2.55 

The LST statistical description of each imperviousness category is shown in Table 6. It was 

observed that the high-density urban area (percent ISA categories > 75% ISA) had the highest mean 

LST values in all the years. The mean LST values of relatively developed areas (percent ISA > 30%) 

were about 2–4 °C higher than those of rural areas (percent ISA < 30%). Comparison between the four 

cases reveals that the larger the percentage of ISA, the higher the mean temperature in urban areas. 

Table 6. Descriptive statistics of LST (in °C) derived from Landsat TM images over 

categories of percent impervious surface area. 

Date Statistics ISA(10–30) ISA(30–50) ISA(50–75) ISA(75–) 

5 September 2006  
MEAN 24.1 25.7 26.0 26.4 

SD 1.90 2.17 2.26 2.32 

23 August 2007  
MEAN 29.8 32.1 33.2 34.1 

SD 2.62 2.43 2.53 2.25 

12 August 2009  
MEAN 34.4 37.6 37.7 38.0 

SD 2.90 2.82 2.85 2.90 

15 August 2010 
MEAN 31.2 33.8 33.9 34.0 

SD 2.61 2.42 2.47 2.56 

Table 7. Estimated SUHI intensities (in °C) derived from Landsat TM images.  

Type/Date 5 September 2006 23 August 2007 12 August 2009 15 August 2010 

Urban Mean LST 26.1 32.8 37.0 33.7 

Rural Mean LST 23.8 29.3 33.2 30.2 

SUHI Intensity  2.3 3.5 3.8 3.5 

SUHI intensity was used to further interpret the retrieved LST, since it can minimize the difference 

in meteorological variation and atmospheric conditions resulting from different observing times of the 

Landsat overpasses [8]. SUHI intensity is a useful indicator for assessing urban heat islands, and is 

computed as the mean temperature difference between the area considered as urban and that excluding 

urban zone. The estimated result of SUHI intensity is computed according to the administrative zoning 

map of Shijiazhuang provided by Shijiazhuang land resources bureau, and listed in Table 7. It was 

observed that the SUHI intensities in summer were about 2–4 °C in Shijiazhuang at approximately  

10:50 am, revealing that the average surface temperature of the urban area is generally higher than that 
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of the surrounding suburban areas for the summer season. This phenomenon is more obvious in many 

other megacities in China, and previous studies have shown that higher SUHI intensity was found in 

Beijing, Shanghai, and Shenzhen [12,15,53]. 

4.1.2. Relationships among LST and RSIs, ISA%  

A scatterplot was used to evaluate the accuracy of percentage of impervious surface area retrieved 

by MESMA. As illustrated in Figure 5a, the regression analysis exhibits a relationship with an R2 of  

0.80 and a slope of 0.70. Our study showed an overall RMSE of 8.80%. RMSE of 9.49% and 7.83% 

were achieved for less-developed areas (with ISA less than 30) and the developed area (with ISA 

greater than or equal to 30), respectively. Moreover, compared with the results of some prior studies 

based on the spectral mixture analysis, such as [54] (R2 = 0.70, 200 samples), [55] (R2 = 0.73, 50 samples) 

and [56] (R2 = 0.78, 64 samples), the result reported by our study was acceptable and reliable. 

 

Figure 5. (a) Accuracy assessment of estimated ISA% on August 15, 2010; (b) Scatterplot of 

LST vs. ISA% on August 15, 2010; (c) Scatterplot of Mean LST vs. ISA% on 15 August 2010. 

A total of 500 randomly generated sample points obtained from the 2010 imagery were employed to 

investigate the relationship between LST and ISA%. Figure 5b reveals a relatively weak positive 

correlation between LST and ISA%, with the determination coefficient of only 0.42. Several studies 

including those conducted by [57,58] reported that ISA% is positively correlated with the surface 

temperature. However, it should be mentioned that [24,27] reported that the coefficients of determination 

of LST to ISA% were fairly low (R2 was less than 0.4). In our study, the relationship demonstrated is not 

(a) 

(b) (c) 
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obvious, indicating there might be more complicated associations between them. This probably can be 

partly attributed to that the LST of the impervious materials is complex and susceptible to the 

arrangement and configuration of the buildings and paved road [59]. Nonetheless, most of the higher 

LST values (average, maximum and minimum) were associated with higher percentage ISA for the 

selected samples, asserting the role of impervious surfaces in shaping the UHI effect. To further explore 

this elusive contribution, a zonal analysis was utilized to evaluate the average LST at each 1% increment 

of ISA%. A good linear relationship between the average LST and ISA% statistically determines by the 

analysis and shown in Figure 5c, confirming ISA% can describe the variations in LST. 

