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Abstract: Based on a novel bare surface soil moisture (SSM) retrieval model developed 

from the synergistic use of the diurnal cycles of land surface temperature (LST) and net 

surface shortwave radiation (NSSR) (Leng et al. 2014. “Bare Surface Soil Moisture 

Retrieval from the Synergistic Use of Optical and Thermal Infrared Data”. International 

Journal of Remote Sensing 35: 988–1003.), this paper mainly investigated the model’s 

capability to estimate SSM using geostationary satellite observations over vegetated area. 

Results from the simulated data primarily indicated that the previous bare SSM retrieval 

model is capable of estimating SSM in the low vegetation cover condition with fractional 

vegetation cover (FVC) ranging from 0 to 0.3. In total, the simulated data from the 

Common Land Model (CoLM) on 151 cloud-free days at three FLUXNET sites that with 

different climate patterns were used to describe SSM estimates with different underlying 

surfaces. The results showed a strong correlation between the estimated SSM and the 

simulated values, with a mean Root Mean Square Error (RMSE) of 0.028 m3·m−3 and a 

coefficient of determination (R2) of 0.869. Moreover, diurnal cycles of LST and NSSR 

derived from the Meteosat Second Generation (MSG) satellite data on 59 cloud-free days 

were utilized to estimate SSM in the REMEDHUS soil moisture network (Spain). In 
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particular, determination of the model coefficients synchronously using satellite 

observations and SSM measurements was explored in detail in the cases where 

meteorological data were not available. A preliminary validation was implemented to 

verify the MSG pixel average SSM in the REMEDHUS area with the average SSM 

calculated from the site measurements. The results revealed a significant R2 of 0.595 and 

an RMSE of 0.021 m3·m−3. 
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1. Introduction 

The water held in the top few centimeters of the soil, namely surface soil moisture (SSM), is an 

essential land surface variable because it determines the partitioning of energy at the surface and 

consequently impacts the associated water and energy fluxes especially over low vegetated  

conditions [1,2]. The SSM always plays a considerable role in various hydrological models [3,4], 

meteorological studies [5,6] and ecological applications [7,8]. It is also a fundamental parameter in  

many other domains, such as the agricultural process [9,10] and carbon/nitrogen cycles [11,12]. 

Traditional methods usually set up various dense in situ networks for monitoring soil moisture with 

Time-Domain Reflectometry (TDR) or Frequency-Domain Reflectometry (FDR). Although the  

in situ network is the most accurate way to obtain soil moisture at present, it is expensive and most  

likely limited in representing the spatial distribution of soil moisture due to the heterogeneity of the 

underlying surface. 

Remote sensing offers a potential alternative for characterizing the distribution and quantity of soil 

moisture at a variety of scales. With the spatial advantage of remote sensing technology, the 

observation of SSM or SSM-related surface variables using remotely sensed data has been widely 

documented with different electromagnetic spectra from the optical to the microwave regions [13–23]. 

In general, backscattering coefficient of the surface can be detected by active microwave remote 

sensing, and subsequently used to estimate soil moisture. However, most of the present active remote 

sensing systems for exactly the same configuration usually characterize a relatively long revisit time, 

which is not sufficient for global soil moisture monitoring products. Although the Advanced 

Scattermeter (ASCAT) is capable of providing soil moisture product with a temporal resolution of 2–3 

days, it is merely the value from 0 to 100 representing the extremely dry to extremely wet conditions, 

rather than the real volumetric water content that is more expected in the aforementioned areas. 

Compared to active microwave remote sensing, passive microwave remote sensing has shown great 

potential in the monitoring of SSM through the past Advanced Microwave Scanning Radiometer-Earth 

Observing System (AMSR-E) to the present Soil Moisture and Ocean Salinity (SMOS), as well as in 

the upcoming Soil Moisture Active-Passive (SMAP), which will be combined with active remote 

sensing [13–15]. However, the coarse spatial resolution of passive microwave (~25–40 km) has greatly 

restricted its application, especially at the relatively small scale. Similar to the passive microwave remote 

sensing, the use of optical/thermal infrared remote sensing to obtain SSM information has also received 

considerable research attention over the last decades because it has an adequate spatial and temporal 
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resolution, one of the most commonly used optical/thermal infrared data are from the Moderate-

Resolution Imaging Spectroradiometer (MODIS) that possess the spatial resolution of 1 km. For bare 

or sparsely vegetated conditions, the thermal inertia or apparent thermal inertia (ATI) that primarily 

calculated from the optical/thermal infrared bands, were widely recognized as a feasible proxy of soil 

moisture [24–26]. However, the TI (or ATI) is not the quantitative SSM content, and the empirical 

relationship between TI (or ATI) and SSM content is not unique and varies with the variation of soil 

texture. Analogously, empirical models to convert the optical/thermal data-derived evaporative 

fraction (EF) to soil moisture values also generally work better for bare soils and shallowly rooted 

plant covers [27]. For more vegetated regions, the soil moisture status was usually obtained from some 

soil moisture related land surface variables, such as the land surface temperature (LST), the vegetation 

index (VI) and the evapotranspiration (ET), as well as other auxiliary data (e.g., soil texture, SSM 

measurements and meteorological data). In particular, based on the scatter plot of LST/VI feature 

space, the Temperature-Vegetation Dryness Index (TVDI) was one of the most commonly used indices 

to infer soil moisture status [28]. With the optical/thermal infrared information, many other feature 

spaces and indices were also developed to indicate soil moisture or soil moisture related land surface 

parameters. Nevertheless, these indices are far from the real moisture content value, and empirical 

relationships between these indices and soil moisture measurements are usually needed to convert the 

remotely sensed indices to quantitative SSM content at the regional scale. 

Although the optical/thermal infrared remote sensing of soil moisture has a strong physical basis 

and fine spatial resolution that better satisfies the requirements of various applications, it measures soil 

moisture indirectly, and these indirect measurements (e.g., ATI, EF and TVDI) usually need to be 

converted to quantitative soil moisture content using empirical relationships with other auxiliary data, 

such as ground soil moisture measurements and soil texture information. In a recent study, Leng et al. 

