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Abstract: As a critical variable to characterize the biophysical processes in ecological 

environment, and as a key indicator in the surface energy balance, evapotranspiration and 

urban heat islands, Land Surface Temperature (LST) retrieved from Thermal Infra-Red 

(TIR) images at both high temporal and spatial resolution is in urgent need. However, due 

to the limitations of the existing satellite sensors, there is no earth observation which can 

obtain TIR at detailed spatial- and temporal-resolution simultaneously. Thus, several 

attempts of image fusion by blending the TIR data from high temporal resolution sensor 

with data from high spatial resolution sensor have been studied. This paper presents a 

novel data fusion method by integrating image fusion and spatio-temporal fusion 

techniques, for deriving LST datasets at 30 m spatial resolution from daily MODIS image 

and Landsat ETM+ images. The Landsat ETM+ TIR data were firstly enhanced based on 

extreme learning machine (ELM) algorithm using neural network regression model, from 60 

m to 30 m resolution. Then, the MODIS LST and enhanced Landsat ETM+ TIR data were 

fused by Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping 

(SADFAT) in order to derive high resolution synthetic data. The synthetic images were 
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evaluated for both testing and simulated satellite images. The average difference (AD) and 

absolute average difference (AAD) are smaller than 1.7 K, where the correlation 

coefficient (CC) and root-mean-square error (RMSE) are 0.755 and 1.824, respectively, 

showing that the proposed method enhances the spatial resolution of the predicted LST 

images and preserves the spectral information at the same time. 

Keywords: extreme learning machine; Landsat; land surface temperature; MODIS;  

spatial-temporal fusion; thermal infrared images 

 

1. Introduction 

In order to monitor the rapid and continual changes of the global environment, Land Surface 

Temperature (LST), as the prime and basic physical parameter of the earth’s surface, has been studied for 

over a decade. LST plays a key role in modeling the surface energy balance [1,2] and has a significant 

impact on analyzing the heat-related issues such as soil moisture [3,4], evapotranspiration [5–7],  

and urban heat islands [8,9]. Compared with traditional methods using data from weather stations, 

remote sensing satellite images provide a more effective and efficient method to estimate LST and 

offer a synoptic view of the study area. However, due to the limitations on both spatial and temporal 

resolution of the existing satellite sensors, there is no earth observation which can obtain Thermal 

Infra-Red images (TIR) at detailed spatial- and temporal-resolution simultaneously. 

Currently, the applications of thermal infrared remote sensing in urban environment studies require 

heat-related information at high spatial resolution, as well as high temporal resolution [7]. However, in 

order to collect more reflected and emitted signal from the earth, large spatial coverage, e.g., lower 

spatial resolution from the earth observation is required. For instance, several sensors such as Landsat 

Thematic Mapper (TM)/Enhanced TM Plus (ETM+)/Operational Land Imager (OLI) and Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), obtain TIR data between 60 m and 

120 m [10–13] and they are always used for regional and global LST studies [14,15]. In addition, the 

platforms with a minimum 16-day revisit cycle may prohibit its application. The revisit cycle for a 

particular area may be extended due to the poor atmospheric conditions, such as cloud and haze [16]. 

Particularly in cloud-prone environments, e.g., Hong Kong and the Pearl River Delta region, the poor 

atmospheric conditions result in a very low probability of obtain cloud-free Landsat imagery (e.g., 

10% in a year with cloud cover below 10%) [17].  

On the contrary, other sensors, such as Advanced Very High Resolution Radiometer (AVHRR), and 

MODerate resolution Imaging Spectroradiometer (MODIS), provide a daily revisit cycle, but at a  

coarser spatial resolution ranging from 250–1000 m, which may not be able to detect the high level of  

detailed information and seriously impede their potential applications [18,19]. As a consequence, it is  

necessary to develop a new image fusion method that can integrate complementary characteristics 

from multi-sensors, in order to generate synthetic LST data with high spatial and temporal resolution. 