In this study, four RSIs including NDVI, VIUPD, NDBI, and BCI were employed to establish 

relationships with LST. Figure 6 shows the distribution of the NDVI, VIUPD, NDBI, and BCI indices 

from the Landsat TM image on 15 August 2010. In addition to a sample with 500 randomly generated 

points available for scatter plot analysis, the corresponding average temperature values at 0.01 intervals 

were also calculated for each index. The coefficients of determination R2 between average LST and 
various remote sensing indexes were computed. 

(a) (b) 

(c) (d) 

Figure 6. Spectral indices in the study area derived from Landsat TM image on 15 August 

2010, (a) Normalized Difference Vegetation Index (NDVI); (b) Universal Pattern 

Decomposition (VIUPD); (c) Normalized Difference Built-up Index (NDBI) and (d) 

Biophysical Composition Index (BCI). 

Figure 7a,b shows that NDVI was roughly correlated to LST. For the region where density of 

vegetation was lower, this correlation was weak with some slight fluctuations. However, when the 

vegetation coverage was above a certain level (e.g., NDVI ≥ 0.10), an obvious decreasing trend in 
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temperature was observed. Concerning VIUPD (shown in Figure 7c,d), when the density of vegetation 

cover was lower, the correlation between LST and VIUPD was positive with the coefficients of 

determination (R2) greater than 0.98. Conversely, for the region where vegetation density was high, the 

correlation between LST and VIUPD was negative with R2 around 0.99. The value 0.52 for VIUPD 

could be considered a threshold to split dominated land cover. When VIUPD was larger than 0.52, the 

dominated land type was vegetation covers and urban impervious surfaces; while when VIUPD was 

less than 0.52, the dominated land type is understory vegetation and the mixture of vegetation covers, 

bare soil and a small account of water pools. It should be noted that since the range of 0.4 and 0.5 was 

dominated by understory vegetation and the mixture of vegetation, bare soil and a small account of 

water bodies, it is reasonable that LST increased in this range. 

 
Figure 7. Scatterplot of LST versus the remote sensing indexes on 15 August 2010  

(a) Scatterplot of LST vs. NDVI; (b) Scatterplot of mean LST vs. NDVI; (c) Scatterplot of 

LST vs. VIUPD; and (d) Scatterplot of mean LST vs. VIUPD. 

The regression analysis between VIUPD, NDVI and LST presents the relationships quantitatively 

and clearly in Equations (13) and (14). Results show that LST is sensitive to vegetation covers in terms 

of a negative correlation; yet, the retrieved surface temperature is more sensitive to the changes of 

VIUPD, especially for the sparse vegetation covers since the impact of soil background and understory 

vegetation is taken into consideration and eliminated by VIUPD. 
28.44 36.0 0.974T NDVI R     (13)

2235.64 27.48, 0.989, 0.52T VIUPD R VIUPD      
(14)214.06 43.43, 0.992, 0.52T VIUPD R VIUPD      

(a) (b) 

(c) (d) 
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NDBI was used to quantitatively analyze the correlation between built-up area and LST. The 

relationship among them reveals a statistical correlation (Figure 8a,b). The lower NDBI corresponded 

to a low LST, whereas the higher NDBI coverage was associated with high-density built-up areas that 

lead to higher LST. However, researchers previously found that bare soil and impervious surfaces 

experienced a wider variation in surface temperature than vegetation cover [60,61], and our analysis 

above is also consistent with previous findings, and demonstrated that bare soil has a similar thermal 

response to urban impervious surfaces. To remove the influence of bare soil in the low-density built-up 

class, a quantitative analysis was carried out using the BCI, which is effective in separating impervious 

surfaces and bare soil. Figure 8c,d shows that positive correlations among the LST and BCI was more 

significant than that of NDBI and LST and larger variations response to surface temperature was 

exhibited in Figure 8d. For the region occupied by vegetation and bare soil (NDBI < −0.3 and  