(2014) reported a novel bare SSM retrieval model from the synergistic use of the diurnal cycles of LST 

and net surface shortwave radiation (NSSR) [29]. In this SSM retrieval model, diurnal cycles of LST 

and NSSR (from either ground measurements or simulated data) are used to obtain an elliptical 

relationship model and further to get the ellipse parameters; besides, the five model coefficients  

ni (i = 0, 1, 2, 3, 4) for each cloud-free day are acquired from a land surface model simulation. With 

both the ellipse parameters and model coefficients, quantitative volumetric soil water content for each  

cloud-free day can be estimated by the SSM retrieval model. Compared with the previous 

optical/thermal infrared remote sensing of soil moisture, this newly developed SSM retrieval model 

has several potential advantages. In particular, the SSM retrieval model is capable of estimating the 

quantitative volumetric soil water content value directly without establishing an empirical relationship 

between ground SSM measurements and satellite-derived proxies of SSM. Moreover, as the primary 

input parameters of the SSM retrieval model are derived from the elliptical relationship between the 

diurnal cycles of LST and NSSR, a few images that are contaminated by clouds or other adverse 

factors during the daytime will not practically affect the application of the SSM retrieval model. 

Moreover, this SSM retrieval model is well suited for long-term mapping and monitoring of SSM time 

series through the use of observations from the geostationary meteorological satellites (generally 48–

96 images per day), such as the Meteosat Second Generation (MSG) of Europe, the Feng Yun (FY) of 

China and the Geostationary Operational Environmental Satellite (GOES) of United States of America 

(USA). These abilities are possible due to the attention garnered by numerous algorithms and 
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corresponding land surface products derived from the geostationary meteorological satellites that have 

been developed and thus provided to for research and various applications, especially in the last decade 

(http:// landsaf.meteo.pt/; http://satellite.cma.gov.cn/portalsite/default.aspx#; http://www.goes.noaa.gov/). 

However, because the SSM retrieval model was originally developed for bare soils, some of the 

essential issues remain to be properly addressed before applying the SSM retrieval model to remotely 

sensed observations. As noted by previous studies [29,30], the two main challenges are taking into 

account vegetation and determining the five model coefficients ni (i = 0, 1, 2, 3, 4) of the SSM retrieval 

model for each cloud-free day at a regional scale. On the basis of previous work, this study aims to 

assess the feasibility of using the SSM retrieval model with geostationary satellite observations in 

vegetated conditions. In particular, we also attempt to determine the five model coefficients ni (i = 0, 1, 

2, 3, 4) synergistically using geostationary satellite observations and SSM measurements in cases 

where meteorological data are not available for a land surface model simulation to obtain to  

model coefficients. 

This paper is organized as follows. Section 2 details the study area and the dataset involved  

in the study. Section 3 addresses the methodology. Section 4 mainly deals with the results and analysis. 

Section 5 concludes the paper. 

2. Study Area and Dataset 

2.1. FLUXNET Meteorological Data 

The FLUXNET is a “network of regional networks” coordinating regional and global analysis of 

observations from micrometeorological tower sites. At present, over 500 tower sites are operated on a 

long-term and continuous basis (http://fluxnet.ornl.gov/). The FLUXNET database has been widely 

used to provide essential inputs for ecology and land surface modeling, as well as to evaluate remote 

sensing products (e.g., evapotranspiration, energy components and primary productivity). In this study, 

meteorological data collected at three FLUXNET sites located in USA, namely Bondville, Audubon 

Research Ranch and Brookings, are used to drive a land surface model to produce simulated data and 

are subsequently utilized to develop the methodology for the SSM retrieval in vegetated conditions.  

A detailed description of the three sites is provided in Table 1. 

Table 1. A brief description of the Bondville, Audubon Research Ranch and Brookings 

FLUXNET sites (USA). 

Site Soil Texture Latitude, Longitude Land Use Climate Type 

Bondville Silty Loam 44.0062°N, −88.2904°W cropland temperate continental 

Audubon Research Ranch Sandy Loam 31.5907°N, −110.5092°W desert grassland temperate arid 

Brookings Clay Loam 44.3453°N, −96.8362°W range grassland humid continental 

Meteorological data, including downward solar radiation, downward longwave radiation, 

precipitation, air temperature, wind speed, wind direction, atmospheric pressure at the surface and 

specific humidity with a temporal resolution of 30 min on cloud-free days, are collected at the three 

sites. In particular, to avoid the freeze/thaw conditions, only the meteorological data from the day of 

year (DOY) 100 to 300 are considered in the land surface model simulation. In total, eight cloud-free 
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days at the Bondville site during 2001, which has been used in the same way in Leng et al. (2014) to 

develop the bare SSM retrieval model, are selected to assess the influences of vegetation on the SSM 

retrieval model [29]. Besides, 66 cloud-free days at the Audubon Research Ranch site and 41  

cloud-free days at the Brookings site during 2010, as well as 44 cloud-free days at Bondville site 

during 2006, have also been selected to create simulated data for further investigation. 

 

Figure 1. Study area of the REMEDHUS soil moisture network. The map shows a  

false-color Landsat image (bands 4, 3 and 2) of the area. 

2.2. REMEDHUS Soil Moisture Network 

In addition to the FLUXNET data, soil moisture measurements from the REMEDHUS soil moisture 

network in the semi-arid parts of the Duero Basin (Spain) are also used in this study. The 

REMEDHUS soil moisture network provides a continuous measurement of soil moisture at a depth of 

5 cm each hour. In previous studies, the REMEDHUS soil moisture measurements have been widely 

used to validate and calibrate several satellite-derived soil moisture products at various scales [31–34]. 

Figure 1 depicts the REMEDHUS region, where elevation generally ranges from 700 to 900 m, with a 

relatively gentle slope (less than 10% slope). The REMEDHUS soil moisture data from 19 available 

measurement sites during 2010 and 2011 are obtained from the International Soil Moisture Network 

(ISMN) [35]. The numbers of line and sample for each site in the European portion of the MSG data, 

together with a detailed description of the REMEDHUS sites, are shown in Table 2. For the soil 

moisture measurements and soil texture information of the REMEDHUS sites, comprehensive 

laboratory analyses of soil samples are carried out to calibrate the TDR measurements and to assess the 

soil properties at each station [33, 36]. According to the numbers of line and sample shown in Table 2, 

almost all 19 sites take one specific MSG pixel, except for L07 and M05. The soil moisture 

measurements on cloud-free days in April, July and October of the years 2010 and 2011 at the 19 

available sites are selected in this study. In particular, the selected cloud-free days meet the 
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requirement that the MSG observations must be available for all the pixels that are associated with the 

locations of the 19 measurement sites. Finally, 29 and 30 cloud-free days are selected for the three 

months in 2010 and 2011, respectively. In this study, because meteorological data collected in the 

REMEDHUS network fail to meet the requirement to drive the land surface model, the REMEDHUS 

soil moisture measurements are primarily used to determine the model coefficients of the SSM 

retrieval model combining with the satellite observations. Moreover, these soil moisture measurements 

are also conducted to verify the retrieved SSM in the REMEDHUS region. 