There are some previous studies of remote sensing data fusion methods using multiple optical  

sensors [20–22]. Considering different characteristics between the TIR band and the visible bands, 

traditional image fusion models, such as the widely used Principle Component Analysis (PCA) based 
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fusion methods [23,24], Intensity-Hue-Saturation (HIS) transformation method [25,26] and wavelet-based 

image fusion methods [27,28], are more concentrating on the visual effects of the fused images, which may 

not be useful for quantitative remote sensing applications. Hence, some downscaling approaches have been 

developed for TIR images. A generalized theoretical framework with semi-empirical regression and 

modulation integration techniques was constructed by Zhan et al. [29] and they evaluated all three fusion 

data including digital number, radiance and land surface temperature. Rodriguez-Galiano et al. [30] applied 

the Downscaling CoKriging (DCK) method to obtain high spatial resolution LST images using the same 

scene data at a coarser resolution and the Normalized Difference Vegetation Index (NDVI). The 

downscaled TIR band was also used to improve the land cover classification accuracy and derive 

evapotranspiration images of surface energy balance model in a large heterogeneous landscape [31–33].  

However, this study is not only aiming on downscaling the TIR images to retrieve higher details of 

spatial information, but also on fusing high spatial and high temporal data from multi-sensors, e.g., 

blending high spatial resolution Landsat data and high temporal MODIS data, in order to generate 

synthetic LST maps. A spatial and temporal data fusion model named the Spatial and Temporal 

Adaptive Reflectance Fusion Model (STARFM) [34] was firstly developed to predict daily surface 

reflectance at a Landsat 30 m spatial resolution using one or more pairs of Landsat and MODIS images 

on the same day, and one MODIS image on the predicted day, based on the weighted average 

approach. The STARFM algorithm has been widely used to provide information for monitoring the 

seasonal changes in vegetation cover and large changes in land use [34]. The performance of 

STARFM is highly dependent on the characteristic of the landscape patch size. In order to overcome 

the shortcomings of STARFM, Zhu et al. [35] proposed an Enhance STARFM model to improve the 

accuracy of the predicted image. Compared to STARFM, ESTARFM results preserve more spatial 

details on finer resolution images, especially for heterogeneous land covers. Hilker et al. [36] also 

designed a new fusion approach named Spatial and Temporal Adaptive Algorithm for mapping 

Reflectance Change (STAARCH) for distinguishing and recording the changes of reflectances in both 

MODIS and Landsat data. Among the above approaches, only STAARH considers the change in land 

cover types, but it can only be used for predicting the changes in forest [36]. A semi-physical fusion 

approach employs the MODIS BRDF/Albedo land surface characterization product and Landsat 

ETM+ data to predict ETM+ reflectance, and the method can also be used for ETM+ cloud/cloud 

shadow, SLC-off gap filling, and relative radiometric normalization [37]. Through an unmixing-based 

spatial and temporal fusion model, Zurita Milla et al. [38] integrated Landsat TM and MERIS data, 

however, the results were highly dependent on the quality of the land cover map generated from 

Landsat images. In addition, a robust SParse representation-based SpatioTemporal reflectance Fusion 

Model (SPSTFM) has been developed to predict high spatial resolution surface reflectance through 

data blending with low spatial resolution data. Results show that the SPSTFM is able to capture the 

changes of surface reflectances in both the changes of phenology and land-cover types [39,40]. These 

methods were designed for data fusion of surface reflectance rather than for TIR data. Huang et al. [41] 

developed a spatiotemporal image fusion model based on bilateral filtering to derive high resolution 

LST images. This model works in a densely time-series LST data for urban heat island monitoring. 

Weng et al. [42] proposed a new data fusion model named Spatio-Temporal Adaptive Data Fusion 

Algorithm for Temperature Mapping (SADFAT) to predict synthetic thermal radiance and LST images 

at both high temporal and spatial resolution by blending daily MODIS and periodic Landsat datasets. The 
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prediction accuracy of SADFAT, as measured by the mean absolute difference, ranged from 1.25 K to 2 K. 