BCI < 0.0), there is a relatively large range in remote sensing values for BCI compared to NDBI to 

describe LST. The regression analysis between NDBI, BCI and LST presents the relationships 

quantitatively and clearly in Equations (15) and (16). 
213.63 33.93 0.971T NDBI R    (15)

28.61 30.76 0.988T BCI R   (16)

 

Figure 8. Scatterplot of LST vs. remote sensing indexes on 15 August 2010 (a) Scatterplot 

of LST vs. NDBI; (b) Scatterplot of mean LST vs. NDBI; (c) Scatterplot of LST vs. BCI; 

and (d) Scatterplot of mean LST vs. BCI. 
  

(b) 

(c) (d) 

(a) 
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4.2. Analysis of Urban Thermal Patterns at the Microscale Level 

An evaluation of surface temperature retrieval is important for SUHI applications. In this study,  

15 field measurements, collected almost simultaneously with the TASI overpasses, were used to 

evaluate the accuracy of temperature and emissivity derived from TASI. More specifically, four 

predominant land covers including construction material (five samples), soil (two samples), vegetation 

(four samples) and water body (two samples) collected on August 15, 2010 were used to assess the 

performance of TASI. Results [33] showed a satisfactory agreement with ground data in the same 

program of Shijiazhuang, with root mean square error value of 0.046 for broad-emissivity and 2.2 °C for 

temperature. This suggests the airborne based LST can be acceptable and reliable for further analysis. 

The finer LCTs map obtained from high spatial resolution data is shown in Figure 9. Surface 

temperature of much finer spatial resolution retrieved from TASI data were shown in Figure 10. The 

microscale study in this research mainly focused on profoundly examining the thermal response of 

urban land covers using multi-temporal TASI imagery. Mean temperature and SD of different land 

cover types was calculated for the TASI image of different time phases, and results are shown in  

Table 8. In addition, the frequency distributions of LST over various LCTs (Figure 11) were utilized to 

comprehensively investigate the thermal behavior of diversified urban materials. 

 

Figure 9. LCTs map derived from WV2 image and SASI image using SVM and watershed 

segmentation method. 

Concerning the time phase of early morning, the temperature differences among various urban 

covers were smaller compared to other periods of time (noon and evening). Most land cover had a 

relatively similar thermal response at this time, and their surface temperature differences were 

minimal. Water was observed to show the highest temperature with an average value of 23.24 °C. For 

the noon and evening, as can be clearly seen, the most important surface components contributing heat 

to urban areas were rooftops, asphalt, and concrete which have lower thermal inertia. Contrary to the 
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morning, water and vegetation area had lower temperatures during the noon. When it came to the 

evening, the temperature of impervious surface and bare soil was still higher than other cover types 

due to significantly different thermal bulk properties. 

 

Figure 10. LST derived from TASI imagery on (a) the morning of 7 August 2010; (b) the 

noon of 7 August 2010; (c) the noon of 15 August 2010; (d) the evening of 25 July 2010; 

and (e) the evening of 27 July 2010. (Note that the white regions are those could not pass 

the data quality control.)  

Table 8. Descriptive statistics of LST (in °C) derived from TASI LST images over 

different land cover types in 2010 (the overpass time is in local time).  

Date 
Augest 7 

(7:00–8:00) 

Augest 7 

(12:00–13:00) 

Augest 15 

(13:00–14:00) 

July 25 

(17:00–18:00) 

July 27  

(17:00–18:00) 