Table 2. Soil textures and locations of the 19 REMEDHUS soil moisture network sites 

(Spain). The numbers associated with the line and sample describe the location of each site 

in the European portion of the Meteosat Second Generation (MSG) data. 

Site Sand (%) Silt (%) Clay (%) Latitude, Longitude Line, Sample 

F06 67.19 13.70 19.11 41.37455°N, −5.54714°W 476, 160 

F11 81.52 11.97 6.51 41.24040°N, −5.54291°W 479, 160 

H07 85.10 9.64 5.26 41.35004°N, −5.48891°W 477, 162 

H09 19.78 44.99 35.23 41.29050°N, −5.43402°W 478, 163 

H13 70.36 11.45 18.19 41.18381°N, −5.47572°W 481, 162 

I06 89.81 5.93 4.26 41.38251°N, −5.42786°W 476, 163 

J03 85.05 11.26 3.69 41.45703°N, −5.40964°W 474, 164 

K04 87.09 9.27 3.64 41.42529°N, −5.37267°W 475, 165 

K09 74.36 15.00 10.64 41.30690°N, −5.35925°W 478, 165 

K10 91.16 5.71 3.13 41.26611°N, −5.37972°W 479, 164 

K13 62.22 18.21 19.57 41.19720°N, −5.35861°W 480, 165 

L03 82.25 6.44 11.31 41.44765°N, −5.35734°W 474, 165 

L07 46.80 20.78 32.42 41.35873°N, −5.32977°W 476, 166 

M05 81.64 8.31 10.05 41.39508°N, −5.32010°W 476, 166 

M09 49.83 24.89 25.28 41.28662°N, −5.29868°W 478, 167 

M13 3.57 32.04 64.39 41.20170°N, −5.27085°W 480, 167 

N09 62.46 16.78 20.76 41.30126°N, −5.24569°W 478, 168 

O07 78.84 13.47 7.69 41.34778°N, −5.22361°W 477, 169 

Q08 86.07 5.68 8.25 41.31359°N, −5.16005°W 477, 170 

2.3. Satellite Observations 

The MSG is a new multi-spectral and multi-temporal geostationary satellite developed by the 

European Space Agency (ESA) and the European Meteorological Satellite Organization 

(EUMETSAT). The satellite has an image-repeat cycle of 15 min. Its main payload is the Spinning 

Enhanced Visible and Infrared Imager (SEVIRI), which features unique spectral characteristics and 

accuracy, with a 3 km resolution (sampling distance) at nadir (1 km for the high-resolution visible 

channel), and 12 spectral channels [37]. At present, several land surface products have been developed 

and provided by the EUMETSAT. In this paper, MSG products, including the LST, the Down-Welling 

Surface Shortwave Flux (DSSF) and land surface albedo on the 59 selected cloud-free days associated 

with the REMEDHUS soil moisture measurements in 2010 and 2011, are obtained from the Land 

Surface Analysis-Satellite Applications Facility (LSA-SAF) [38]. In particular, the DSSF and daily 
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land surface albedo products are used to calculate NSSR, and the diurnal cycles of LST and NSSR 

with the same temporal resolution (30 min) are utilized to describe an elliptical relationship and further 

to derive the ellipse parameters. 

3. Methodology 

3.1. Overview of the Previous Bare Surface Soil Moisture (SSM) Retrieval Model 

Based on the fact that diurnal cycles of LST and NSSR can be described as cosine functions of time 

during the daytime on the cloud-free days, Leng et al. (2014) derive an elliptical relationship between 

LST and NSSR, which can be expressed as [29]: 

           22 22 2
2 1 1 2 1 2 1 2 1 22 cos β sin βp x q p p t x q y q p y q p p t                (1)

where x and y are the dimensionless LST and NSSR, respectively, β is the width of the half-period of 
the cosine term, Δt  is the difference between maximum LST time and maximum NSSR time, 1p , 1q , 

2p  and 2q  are parameters of diurnal LST and NSSR cycles. In general, soil moisture mainly affects the 

soil temperature variation through the thermal inertia for a particular soil texture under a given 

atmospheric condition. While for NSSR, soil moisture has a significant effect on bare surface albedo 

which will greatly govern the diurnal cycle of NSSR. Namely, each combination of soil texture and 

soil moisture will correspond to particular temporal variations of LST and NSSR under a given cloud-
free day. Hence, the parameters ( 1p , 1q , 2p , 2q , β and Δt ) that describe the diurnal LST and NSSR 

cycles are constants for a given soil texture and soil moisture condition, and will also vary differently 

in conditions that the bare surface is with various soil textures and soil moisture status. Based on the 

elliptical relationship between diurnal cycles of LST and NSSR for cloud-free days, the five ellipse 

parameters, including the center horizontal coordinate (x0), the center vertical coordinate (y0), the  

semi-major axis (a), the semi-minor axis (b) and the rotation angle (θ) can be calculated as: 
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Because the ellipse parameters are affected directly by SSM conditions and soil textures for a given 

atmospheric condition, a stepwise regression method is used to determine the parameters for SSM 

retrieval. With the simulated data for eight cloud-free days, it is found that the four ellipse parameters 

(θ, y0, a, x0) are most significant for the estimation of SSM. The newly developed bare SSM retrieval 

model is written as follows: 

1 0 2 0 3 4 0θSSM n x n y n a n n          (3)

where SSM  is the daily average SSM (m3·m−3); x0, y0, a and θ are the ellipse parameters of the 

elliptical relationship between diurnal LST and NSSR cycles and represent the ellipse center horizontal 

coordinate, ellipse center vertical coordinate, semi-major axis and rotation angle, respectively; and  
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ni (i = 0, 1, 2, 3, 4) are the model coefficients (m3·m−3). In particular, with the simulated data, it is  

found that the combination of the ellipse parameters to estimate SSM is also capable of eliminating the 

effect caused by soil texture differences. Hence, the final bare SSM retrieval model is independent of 

soil texture. 

Figure 2 depicts the process of using the proposed SSM retrieval model with geostationary satellite 

data in detail. In general, the application includes two essential parts, the one is the obtaining of ellipse 

parameters (x0, y0, a and θ) from geostationary satellite-derived diurnal cycles of LST and NSSR, the 

other is the determination of the five model coefficients ni (i = 0, 1, 2, 3, 4) for each cloud-free day.  