SADFAT was developed for predicting Landsat-like thermal radiance and LST data based on the 

Spatial and Temporal Adaptive Reflectance Fusion Model (STARFM) which also considers annual 

temperature cycle (ATC) and urban thermal landscape heterogeneity [42]. 

In this paper, in order to generate synthetic high spatial resolution LST images from available 

satellite-borne sensors, a thermal sharpening method based on extreme learning machine (ELM) algorithm 

for neural network regression model was firstly adopted, in order to enhance the 60 m Landsat ETM+ TIR 

band to 30 m resolution. Then, the MODIS LST and enhanced Landsat ETM+ TIR data were blended 

through Spatio-temporal Adaptive Data Fusion Algorithm for Temperature mapping (SADFAT) (followed 

by the algorithm developed by Weng et al. [42]) to generate synthetic LST data at 30 m resolution. 

2. Methodology 

2.1. Extreme Learning Machine (ELM) Algorithm 

For pattern recognition and image classification, traditional image fusion methods focus on the 

enhancement of visual effects, including color and texture enhancement; however, for quantitative 

remote sensing applications and thermal infrared image analysis, the preservation of spectral brightness  

values is a higher priority. In this paper, an extreme learning machine (ELM) algorithm [43,44]  

was selected to obtain the internal physical regression relationship between the 60 m Landsat ETM+ TIR 

image and corresponding 30 m multispectral bands (including visible, near and shortwave infrared bands).  

Extreme Learning Machine (ELM) proposed by Huang et al. [45] is designed for single-hidden 

layer feed-forward neural networks (SLFNs) that can adjust the input weights and determine the output 

weights analytically. Due to the random determination of the input weights and hidden biases, ELM 

requires numerous of hidden neurons. In practice, the number of hidden neurons should be larger than 

the number of the variables in dataset, since the useless neurons from the hidden layer will be  

pruned automatically. 

Figure 1 shows the structure of single hidden layer feed forward neural network based on ELM 
using the activation function,    g sig i i ix b  w x . 

 

Figure 1. Structure of the single hidden layer feed forward neural network using Extreme 

Learning Machine (ELM). 
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The output weight β for a training set   , , , 1, 2, ,n m
i i i iA i N   x t x R t R  with activation 

function  g x  and hidden neuron N  can be calculated according to the following steps:  

(i) Allocate the input weight iw  and bias , 1,2, ,ib i N   arbitrarily. 

(ii) Compute the hidden layer output matrix H . 

(iii) Use the equation 1β H T to calculate the output weight matrix β . 

2.2. Spatio-Temporal Adaptive Data Fusion Algorithm for Temperature Mapping (SADFAT) 

The Spatio-Temporal Adaptive Data Fusion Algorithm for Temperature Mapping (SADFAT), 

developed by Weng et al. [42], was used to predict synthetic Landsat-like thermal radiance and LST 

images in this paper. In the algorithm, the MODIS radiance images were first resampled to the same 

spatial resolution (e.g., 30 m) of Landsat ETM+ images, and M is denoted as the MODIS pixel while L 

is denoted as the Landsat pixel. In urban areas, most of the pixels from MODIS images covered more 

than one land cover type, and these were named mixed pixels. Therefore, the linear spectral mixture 

analysis (LSMA) algorithm was employed to define the radiance of a mixed pixel. In order to correlate 

the Landsat radiance with the MODIS radiance, it is assumed that each L pixel is deemed as pure pixel 

and can be considered as an end-member of a M pixel; as a result, the radiance of the M pixel can be  

defined as: 

  2

1 1 1 1

1
( ) , , ( , , )

N N

M j i M j i L j
i i

k
R t l R x y t l R x y t

k k 

 
    