Land Cover Type MEAN SD MEAN SD MEAN SD MEAN SD MEAN SD 

Rooftop  21.21 1.24 36.41 4.53 43.99 5.09 34.71 3.18 30.63 1.14 

Concrete  21.93 1.16 33.45 3.19 40.76 4.99 36.39 3.09 31.19 1.25 

Water  23.24 1.57 28.08 2.86 31.30 4.09 32.66 2.83 29.12 1.49 

Soil 21.29 1.09 31.76 3.24 37.38 5.08 35.12 3.19 30.70 1.25 

Mixed Asphalt 22.02 1.07 33.24 4.13 39.10 6.58 36.18 3.48 31.26 1.48 

Vegetation  20.82 0.91 28.78 2.69 33.31 3.57 32.58 2.93 29.62 1.19 

Tree  21.69 0.89 29.21 3.13 33.87 4.29 33.33 2.71 29.97 1.19 

(b) (a) (c) 

(d) (e) 
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Figure 11. Histogram of LST over all land covers on (a) the morning of 7 August 2010; 

(b) the noon of 7 August 2010; (c) the noon of 15 August 2010; (d) the evening of 25 July 

2010; (e) the evening of 27 July 2010. 

For the two most commonly used impervious materials (concrete and mixed asphalt), both of them 

had a higher variability and wider extent in temperature likely due to the heterogeneity of 

imperviousness surfaces. This heterogeneous characteristic is determined by many factors such as 

thermal properties and anthropogenic activity [62,63]. Interestingly, concrete was warmer than asphalt 

during the noon and evening, but appeared cooler in the morning. This can be attributed to the thermal 

conductivity and heat capacity of concrete which allow it to absorb more radiation during the day. In 

addition, a description of surface temperature reveals that metal rooftops comprise both the highest 

maximum and the lowest minimum temperature; with a maximum mean LST of 43.99 °C and a 

maximum SD of LST of 5.09 °C. Contrarily, vegetated areas were cooler by about 3 °C than 

impervious areas during the noon by average. Moreover, a surface temperature difference for regular 

vegetation (mainly grassland and cropland) and tree canopy showed that the former was slightly cooler 

than the latter, with a temperature difference of about 0.5–1 °C not considering the systemic errors 

from TES algorithm. Slight temperature deviation between the regular vegetation and trees is probably 

due to many factors, such as the water content of the vegetation and the mixed energy emission from 

the ground beneath and vegetation covers. The relatively high water content in the grassland and crop 

is perhaps the major reason for this phenomenon in our study. We found that a considerable fraction of 

(a) (b) 

(c) 
(d) 

(e) 
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the short grassland was interspersed with urban wetland (park and pools), which would contribute to 

the lower LST. In addition, cropland in this region basically was irrigable land, thus making the LST 

of cropland tending to be slightly lower than the trees in urban areas. 

In order to carefully discover the surface temperature responses in the local domain, the two subset 

images covering the same region acquired on the noon and morning of 7 August 2010 were selected 

and subtracted. Experiments found that the maximum value of averaged temperature difference was 

recorded for rooftop, followed by concrete and asphalt, with a respective value of 13.82 °C, 11.52 °C, 

and 11.11 °C. As expected, water body has the minima of 5.58 °C. Concerning the percentage pixels 

occupied by temperature differences with respect to three impervious surface types (rooftop, concrete 

and asphalt), the STD values was 3.96 K, 2.73 K and 4.92 K. Moreover, it was observed that about 

80% of the pixels fall under the temperature difference level of 12.6 K, 10.3 K and 9.8 K, respectively, 

for these three impervious surface types. This reveals that the surface temperature differences vary 

significantly in the microscale domain and the impervious materials are more responsible for urban 

thermal variations. Chudnovsky, et al. [64] emphasized that the land cover variability, which is due to 

the complexity of the urban composition, manifests itself in the development of the UHI phenomenon. 

Furthermore, since the temperature difference of the rooftop, concrete and asphalt is obvious, our 

experiments suggest that this discrepancy information can be treated as auxiliary data to classify fine 

urban material. References such as [65–67] even used thermal properties of surface temperature or 

surface emissivity to classify urban regions. Complementing these studies, we believe that the 

temperature difference obtained from high-resolution sensors can facilitate in discriminating urban 

land cover. 