In particular, the five model coefficients ni (i = 0, 1, 2, 3, 4) can be obtained by either a land surface 

model simulation only if the meteorological data are available as described in previous study or, 

theoretically at least, calibrated by five synchronous observed SSM and the corresponding ellipse 

parameters (x0, y0, a and θ) derived from the elliptical relationship between the diurnal cycles of LST 

and NSSR. On the basis of the previous bare SSM retrieval model, we primarily try to assess the 

feasibility of using the bare SSM retrieval model in vegetated conditions with simulated data. 

Subsequently, because the meteorological data are not available in the REMEDHUS soil moisture 

network, we will attempt to obtain the five model coefficients using the calibration method in our 

study area in the following sections. 

 

Figure 2. Description on the application of the proposed SSM retrieval model. 
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3.2. Land Surface Model Simulation 

Because it is difficult to find a satellite pixel (approximately 10 km2) without the presence of 

vegetation on natural surfaces, except in desert regions, it is essential to investigate the feasibility of 

using the previous bare SSM retrieval model in vegetated conditions before applying the model to 

remotely sensed observations. To achieve this objective, a dataset, including SSM, as well as diurnal 

LST and NSSR cycles, with different underlying surfaces and atmospheric conditions is urgently 

needed for the development of the methodology. Because it is quite difficult to synchronously obtain 

these data with field measurements, a land surface model simulation is chosen as a feasible alternative 

to generate the dataset that is required for the development of a methodology for using the bare SSM 

retrieval model in vegetated conditions. 

 

Figure 3. Scheme of the Common Land Model (CoLM) simulation. 

The Common Land Model (CoLM) is used to produce simulated data with different underlying 

surfaces and atmospheric conditions. In this study, hydraulic properties of 12 soil textures from the soil 

texture classification scheme of the Food and Agriculture Organization (FAO) are computed from  

Bonan (1996) [39]. Besides, the Grassland according to the United States Geological Survey (USGS) 

vegetation categories is set as the vegetation type in the CoLM simulation. In total, we perform two 

simulations in this study, namely sim1 and sim2, respectively. Figure 3 depicts the sim1 and sim2 in 

detail. For the sim1, the fractional vegetation cover (FVC) is set varying from 0 to 1 with a step of 0.1, 

and 10 intervals of initial soil moisture ranging from the minimum value (around the wilting point) to 

the maximum value (around the saturated moisture content) are used to represent different soil 

moisture status (Table 3). While for the sim2, the LP-Tau sampling method integrated in the Gaussian 

Emulation Machine-Sensitivity Analysis (GEM-SA) [40], is used to obtain totally 400 samples for a 
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given atmospheric condition. For each sample, a unique combination of the soil texture, soil moisture 

and FVC is used to represent a possible underlying surface condition to initialize the CoLM. After the 

model initialization, the meteorological data of the selected cloud-free days at the three FLUXNET 

sites are utilized to drive the CoLM. The outputted diurnal cycles of LST and NSSR, as well as the 

daily average SSM, are collected to create the datasets and further used for the methodology 

development of the SSM retrieval model in vegetated conditions. 

Table 3. Soil textures and surface soil moisture (SSM) ranges implemented in the 

Common Land Model (CoLM) simulation. 

No. Sand (%) Silt (%) Clay (%) Soil Textures Range of SSM (m3·m−3) 

1 92 5 3 Sand 0.010–0.339 

2 82 12 6 Loamy Sand 0.028–0.421 

3 58 32 10 Sandy Loam 0.047–0.434 

4 17 70 13 Silt Loam 0.084–0.476 

5 10 85 5 Silt 0.084–0.476 

6 43 39 18 Loam 0.066–0.439 

7 58 15 27 Sandy Clay Loam 0.067–0.404 

8 10 56 34 Silty Clay Loam 0.120–0.464 

9 32 34 34 Clay Loam 0.103–0.465 

10 52 6 42 Sandy Clay 0.100–0.406 

11 6 47 47 Silty Clay 0.126–0.468 

12 22 20 58 Clay 0.138–0.468 

4. Results and Discussion 

4.1. Effect of Vegetation on the Bare SSM Retrieval Model 

Because the previous SSM retrieval model is originally developed for bare soils, simulated dataset 

from the sim1 are primarily used to investigate the effect of vegetation on the previous bare SSM 

retrieval using the model described in Equation (3). Analogous to previous study, simulated dataset1 

on DOY 103, 192 and 274 in 2001 at the Bondville site is taken as an example. Figures 4 and 5 show 

the results of SSM retrieval for different FVC using simulated data on these three cloud-free days. It is 

evident from Figure 4 that the model coefficients ni (i = 0, 1, 2, 3, 4) exhibit a stable and relatively 

regular variation when FVC varies from 0 to 0.7. When FVC is higher than 0.7, some of the model 

coefficients vary irregularly compared to the cases when FVC is lower than 0.7. In general, 

temperature and net shortwave radiation of the soil surface become extremely weak in the dense 

vegetation coverage (FVC > 0.7) conditions for remote sensing observations, and most of the signals 

are from the canopy. In that case, estimating SSM using such weak information from the 

optical/thermal measurements is most likely implying various uncertainties. For the accuracy of SSM 

retrieval, it exhibits overall a decrease with the increasing of FVC, which is probably due to the fact 

that signal of the soil suffers from a continuous attenuation with the increasing of vegetation coverage. 

In particular, it is clear from the Figure 5 that the SSM retrieval model maintains a relatively high 

accuracy (overall R2 around 0.8 and RMSE lower than 0.04m3m−3) in the low-cover vegetation 

conditions with FVC ranging from 0 to 0.3. 



Remote Sens. 2015, 7 4122 

 

 

Figure 4. Variations of model parameters vs. fractional vegetation cover (FVC) with 

simulated data on DOY 103, 192 and 274 in 2001 at Bondville site. 

 

Figure 5. Variations of the accuracy of SSM retrieval vs. fractional vegetation cover 

(FVC) with simulated data on DOY 103, 192 and 274 in 2001 at Bondville site. 