   (1)

where R denotes the radiance at the satellite sensor, N is the pixel number of Landsat within a MODIS 

pixel and li denotes the fraction of each Landsat pixel, (x, y) represents a given location, t is the 

acquisition date, and k1, k2 are the coefficients for the relative adjustment for the Landsat and MODIS 

radiance pixels [42]. Therefore, if there are two pairs of Landsat ETM+ and MODIS image acquired at 

t1 and t2, respectively, Equation (2) indicates that the ratio of the radiance change of jth L pixel to the 

radiance of corresponding M pixel is constant for a certain L pixel can be quantified as below: 

 
 
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2 1
1
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M M

i ii
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h
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k 

 
 

 
 

(2)

where hj is denoted as the conversion coefficient for the purpose of consistency, ω reflects the phase 

shift of a pixel and is related with the thermal characteristics of land cover, and it is a constant if the 

land surface materials does not change in the period of observation [42]. Thus, if there is a pair of L 

and M radiance images at t0 and an M radiance image at tp, the L radiance image at tp can be predicted 

by the following equation: 

0 0( , , ) ( , , ) ( , ) ( , , ) ( , , )L p L M p MR x y t R x y t h x y R x y t R x y t       (3)

By adding information from neighbouring spectral similar pixels, a moving window would be used 

to calculate the radiance of the central pixel [34]. Therefore, supposing s  is the moving window size, 

the predicted L pixel radiance can be rewritten as: 
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   0 012 2 2 2
( , , ) ( , , ) , , , ,

N

L s s p L s s i i M i i p M i ii
R x y t R x y t W h R x y t R x y t


        (4)

where Wi represents the weight of a neighboring similar pixel, and N  is the number of the spectral 

similar pixel. In this paper, after predicting the radiance image using SADFAT method, enhanced Landsat 

ETM+ TIR data with both high spatial and temporal resolution would be converted to LST using the 

generalized single channel method [46]. More details of SADFAT can be referred to Weng et al. [42]. 

2.3. Implementation of the Proposed Data Fusion Model 

Figure 2 presents a flowchart of the proposed fusion model. The implementation consists of two 

steps to produce synthetic spatial resolution LST maps using Landsat ETM+ and MODIS LST images. 

In the first step, a thermal sharpening method using ELM algorithm was selected to improve the 

Landsat ETM+ TIR 60 m resolution image to 30 m resolution. The multispectral and TIR digital 

number (DN) values were first converted to the radiance values using metadata, and these could ensure 

the two satellite images have a strong intrinsic correlation of the same land surface types. Then, the 

hidden layer output matrix, i.e., internal physical regression relationship between the 60 m spatial 

resolution of Landsat ETM+ TIR band and corresponding six 30 m resolution multispectral bands, was 

ascertained through the ELM algorithm where the hidden neurons were set to 1000. Finally, the 

enhanced 30 m resolution Landsat TIR data were computed using the weight vector obtained by neural 

network regression model. 

In the second step, the MODIS LST and enhanced Landsat ETM+ TIR data were blended using 

SADFAT algorithm [42] to generate a final synthetic LST data at 30 m resolution. The algorithm 

requires at least two pairs of Landsat and MODIS images acquired at the same date and a set of MODIS 

images on the desired prediction dates. Before implementing the SADFAT algorithm [42], MODIS LST 

images should be converted to radiances at the Landsat ETM+ effective thermal wavelength and all the 

images including enhanced Landsat ETM+ TIR and the converted MODIS radiance images should be 

geo-registered to the same coordinate system and atmospherically calibrated to the surface radiance. The 

inputs of this step are two pairs of L and M images at t1 and t2 and one M image at the prediction date tp. 

The details of data processing are described as below: 

(i) Two L images were used to search for the spectrally similar pixels using the method described 

by Gao et al. [34] that define a difference threshold between the central pixel and the 

neighbouring pixels in a moving window.  

(ii) The combined weight and conversion coefficient for each similar pixel were computed. Here, a 

similar pixel with higher thermal similarity and shorter distance to the central pixel would yield 

a higher weight and the conversion coefficients were decided by the regression analysis of the 

similar pixels [35].  