Based on the urban thermal spatial patterns, two profile transects along the north–south direction (in 

Figure 1) across different TASI images were constructed to examine the distribution of UHI in the city 

of Shijiazhuang (Figure 12). The two profiles were drawn in a degraded spatial resolution of 30 m to 

include most of the urban cover types in the study area. For the first temperature profile, numerous 

peaks and valleys occurred on the right-hand side, especially for noon. This is associated with the fact 

that built-up areas were mostly localized in the southern part (right-hand side) of the study area and the 

suburban areas were mainly in the northern (left-hand side). Results clearly show the larger 

temperature fluctuations existed in the built-up land such as commercial and industrial areas, whereas 

the lower fluctuations were observed in the left-hand area, which was mainly covered by cropland and 

low dense built-up. Similarly, the highest peaks were recorded in the central urban area for the second 

temperature profile. Furthermore, it was noted that as the two profiles moved from suburb areas to 

urban covers, the increase of surface temperatures continued as they entered into more impervious 

surfaces. This demonstrates that the urban area is warmer than the surrounding suburb areas, and 

thereby further confirming the variation of urban thermal patterns existed in the study area. In addition, 

the thermal variation in the early morning was much smaller than that during noon and the evening. 

This heat variation was found not only among the city center and surrounding areas but also between  

highly-dense built-up and low-density built-up areas.  
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(a) 

 

(b) 

Figure 12. North–south land surface temperature profiles derived from TASI LST images, 

(a) Line 1; (b) Line 2 (locations marked in Figure 1). 

4.3. Comparison of the TASI and LANDSAT TM LST 

In our study, the airborne imagery was acquired at a high-spatial resolution and at a local time 

different from the overpass time of the Landsat. The spatial and temporal disparity for the two sensors 

makes it hard to make a comparison between TASI LST with LANDSAT LST. To provide an 

assessment of the retrieved LST of two used sensors, we carried out the comparisons of LST from the 

sensors in the urban-suburb region when both sensors had observations available on 15 August 2010. 

The overpass time was about 13:30 (Local time) for TASI and about 10:50 (Local time) for Landsat TM 

on that day. Before the comparison, a simple spatial resampling was applied to both the Landsat and 

TASI pixels for resampling them to 30 m which is the resolution the visible bands of TM. 

A scatter plot of the TASI and Landsat LST is shown in Figure 13a. The determination correlation 

(R2) is 0.62 with a bias of 3.71 K, indicating that TASI observed a higher LST compared to Landsat 

TM for most of the pixels. The Root Mean Square Error (RMSE) is 5.31 K. Most of the relatively 

larger differences with a value above 5 K are found in the urban region (south in Figure 10). In 

addition, the pixel scale comparisons were categorized and examined according to the four dominant 

land-cover types, including impervious surfaces, vegetation, waterbody and bare soil. For the waterbody, 

LST from TASI has a relatively smaller bias, which is 1.47 K relative to the Landsat LST and the 

corresponding RMSE is 2.36 K. The vegetation has a positive bias of 1.84 K and an RMSE of 2.79 K 

between the TASI and TM LST. Most of the pixels with a large deviation between the TASI LST and the 

Landsat LST are found in the impervious surface areas and bare soil types, and the bias and RMSE is 

4.03 K and 5.62 K for impervious surfaces, and 3.71 K and 5.31 K for bare soil. This implies that a larger 

surface temperature rise occurred on the impervious surfaces from the overpass time of Landsat (about 

11:50 in local time) to the overpass time of TASI (about 13:30 in local time) on 15 August 2010.  
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To understand the spatial variability, the LST profile of TASI LST and LANDSAT LST was 

examined on the two line transects in Figure 1 (see in Figure 13b). TASI observed a higher LST than 

Landsat for most of the pixels on the line mainly due to the time lag of about two hours. At the  

same time, TASI showed a much higher variability of LST especially for the intensive built up area. 

Figure 13b confirms that more detailed information of the surface temperature can be captured by the 

TASI sensor. The LST from the TASI sensor was assessed in a prior study [33]. An accuracy of 2.2 K 

was achieved by comparing the TASI LST with the in situ LST measured at the same local time. 

(a) (b) 

Figure 13. Comparison of the LST from TASI and Landsat TM on 15 August 2010 (a) 

Scatter plot of the LST; (b) the LST profile on two line transects (Lines marked in Figure 1). 