In addition to the simulated results, ellipse parameters (x0, y0, a, b and θ) theoretically contain less 

information of soil with the increasing of FVC. Considering over-dense vegetation cover (FVC > 0.7), 

as canopy temperature takes a predominant role in the LST, signal from soil become negligible in 

comparison. Moreover, because vegetation has the ability to adjust the temperature to maintain vital 

activities through its strong physiological functions, canopy temperature will not exhibit drastic change 

with different soil moisture and soil texture conditions compared to bare soils, the ellipse parameters 
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consequently vary in relatively narrow ranges. Figure 6 depicts the range of variation of the rotation 

angle (θ) vs. the FVC for soil Loam. In theory, a higher rotation angle (θ) responds to a higher SSM 

value for a given soil texture and atmospheric condition. As shown in Figure 6, it exhibits quite 

different ranges of rotation angle with different FVC for the same initial soil moisture conditions from 

the wilting point to the saturated moisture content. For dense vegetation cover, ellipse parameters 

generally vary in a relatively narrow range from both the simulated data and theoretical basis, which is 

unfavorable for the SSM estimation because small uncertainties of the ellipse parameters probably lead 

to a relatively significant error of SSM retrieval. It further indicates that dense vegetation cover is 

adverse to the estimation of SSM using the previously developed SSM retrieval model. 

Nevertheless, considering the regular variation of model coefficients and accuracy when FVC is  

lower than 0.7, it remains possible to estimate SSM using a uniform expression in such a condition.  

In particular, results from the simulated data exhibit a relatively high accuracy when using the previous 

SSM retrieval model to estimate SSM in sparsely vegetated conditions (FVC lower than 0.3). Based on 

these, we mainly focus on the SSM retrieval in sparsely vegetated conditions in the present study. 

 

Figure 6. Variation of the rotation angle (θ) vs. the fractional vegetation cover (FVC) for 

soil loam with the simulated data on DOY103, 192 and 274 in 2001 at Bondville site. 

4.2. Feasibility of the SSM Retrieval Model in Sparsely Vegetated Conditions 

Based on the simulated dataset, the feasibility of using the SSM retrieval model in sparsely 

vegetated conditions is further investigated. In general, this sparsely vegetated condition for SSM 

retrieval has been extensively studied in remote sensing technology, such as using the remotely sensed 

ATI or EF to estimate SSM. However, the present methods to retrieve SSM from the remotely sensed 

ATI or EF are indirect, and the empirical relationships between SSM and the remotely sensed ATI or 

EF are needed to obtain SSM at the regional scale. In this study, we mainly investigate the feasibility 

of using the previous bare SSM retrieval model to estimate SSM in sparsely vegetated conditions, 

which will be quite promising to estimate SSM directly from the remotely sensed ellipse parameters 

that derived from the diurnal LST and NSSR. 



Remote Sens. 2015, 7 4124 

 

The simulated dataset2 on the eight cloud-free days at Bondville site in 2001 is used here as an 

example to address this issue. With the SSM retrieval model proposed in Equation (3), where the SSM 

is set as the dependent variable and the four ellipse parameters x0, y0, a and θ the independent 

variables, the five model coefficients ni (i = 0, 1, 2, 3, 4) are obtained through a least squares method. 

Table 4 shows the results of the five model coefficients ni (i = 0, 1, 2, 3, 4) and corresponding accuracy 

on these eight cloud-free days. It is evident that the previous bare SSM retrieval model exhibits 

generally high accuracy to estimate SSM in sparsely vegetated condition. The coefficient of 

determination (R2) ranges from 0.789 to 0.970, and the Root Mean Square Error (RMSE) varies from 

0.012 to 0.033 m3·m−3 for the eight cloud-free days. Moreover, the mean R2 and RMSE for these eight 

cloud-free days are 0.876 and 0.025 m3·m−3, respectively, which indicates that the previous bare SSM 

retrieval model is feasible in sparsely vegetated conditions. 

Table 4. Model coefficients and surface soil moisture (SSM) retrieval accuracy in sparsely 

vegetated conditions on the eight selected cloud-free days in the year 2001 at Bondville site. 

DOY n1 n2 n3 n4 n0 R2 RMSE (m3·m−3) 

103 0.182 3.689 3.278 0.768 −2.723 0.855 0.027 
128 −0.451 3.692 3.063 0.262 −1.910 0.792 0.032 
167 −0.188 3.519 2.933 0.218 −1.918 0.957 0.015 
192 −0.140 3.083 2.797 0.272 −2.026 0.970 0.012 
216 −0.258 3.199 2.495 0.384 −1.923 0.807 0.032 
248 0.183 3.590 2.834 0.793 −2.597 0.789 0.033 
274 0.667 3.016 2.711 0.864 −2.330 0.917 0.021 
298 0.113 4.972 3.982 0.422 −2.212 0.925 0.020 

Mean      0.876 0.025 

Because the results from Table 4 are merely based on the data simulated at the Bondville site, to 

determine the general SSM retrieval feasibility in sparsely vegetated conditions with different regions 

and climate patterns, further evaluation is conducted utilizing the simulated data on the other 151  

cloud-free days at the Audubon Research Ranch, Brookings and Bondville sites. Results for all these 

151 cloud-free days are presented in Figure 7. Although these three FLUXNET sites belong to 

different climate patterns, and the atmospheric conditions vary quite differently from these cloud-free 

days at the three sites, the accuracy of the SSM retrieval maintains a relative high level, with the R2 

ranging from 0.712 to 0.993 and the RMSE from 0.011 to 0.040 m3·m−3. For the 151 days, the mean 

RMSE and R2 are approximately 0.028 m3·m−3 and 0.869, respectively. This result exhibits significant 

agreement between the estimated SSM and the simulated values, which further confirms that the use of 

the SSM retrieval model is feasible in sparsely vegetated condition. Note that for the simulated data on 

the 151 cloud-free days, only the meteorological data vary for each day, which lead to the variations of 

the five model coefficients ni (i = 0, 1, 2, 3, 4) and the corresponding accuracy of the SSM retrieval. 



Remote Sens. 2015, 7 4125 

 

 

Figure 7. The coefficient of determination (R2) and Root Mean Square Error (RMSE) 

values of the surface soil moisture (SSM) retrieval in the sparsely vegetated conditions for 

the cloud-free days at the Audubon Research Ranch site (66 cloud-free days), Brookings 

site (41 cloud-free days) and Bondville site (44 cloud-free days). 