(iii) Equation (5) was employed to compute the desired predicted image at tp. Considering the 

temporal weights of the two images given by the temporal changes in coarser radiance images, 

an accurate radiance image can be computed by using the weighted combination of the two 

predicted radiance images as follows: 

1 1 2 22 2 2 2 2 2( , , ) ( , , ) ( , , )s s p t t s s p t t s s pL x y t T P x y t T P x y t     (5)
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where /2 /2( , )s sx y represents a location of the central pixel in a moving window, t is the acquisition date, 

1t
P and

2t
P are the predicted radiance image using L image at t1 and t2 as the base image, respectively, in 

which the temporal weight Tk can be calculated as: 
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 (6)

where M(x, y ,t , B) is the resampled radiance at time t of band B. 

(iv) Finally, the LST images can be derived using the generalized single channel method. 

 

Figure 2. Flowchart of the proposed fusion model for predicting synthetic LST image at  

30 m resolution. 

3. Results  

3.1. Study Area 

A study area of 12 km × 12 km, part of Guangzhou, China, was selected (see Figure 3). The study 

area consists of various landscapes, including water, impervious surface, bare soil, vegetation, etc., and 

possesses a subtropical climate with moist summers and dry winters. 

Three Landsat ETM+ images covering the study area (path/row: 122/44) were obtained from the 

United States Geological Survey (USGS) website. These datasets were acquired on 20 October, 7 

December and 23 December 2013, and they are the L1G level product and are geographically corrected. 

The corresponding daily MODIS LST (MOD11A1), reflectance data (MOD09GA) and water 

vapour content data (MOD05_L2) were downloaded through the Atmosphere Archive and Distribution 

System website. The MODIS LST (MOD11A1) products were derived from the generalized split-

window LST algorithm and the uncertainty of the MODIS-LST production algorithm is around 1 °C in 

the range of −10 °C to 50 °C, for the surfaces with known emissivities [47]. 
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Figure 3. Location of the study area. 

3.2. Experiment Results 

In this study, the developed fusion methodology was applied to three pairs of Landsat ETM+ and 

MODIS images both in testing and simulated experiments (Figure 4). Two pairs of the MODIS and 

Landsat images, acquired on 20 October and 23 December 2013, respectively, were used as base 

images input to the fusion model, while the remaining images acquired on 7 December 2013, was used 

to validate the accuracy of prediction. For the testing experiment, the original multispectral images and 

TIR image of Landsat ETM+ were downscaled to 120 m using the pixel averaging method, then the 

ELM algorithm was employed to enhance the spatial resolution of the degraded TIR image from 120 m 

to 60 m, and the original TIR image at 60 m was used as the referenced data for validation. The 

correlation coefficient (CC), root-mean-square error (RMSE), average difference (AD) and absolute 

average difference (AAD) were selected as indicators to evaluate the accuracy of thermal spatial 

sharpening of Landsat TIR images using ELM algorithm and to validate the synthetic LST. For the 

simulated experiments, since there is no reference to TIR images at 30 m resolution, the reliability of 

ELM and SADFAT was validated only through visual effects. 

 

Figure 4. The flowchart of the testing and simulated experiment. 

m m m m

m m m
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Figures 5 and 6 showed the thermal spatial sharpening results (lower row) of all the testing and 

simulated Landsat radiance images (middle row) using the extreme learning machine (ELM) algorithm for 

the neural network regression model. Comparing the spatial sharpened images in both testing and 

simulated experiments, it can be observed that the sharpened images have more spatial details, such as 

roads, textural information of forest, urban streets and edges of rivers. Additionally, CC, RMSE, AD, AAD 

were computed between the sharpened and original radiance images at both 60 m resolution (Table 1).  