5. Discussion 

Through the inspection of thermal values of LANDSAT TM (Table 5) and TASI (Table 8), we 

found a basically similar thermal response. A decrease of thermal values was recorded with impervious 

and soils, and followed by vegetation and water body. Our results at both levels indicate the 

composition of urban cover significantly affects the magnitude of LST. The land cover feature that 

contributes most to the magnitude of LST is the impervious surface. Within the study area, the mean 

LST of impervious surfaces was about 2–5 °C higher than that of the vegetation covers. It is 

particularly worth noting that the integration of high-precision community classification schemes and 

fine thermal values is effective in characterizing thermal pattern variability in urban areas. The TASI 

retrieved LST over each land cover category was basically similar to that of Landsat images, further 

supporting the finding that diversity of impervious surfaces (rooftops, concrete, and mixed asphalt) 

contributes most to the urban heat island. More specifically, the high percentage of impervious 

surfaces in the CBD creates a high value in LST at noon, revealing the influence of various dark 

impervious surfaces (i.e., concrete and asphalt) on energy irradiance. The thermal response in 

residential areas, which contains a blend of impervious surfaces and vegetated covers, is a function of 

the density of the houses, the amount of vegetation and the age of the neighborhood. 

Through the inspections of the correlations of RSIs, ISA% and LST, we found that the increase of 

vegetation cover would decrease LST; whereas the increase of impervious surfaces (buildings and 

paved roads) would increase LST as well as facilitating the urban heat island phenomena. This is 
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mainly due to the fact that changes in percentage of vegetation covers and impervious surface area 

would lead to modifications of the land surface characteristics that greatly affect urban heat energy 

budget and balance, such as albedo and evapotranspiration [68]. On the other hand, although urban 

thermal environments can be depicted with an urban ecology landscape metric in terms of the ISA% 

using remote sensing, the effect of impervious surfaces on LST is complicated, and revealing the 

linkage between them is not straightforward. Since urban LST varies with the combined factors of 

building arrangements and shape such as largest patch index and patch density of paved  

surfaces [59,69], it is surprising to see that LST cannot be explained by ISA% with a high 

determination coefficient in Figure 5. Despite all this, the analysis of relationships between LST and 

percentage ISA reveals that surface temperature variations could be better accounted for by percentage 

ISA than by the commonly used NDVI based on the zonal analysis. This research replenished previous 

achievements, which suggested that percent imperviousness is suitable for LST studies. According to 

this context, our study suggests that ISA% retrieved from remote sensing provides an additional 

valuable metric in the study of UHI effects and attention should be focused on it further research work.  

Given that RSIs are commonly used in the assessment of land type coverage, relationships between 

four RSIs and LST were established by using regression analysis in the present research. Results show 

that with different densities of vegetation covers and impervious surfaces, there are different patterns 

of relationships between LST and RSIs. When the density of fallow land and impervious surface was 

predominant, and in the correlations between LST and NDVI, NDBI remained unstable because these 

two indices are intended to highlight only one land cover feature, yet confusions among other land 

cover features (particular impervious surfaces and bare soil) could not be effectively addressed. In this 

study, two physically based remote sensing indices involving VIUPD and BCI were proposed to 

account for the variation of surface temperature. According to the conceptual V-I-S framework, urban 

land cover types (excluding water) can be regarded as a combination of several basic biophysical 

components. On this basis, VIUPD and BCI were proposed to quantify biophysical compositions for 

an urban area. These two indices both well consider the role of lower density land covers, and 

therefore have greater potential in capturing the LST trend. A full validation of the VIUPD and BCI 

was not conducted in our study; however, the results from the comparison of them with commonly 

used index were promising. The comparisons with NDVI and NDBI demonstrated the strength of these 

two indexes in the context of urban thermal modelling. However admittedly, RSIs obtained from 

medium resolution images is not good enough to describe urban thermal environmental due to its 

limitations in capturing the fine surface thermal characteristics. Therefore, the RSIs’ approach needs 

further study to determine whether it a reliable tool to analyze SUHI effect.  