4.3. Determination of Model Coefficients from Satellite Observations and Ground SSM Measurements 

The previous section indicates that the use of the SSM retrieval model is feasible in sparsely 

vegetated conditions with simulated data. As described earlier, the five model coefficients ni (i = 0, 1, 2, 

3, 4) for each cloud-free day primarily depend on the atmospheric conditions, and they are essential for 

the application of the SSM retrieval model. In general, because the model coefficients depend on 

atmospheric conditions, they can be obtained by a land surface model simulation only if the 

meteorological data are available in the study area, as shown in previous sections. However, 

meteorological data probably does not always fulfill the requirements by a land surface model 

simulation. In theory, when the meteorological data are not available for the simulation to obtain the 

five model coefficients, ni (i = 0, 1, 2, 3, 4), the five model coefficients can also be acquired by at least 

five groups of synchronous observations (the ellipse parameters and the corresponding SSM) 

according to Equation (3). In this section, because the meteorological data collected at the 

REMEDHUS soil moisture network fail to meet the requirements to drive the CoLM, the SSM 

measurements from the REMEDHUS soil moisture network, together with the ellipse parameters (x0, 

y0, a and θ) derived from the MSG products, are explored to obtain the five model coefficients ni (i = 0, 

1, 2, 3, 4) for each of the cloud-free days. 

As mentioned in Table 2, the numbers of line and sample of the 19 soil moisture sites in the 

REMEDHUS soil moisture network are calculated based on the MSG data. Figure 8 depicts the 19 soil 

moisture sites and the FVC that is derived from the MSG FVC product based on the 11 × 8 MSG pixel 

rectangle area obtained on 15 July 2010. As illustrated by the figure, the 19 soil moisture measurement 

sites are uniformly distributed across the REMEDHUS region, where the FVC exhibits a relatively low 

values ranging from 0 to 0.30. Hence, the REMEDHUS soil moisture network region can be regarded 

as a sparsely vegetated area. 
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Figure 8. The fractional vegetation cover (FVC) values derived from the Meteosat  

Second Generation (MSG) FVC product of the REMEDHUS soil moisture network region 

on 15 July 2010. 

Previous studies have noted that the REMEDHUS region is relatively flat and features low 

heterogeneity, and the point-scale soil moisture data exhibit generally significant linear relationships with 

regional-scale soil moisture in this region [32]. Because no adequate MSG pixel-scale SSM data or other 

proxies are available at present, it is assumed that the SSM measured at each REMEDHUS site is capable 

of representing the SSM value of the corresponding MSG pixel. As illustrated by Figure 8, most of the soil 

moisture sites take one specific MSG pixel, and only L07 and M05 share a pixel, for which the average 

value of the two sites is used as the SSM. Therefore, a total of 18 SSM measurements, together with the 

corresponding ellipse parameters (x0, y0, a and θ) derived from the elliptical relationship between the 

diurnal cycles of MSG-derived LST and NSSR from 8:00 to 16:00 for each of the cloud-free days, are used 

to obtain an optimal solution for the five model ni (i = 0, 1, 2, 3, 4) according to Equation (3). 

In the process of obtaining the five model coefficients, the SSM measurements that are significantly 

higher than the saturated soil moisture content have been discarded. A multiple linear regression with a 

95% confidence level is further used to identify outliers in the regression and to obtain the five model 

coefficients ni (i = 0, 1, 2, 3, 4). Figure 9 depicts the sample size used in the process of obtaining the 

five model coefficients for each of the 59 cloud-free days. It is evident that except for a tiny handful of 

sites that with soil moisture measurements higher than saturated moisture content and the outliers 

identified by the regression with the 95% confidence level, in most of the 59 cloud-free days over 14 

site SSM measurements (total is 18) have been used to calculate the five model coefficients ni (i = 0, 1, 

2, 3, 4) in the aforementioned calibration method. 

With the five model coefficients ni (i = 0, 1, 2, 3, 4) for each of the 59 cloud-free days in the 

REMEDHUS region, the SSM can finally be estimated with the SSM retrieval model. The comparison of 

the estimated SSM vs. the actual SSM for the 59 cloud-free days is shown in Figure 10. Compared with the 

accuracy of the SSM retrieval using simulated data (mean R2 = 0.869 and RMSE = 0.028 m3·m−3), the 

SSM estimation using the model coefficients derived from the actual data (MSG satellite products and 
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REMEDHUS soil moisture measurements) exhibits a lower accuracy. Nevertheless, the results achieve a 

fairly accuracy (R2 = 0.552 with RMSE = 0.055 m3·m−3) for the 59 cloud-free days. 

 

Figure 9. Sample size of the site SSM measurements involved in the process of calculating 

the five model coefficients ni (i = 0, 1, 2, 3, 4) for the selected cloud-free days in 2010 and 

2011 at REMEDHUS soil moisture network. 

 

Figure 10. Comparison of the estimated SSM vs. the actual SSM on the 59 selected  

cloud-free days in the years 2010 and 2011. The model coefficients are obtained  

from the REMEDHUS soil moisture measurements and the Meteosat Second Generation 

(MSG) observations. 

Although the accuracy of the SSM retrieval using actual data is lower than that using the simulated 

data, mean RMSE of the 59 cloud-free days is generally acceptable (around the target accuracy of 

SMOS soil moisture products 0.04 m3·m−3), given that the simulated data primarily describe an ideal 

situation. The uncertainties in the SSM retrieval using the model coefficients derived from the actual 

data can be attributed to several sources of error. Because there are no better ways to obtain the MSG 
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pixel SSM values with an acceptable accuracy at present, the primary error source is the assumption 

that the site SSM measurements represent the MSG pixel SSM values. Although the site measurements 

of SSM most likely have a certain degree of representativeness due to the underlying surface and a 

previous study [32], they are not the true pixel SSM values. A feasible method is suggested to 

implement more intensive SSM observations to produce better SSM value representativeness at the 

pixel-scale using field measurements. The second error source is most likely from the MSG products. 

According to the validation reports, the accuracy of the LST is generally lower than 2 K, and the 

monthly bias values for the DSSF are within ±5% in the majority of cases. Meanwhile, the absolute 

bias for the visible broadband albedo is approximately 1%. As the MSG products are used in this study 

to derive the ellipse parameters and subsequently to estimate SSM, the uncertainties of these MSG 

products may also lead to error in the SSM retrieval. Except for the two aforesaid error sources, the 

SSM retrieval model itself also has a certain error according to the simulated results in previous 

sections. Additionally, although a small number of measured SSM values with soil moisture content 

values that are significantly higher than saturation have been discarded, error may also exist in the 

other SSM measurements. This error may affect the model coefficients and subsequently influence the 

SSM retrieval. 