The RMSEs between the sharpened and original radiance images are 0.0844, 0.0891, and 0.0909, and 

the CC values are 0.8788, 0.8251, and 0.8017 on different dates, respectively. AD values on 20 

October and 7 December 2013 are negative values showing that the predictions overestimate the TIR 

data slightly. Although some details may be lost during the ELM spatial enhancement, the low RMSEs 

and the strong CCs indicate that the ELM can preserve much of the physical TIR information in the 

original input TIR images for quantitative remote sensing applications. 

 

Figure 5. Thermal spatial sharpening results of testing experiments via ELM algorithm. 

False colour images of downscaled Landsat ETM+ multispectral data at 60 m (upper 

row), downscaled TIR images at 120 m (middle row) and sharpened TIR images at 60 m 

(lower row). The original TIR images at 60 m refer to the middle row in Figure 6. From 

left to right, they were acquired on 20 October, 7 December and 23 December 2013. 
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Figure 6. Thermal spatial sharpening results of simulated experiments using ELM algorithm. 

False colour images of observed Landsat ETM+ multispectral data at 30 m (upper row), TIR 

images at 60 m (middle row) and Enhanced TIR images at 30 m (lower row). From left to 

right, they were acquired on 20 October, 7 December and 23 December 2013. 

Table 1. Quantitative assessment of thermal sharpening in the testing experiment via ELM. 

Date 20 October 2013 7 December 2013 23 December 2013 

CC 0.8788 * 0.8251 * 0.8017 * 

RMSE 0.0844 0.0891 0.0909 

AD −9.8940e-06 −2.1980e-06 6.3913e-06 

AAD 0.0595 0.0620 0.0614 

Note: AD is the average of the original value minus the ELM predicted value; * significant at 0.001 level (p ＜ 0.001). 

In the second step of the proposed fusion model, considering the characteristics of complex surface 

in this study area, the size of the searching window was set to three MODIS pixels and there are five 

land cover types in the SADFAT. To ensure the accuracy of searching similar pixels and obtain the 

NDVI values at the prediction date for LST retrieval, the reflectance values of both Band 3 and Band 4 

combined with the thermal radiance information from Band 6 of Landsat ETM+ and its corresponding 
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bands of MODIS at t1 and t2 were input into the SADFAT fusion model developed by Weng et al. [42]. 

Figures 7 and 8 showed the results of predicted images at 60 m and 30 m on 7 December 2013, 

respectively. For both the testing and simulated experiments, the predicted LST images (Figure 7b and 

Figure 8b) are visually similar to the original Landsat LST images (Figure 7c and Figure 8c), but they 

provide higher spatial details in terms of thermal information. 

Figure 7. SADFAT result in the testing experiment. (a) MODIS LST images resampled 

from 1 km to 60 m; (b) SADFAT-derived image at 60 m; (c) original Landsat ETM+ LST 

image at 60 m spatial on 7 December 2013. 

Figure 8. SADFAT result in simulated experiment. (a) MODIS LST images resampled 

from 1 km to 30 m; (b) SADFAT-derived image at 30 m; (c) up-scaled Landsat ETM+ 

LST image at 30 m spatial on 7 December 2013. 

Figure 9 displays the scatter plots between the predicted and observed LSTs for testing experiment 

on 7 December 2013. It shows a strong agreement between predicted and observed LSTs in testing 

experiment. Nevertheless, there are slight differences in some pixels between the predicted and 

observed LSTs, owing to the limitation of SADFAT that may not be suitable for the changes in land 

cover and other surface conditions during the prediction period [42]. Table 2 shows the results of CC, 

RMSE, AD and AAD between the predicted and observed LSTs for the testing experiment at 60 m. The 

values of AD and AAD are smaller than 2.0 K whereas the CC values are larger than 0.75 suggesting 

significant consistency. 
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Figure 9. Scatter plots between the predicted and original LSTs at 60 m of the testing experiment 

on 7 December 2013. x-axis denotes the original LSTs, and y-axis denotes the prediction LSTs. 