Regarding the two temperature profiles obtained from TASI images (shown in Figure 12), both 

profiles exhibited similar properties during the three time phases. Surface temperatures increased 

significantly with the increase of solar radiation. These temperature profiles exhibited higher 

variability, and larger temperature fluctuations in the built-up land such us commercial and industrial 

areas, whereas the lower fluctuations were observed in cropland and low dense built-up. It should be 

noted that these heat variations were found not only among the city center and surrounding areas, but 

were also seen between dense built-up and low density built-up areas with greater fluctuation. This 

indicates that the distribution and arrangement of urban land covers plays a significant role in the 

SUHI effect, and moreover, it reveals that the difference in building density may lead to different 
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thermal patterns. It is closely related to the fact that the modification of the variability or the 

complexity of buildings can change solar heat absorbed by the impervious surfaces because of the 

varied exposure surfaces. 

By explicitly investigating the spatial pattern of urban thermal emissions on two different spatial 

scales, the approach used in this study expands and strengthens our understanding of the roles and 

interactions of LCTs on LST in urban landscapes. Study suggests that careful consideration is required 

for land use planning, particularly in urban–suburb areas where a widespread change in LCTs can 

significantly impact thermal responses. Regrettably, based on the above context, it was found that, 

over that five year period since 2006, a significant increase of built-up area and a decrease in 

vegetation covers (cropland, forest, and grassland) had taken place in the city of Shijiazhuang resulting 

from urban sprawl. The built-up area increased from 638.815 km2 in 2006 to 681.259 km2 in 2010, 

while vegetation decreased from 1660.359 km2 to 1629.085 km2 in the same periods. In terms of the 

areal extent of the diversity categories based on percentage ISA, overall the areal extent of percentage 

ISA > 30% was 616.252 km2 in 2006, and it increased to approximately 688.293 km2 in 2010. A sharp 

increase also occurred in the categories of >75% ISA. These LCTs changes inevitably lead to a higher 

frequency of UHI effect [28,52]. Just as the current study being reported, the Landsat thermal images 

have revealed obvious heat island effect in the Shijiazhuang city during summer days since 2006, with 

SUHI intensities of 2–4 °C. Therefore, urban planners attempting to mitigate the negative impact of 

urban sprawl on urban heat island should give serious consideration to both the area percentage of 

various land-cover types and their spatial distribution as well.  

6. Conclusions 

In this paper, the surface thermal characteristics of Shijiazhuang, China, was studied at two different 

spatial scales. Multi-scale remote sensing images mainly from Landsat TM and TASI were applied to 

analyze the spatial variations of LCTs as well as the SUHI effect. To assess the influences of land 

cover types on LST, four scenes of Landsat images acquired in summer days were used to retrieve  

LCTs, ISA% and LST, as well as quantifying the relationships among them. Meanwhile, detailed 

urban thermal characteristics of the central Shijiazhuang city were examined using multi-temporal 

airborne thermal images.  

Results show that satellite data (LANDSAT TM) are very useful for investigation of the SUHI 

effect at a mesoscale level; however, they do not lend themselves to gaining a better understanding of 

which specific surfaces contribute to the urban heat island effect and to what degree. Nevertheless, 

high resolution thermal image data can offer detailed characterization for the complex urban 

landscapes, and hence achieve a more realistic and through assessment of the urban heat island. 

Overall, several conclusions were drawn from our research: (1) SUHI existed in the Shijiazhuang in 

summer days, and apparent discrepancies in LST were found among urban land cover types with a 

difference at noon as high as 7 °C for satellite images and as high as 10 °C for airborne images; (2) 

quantitative analysis between LST and various indices revealed that a large variation of LST even 

existed for the same land cover type (i.e., impervious surface, vegetation); however, these LST 

variation can be described by the commonly used indexes (with R2 of 0.74 and 0.65 for NDVI and 

NDBI, respectively). The other two indexes VIUPD and BCI which take into account biophysical 
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composition information turned out to do a better job to establish the relationship with LST (with R2 of 

0.79 and 0.73, respectively); (3) the analysis of urban thermal signatures at two different spatial scales 

complement each other, and the use of airborne imagery data with higher spatial resolution is helpful 

to reveal more details and distinguish the different land covers (i.e., concrete and asphalt, lawn and 

urban trees) in the understanding of urban thermal environments for different time periods. 
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