4.4. Surface Soil Moisture Retrieval and Preliminary Validation 

As the REMEDHUS soil moisture network region in this study merely takes an 11 × 8 MSG pixel 

area (about 33 km × 24 km), atmospheric conditions in such a small region will not vary significantly 

for remote sensing. Consequently, the model coefficients ni (i = 0, 1, 2, 3, 4) determined from the 

synergistic use of the ten MSG observations and corresponding SSM measurements are theoretically 

applicable for the total 88 pixels within this region for each cloud-free day. Based on these, with the 

model coefficients obtained from the previous section and the ellipse parameters for each MSG pixel 

derived from the MSG observations (Table A1 shows an example of ellipse parameters on 15 July 

2010), the quantitative SSM values with the MSG pixel-scale at the REMEDHUS soil moisture 

network region are finally estimated directly via the SSM retrieval model in Equation (3) for each of 

the cloud-free days. Figure 11 depicts the retrieved volumetric SSM content on 15 July 2010. 

Because no adequate SSM estimates at the MSG pixel-scale or at higher spatial resolution are 

available at present, and downscaling methodologies for obtaining higher spatial resolution soil moisture 

data from the low spatial passive remote sensing soil moisture products still need to be improved [41], 

the retrieved volumetric SSM content cannot be validated directly. Nevertheless, we implement a 

preliminary validation to verify the results using SSM site measurements. Firstly, because the site SSM 

measurements are usually averaged to validate the SSM estimates at the pixel scale [31,34], we obtain an 

average SSM by taking the arithmetic mean of the site measurements in the REMEDHUS region for 

each cloud-free day, and these arithmetic mean values are regarded as REMEDHUS average SSM. 

Secondly, except for the ten MSG pixels that combined with SSM measurements to calculate the model 

coefficients, estimated SSM at the rest of the 11 × 8 MSG pixels are averaged to represent the retrieved 

average SSM of the REMEDHUS region. Because these rest pixels take an overwhelming majority of 

the whole 11 × 8 MSG pixels, their mean value is generally reasonable to represent the average SSM of 

the REMEDHUS region. In particular, using the rest of the pixel-scale SSM values rather than the whole 
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88 pixels for the validation can also avoid the repeated use of the ten SSM measurements in both model 

coefficients’ obtaining and SSM validation. Finally, the MSG average SSM values of the REMEDHUS 

region on the 59 cloud-free days are verified by the site average SSM values. Figure 12 depicts the result 

of this preliminary validation. It reveals a better consistency between the MSG average SSM values and 

the REMEDHUS site average SSM values, with a R2 of 0.595 and an RMSE of 0.021 m3·m−3. 

Additionally, a relatively small bias (0.005 m3·m−3) is found in the validation, which further indicates 

that the model coefficients ni (i = 0, 1, 2, 3, 4) determined from the synergistic use of the ten several 

MSG observations and corresponding SSM measurements are feasible to estimate SSM in the whole 

REMEDHUS region. 

 

Figure 11. Retrieved volumetric SSM content (m3·m−3) using the Meteosat Second 

Generation (MSG) data in the REMEDHUS soil moisture network region on 15 July 2010. 

 

Figure 12. Comparison of the Meteosat Second Generation (MSG) pixels’ average SSM 

values vs. the soil moisture sites’ average surface soil moisture (SSM) values for the  

59 selected cloud-free days in 2010 and 2011. 

In addition to this preliminary validation, products developed within the Soil Moisture CCI 

(Climate Change Initiative) project have also been used to validate the estimated results. In the CCI 

project, daily soil moisture product (layer depth of 0.5–2 cm) with a spatial resolution of 0.25° is 
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provided from 1978 to 2010 [42]. In the present study, the estimated SSM with the MSG pixel scale 

are aggregated to the CCI spatial resolution in the REMEDHUS region for the selected cloud-free days 

in 2010 and subsequently to be verified using the available CCI soil moisture product. Figure 13 shows 

the comparison between the estimated SSM and the CCI soil moisture products; a R2 of 0.13 with an 

RMSE of 0.025 m3·m−3 is found between these two datasets. 

 

Figure 13. Comparison of the estimated SSM and the CCI soil moisture product. 

4.5. Prospects of the Surface Soil Moisture Retrieval Model 

The present study primarily investigates the possibility of using a previously developed bare SSM 

retrieval model in sparsely vegetated conditions. Results from the simulated data at three FLUXNET 

sites with different climate types exhibit a relatively stable and high accuracy on the SSM retrieval 

throughout growing seasons, which indicates that the SSM retrieval model is feasible. In particular, a 

preliminary validation from the REMEDHUS network with geostationary observations further  

implies an anticipated potential of applying the SSM retrieval model to the remotely sensed images to 

obtain SSM quantitatively. Nevertheless, several challenges remain to be properly addressed before  

the SSM retrieval model can be used for real satellite images to map and monitor time series SSM at 

the regional scale. 

The first challenge is the determination of the five model coefficients ni (i = 0, 1, 2, 3, 4) at the 

regional scale. Although a relatively small bias is found in the preliminary validation in which the five 

model coefficients are calculated by the synergistic MSG observations and SSM measurements in the 

REMEDHUS region, it is quite difficult for real applications to obtain the model coefficients in this 

way regarding the sparse field SSM measurements with respect to a large and especially heterogeneous 

area. As we know, the five model coefficients depend only on the atmospheric conditions of each 

cloud-free day according to the results and analysis from the simulated data in the previous section, 

and they can be theoretically obtained by a land surface model (e.g., the CoLM) simulation with 

meteorological data collected in the study area. Hence, the quantity and distribution of the 

meteorological station at the regional scale is most likely to be a key point that will greatly affect the 

accuracy of SSM retrieval. In the ongoing work, considering the availability of meteorological data, 

we have been focusing on the parameterization of the five model coefficients ni (i = 0, 1, 2, 3, 4) using 
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only meteorological elements themselves rather than appearing with data simulation by a land surface 

model (e.g., the CoLM) with strong physical basis. Moreover, we will also try in a future study to 

assess the feasibility of parameterizing the model coefficients using the publicly available weather 

forecast information. Only in that way can the SSM retrieval model be operational to map regional 

SSM using geostationary satellite images.  