Table 2. Indicators of prediction accuracy on 7 December 2013 (unit: K). 

Indicator  CC RMSE AD AAD 

testing experiment 0.7554 * 1.8242 1.6354 1.6498 

Note: AD is the average of the original LST value minus the predicted LST value; *significant at 0.001 level 

(p ＜ 0.001). 

4. Discussion  

The proposed fusion model employs ELM to enhance the spatial resolution of TIR data before using 

the spatial-temporal fusion algorithm. As shown in Figures 5 and 6, the sharpened images of both 

testing and simulated experiments have more spatial details compared with original Landsat TIR 

images. As shown in Figure 7b and Figure 8b, it can be observed that the predicted LST images 

provide higher spatial details in terms of thermal information than the original Landsat LST images 

(Figure 7c and Figure 8c) in both the testing and simulated experiments. In Figure 9, the scatter plot of 

the testing experiment shows a strong relationship between predicted and original LSTs at 60 m. In 

addition, small values of AD and AAD (Table 2) (less than 1.7 K) and high values of CC (larger than 

0.75) are observed. These results show that our proposed method can enhance the spatial resolution of 

the predicted LST image and also preserve the spectral information simultaneously. 

However, there are still some limitations/errors in the proposed method, including: (i) the thermal spatial 

sharpening ELM algorithm is highly time-consuming; (ii) some important information in the original TIR 

images may be lost during the ELM spatial enhancement; (iii) the proposed fusion method cannot predict 

the changes in LST that are not presented on the MODIS and/or Landsat images, especially in the missing 

pixels caused by cloud contamination [42]; (iv) the proposed fusion method requires at least two input pairs 

of fine and coarse resolution images, in the same season or under similar atmospheric conditions; (v) the 

number of land cover types and the size of a moving window should be determined by searching similar 

pixels in SADFAT, which may limit the automated process. Thus, more research on the following issues 

will be conducted in the near future: (i) by improving the fusion accuracy and efficiency of ELM 

simultaneously, and (ii) developing a more advanced fusion method for generating synthetic LST images to 

resolve the limitations of seasonal changes and different atmospheric conditions. 
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5. Conclusion  

In this paper, a novel data fusion method by integrating a thermal spatial sharpening algorithm with 

spatial-temporal fusion to generate synthetic LST datasets at both high spatial and temporal revolution 

was developed. The performance of this method was tested using Landsat ETM+ and MODIS images 

both in testing and simulated experiments. At first, the extreme learning machine algorithm was 

selected to enhance the spatial resolution of the Landsat ETM+ TIR data. Then, the MODIS LST and 

enhanced Landsat ETM+ TIR data were fused using SADFAT developed by Weng et al. [42] to derive 

high temporal resolution synthetic data. The proposed image fusion method provides an alternative to 

generate the synthetic high resolution image for remote sensing applications from multi-source satellite 

data. Compared with the traditional spatio-temporal adaptive data fusion algorithm, the synthetic LST 

images derived in this study can depict more spatial details. The generated synthetic LST product can 

be used for monitoring the variation of land surface temperature in urban heat island studies. Further 

research on other sensors such as Landsat TIRS, HJ-1B satellite will be conducted. 
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Appendix A. Extreme Learning Machine (ELM) Algorithm 

Extreme Learning Machine (ELM) proposed by Huang et al. [45] is designed for single-hidden layer 

feed-forward neural networks (SLFNs) that can adjust the input weights and determine the output weights 

analytically. Supposing the number of training samples (xi, ti) is N, where  T n

i1 i2 in
x , x , , x 

i
x = R  and 

 T

1 2
, , , m

i i im
t t t 

i
t R , the standard SLFNs equipped with N  hidden neurons and activation function 

   g sig
i i i

x b  w x  can be mathematically expressed as:  

Hβ = T  (7)
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 , And H represents the hidden layer output matrix of the neural network; ib  is the 

threshold of the ith hidden neuron;  T1 2, , ,i i i inw w ww   denotes the weight vector connecting the ith 

hidden neuron and the input neurons;  T1 i2β ,β ,L,βi i imβ  stands for the weight vector connecting the 

ith hidden neuron and the output neurons. 

Appendix B. Spatio-Temporal Adaptive Data Fusion Algorithm for Temperature Mapping (SADFAT) 

The Spatio-Temporal Adaptive Data Fusion Algorithm for Temperature Mapping (SADFAT), 

developed by Weng et al. [42], was used in this study to predict synthetic thermal radiance and LST 

images in the second step. Below is a brief description of the algorithm: 

If there are two pairs of Landsat ETM+ and MODIS image acquired at t1 and t2, respectively, the 

changes of radiance of a M pixel between t1 and t2 can be computed as: 

2 1 2 1
11

1
( ) ( ) ( ) ( )

N

M M i iL iL
i

R t R t l R t R t
k 

    (8)

where R  denotes the radiance at the satellite sensor, N is the pixel number of Landsat within a MODIS pixel 
and il  denotes the fraction of each Landsat pixel, t  is the acquisition date, and 1k  is the coefficient for the 

relative adjustment for the Landsat and MODIS radiance pixels. Considering the seasonal change of LST 
based on ATC, and

 
through the Planck’s law, the radiance change of an L pixel from 1t  to 2t  can be 

expressed as: 

 1 2 2 1
2 1( ) ( ) 2 cos ω sin cos ω

2 2iL iL i i

e e e e
R t R t d a a D ae

           
   

 (9)

where a  is the angular frequency, ω  is the phase shift, or heat lag, d  is the amplitude of the radiance 
variation, D  is the constant, and e  is the mean acquisition date, 1e  and 2e are the parameters input to 

the algorithm. Therefore, if the radiances of the jth L pixel at date 1t  and 2t  are known, the equation 

can be formulated as Equation (10): 

  2 1
2 1( ) ( ) 2 cos ω sin

2jL jL i

e e
R t R t d ae a

     
 

 (10)

By combining Equation (9) with Equation (10), the Equation (11) indicates that the ratio of the radiance 

change of jth L pixel to the radiance of the corresponding M pixel is constant for a certain L pixel, which 

can be quantified as below: 
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where jh  is named the conversion coefficient for the purpose of consistency,   reflects the phase shift 

of a pixel and is related with the thermal characteristics of land cover.  
Supposing s  is the moving window size, if there is a pair of L and M radiance images at 0t  and a M 

radiance image at pt , the predicted L radiance image at pt  can be predicted by the following equation: 

   0 012 2 2 2
( , , ) ( , , ) , , , ,

N

L s s p L s s i i M i i p M i ii
R x y t R x y t W h R x y t R x y t


        (12)

where iW  represents the weight of a neighbouring similar pixel, and N  is the number of the spectral 

similar pixel. In this paper, after predicting the radiance image using SADFAT method (Weng et al. [42]), 

enhanced Landsat ETM+ TIR data with both high spatial and temporal resolution would be converted 

to LST using the generalized single channel method [46]. The following equations are the 

implementation procedures of the generalized single channel method for ETM+ TIR data. 

 1
1 2 3ε φ φ φ βsurface sensorT R        (13)

1
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c R
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      

 and β sensor sensorR T    (14)

where surfaceT  is the retrieval temperature of the surface, sensorR and sensorT  stands for the radiance and 

brightness temperature at-satellite, respectively,  (11.3355 μm) is the effective wavelength for ETM+ 
sensor, 1c , 2c are the constants, ε  is the land surface emissivity. The atmospheric functions are 

described with the water vapour content: 

2
1

2

3

φ 0.14714 0.15583 1.1234

φ 1.1836 0.37607 0.52894

φ 0.04554 1.8719 0.39071 1



    
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 (15)

where   is the water vapour content, which can be obtained from the water vapour content product 

(MOD05_L2). 
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