In addition to the model coefficients, acquisition of the ellipse parameters from the geostationary 

satellite observations is another challenge directly associated with the SSM estimates using the 

proposed SSM retrieval model. Because the ellipse parameters (x0, y0, a and θ) in the SSM retrieval 

model are calculated based on the elliptical relationship between diurnal cycles of LST and NSSR, it is 

evident that the accuracy of SSM retrieval is directly relying on the accuracy of geostationary satellite 

images derived-LST and NSSR. Namely, developing more feasible algorithms and reducing 

uncertainty in the LST and NSSR estimation from geostationary satellite data are effective ways to 

obtain SSM with better accuracy. Besides, because satellites always observe the Earth with a different 

time and angle for pixels within a certain study area at the regional scale, another possible approach to 

improve the accuracy of SSM retrieval using the proposed SSM retrieval model is through a time and 

angular normalization process to obtain LST and NSSR in a unified observation time and angle. 

Moreover, considering that the elliptical relationship is only valid for cloud-free days, this SSM 

retrieval model is most likely limited in the practical applications since the weather condition will not 

always satisfy the requirements by the SSM retrieval model. However, because the proposed SSM 

retrieval model uses the temporal rather than the instantaneous information from the LST and NSSR, 

and at least five synchronous LST and NSSR can form the elliptical relationship, a few images during 

a day may not affect the application of the SSM retrieval model. Nevertheless, more effort should be 

made on the quantitative retrieval of LST and NSSR, and especially the obtaining of the diurnal curves 

of these two land surface variables not only for cloud-free days, to ensure the feasibility of using the 

proposed SSM retrieval model with geostationary satellite observations. With all these efforts, the 

SSM retrieval model can be really operational for long-term mapping and monitoring of SSM  

time series. 

Finally, we would like to emphasize that the SSM retrieval model proposed in this study is quite 

different from the previous optical/thermal remote sensing methods to estimate SSM. In the present 

study, the five model coefficients ni (i = 0, 1, 2, 3, 4) are not the empirical coefficients linking the soil 

moisture and remotely sensed land surface variables (such as the coefficients in the ATI-SSM or  

EF-SSM empirical relationships). In theory, the five model coefficients ni (i = 0, 1, 2, 3, 4) depend 

only on the atmospheric conditions of each cloud-free day, and they can be obtained from a simulation 

by a land surface model (e.g., the CoLM) with strong physical basis as described in previous sections. 

Namely, in theory, ground SSM measurements are not required in the proposed SSM retrieval model 

to map a regional SSM. However, the traditional ATI-SSM or EF-SSM relationships usually need 

SSM measurements (either ground or satellite) to obtain the empirical coefficients. Specifically, these 

empirical relationships are not independent of soil texture. For the proposed SSM retrieval model, it is 

capable of estimating quantitative volumetric soil moisture content directly using geostationary 

satellite derived-LST and NSSR with the model coefficients obtained from a land surface model 

simulation for which only meteorological data are required. 
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5. Conclusions 

In this study, we have primarily pursued the feasibility of a newly developed bare SSM retrieval 

model in vegetated conditions. Based on the SSM retrieval model for bare soils, simulated data were 

first used to evaluate the capability of the model in vegetated conditions. It was found that using the 

bare SSM retrieval model to estimate SSM is feasible in low-cover vegetation area, with FVC ranging 

from 0 to 0.3. The results of the simulated data from the CoLM have demonstrated that the estimated 

SSM is significant and linearly correlated with the simulated values. A mean RMSE of 0.028 m3·m−3 

with a R2 of 0.869 were found between the estimated SSM values and the simulated values for the 151 

cloud-free days at Audubon Research Ranch, Brookings sites and Bondville site. In addition to the 

simulated data, a preliminary validation of the SSM retrieval model using geostationary satellite data 

from the MSG were also presented. In particular, the obtaining of the five model coefficients ni (i = 0, 

1, 2, 3, 4) from the combined use of the REMEDHUS soil moisture measurements and the MSG 

observations was explored in detail. This investigation indicated a feasible way to obtain the model 

coefficients in cases where the meteorological data are not available to drive the CoLM to acquire the 

model coefficients. Compared with the SSM retrieval using model coefficients derived from the land 

surface model simulation, the accuracy was lower when using model coefficients obtained from actual 

data. Nevertheless, the results from the 59 cloud-free days revealed an acceptable accuracy with a R2 of 

0.552 and an RMSE of 0.055 m3·m−3. Additionally, some of the possible error sources were analyzed, 

and a number of recommendations were proposed to improve the accuracy of the SSM retrieval.  

Finally, the average SSM of the 11 × 8 MSG pixel rectangular area of the REMEDHUS soil moisture 

network region was preliminarily verified using the average SSM data from the site measurements for 

the SSM in this region. A R2 of 0.595 and an RMSE of 0.021 m3·m−3 were found. A relatively small 

bias of 0.005 m3·m−3 indicated that using the model coefficients derived from the actual data was 

feasible for the SSM retrieval in this region. 

In summary, the use of the SSM retrieval model has been proven to be feasible in sparsely 

vegetated conditions with both simulated data and remotely sensed observations. In particular, the 

study has presented two methods to obtain the five model coefficients of the SSM retrieval model. One 

is through the simulation of a land surface model using meteorological data; the other is through the 

combined use of several field-based SSM measurements and geostationary observations when 

meteorological data are not available. Compared with the previous optical/thermal remote sensing to 

estimate SSM, because the present SSM retrieval model is capable of obtaining SSM directly from the 

remotely sensed ellipse parameters, and ground SSM measurements are not necessary in the SSM 

retrieval model, no empirical relationships are needed to link the measured SSM and the remotely 

sensed land surface parameters, such as the TVDI-SSM relationships and ATI-SSM relationships. 

Moreover, the model coefficients in the present SSM retrieval model are quite different from the 

empirical coefficients in the previous optical/thermal remote sensing for SSM retrieval. In the 

proposed SSM retrieval model, the model coefficients are theoretically dependent only on the 

atmospheric conditions of each cloud-free day, and they can be obtained from a simulation by a land 

surface model that with strong physical basis only if the meteorological data are available. 

Although some issues with respect to making the SSM retrieval model more operational remain to 

be appropriately addressed, the model shows significant potential to estimate regional SSM using 
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geostationary satellite data. For future development, we will attempt to apply and validate the SSM 

retrieval model with denser ground measurements and other remotely sensed observations, such as the 

FY data from China and the GOES data from the USA. In particular, the feasibility of the SSM 

retrieval model in densely vegetated conditions should be investigated in more depth in ongoing work. 
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Appendix 

Table A1. Ellipse parameters (x0, y0, a, b and θ) derived from MSG images at 

REMEDHUS soil moisture network region (11 × 8 MSG pixels) on 15 July 2010. Line and 

sample describe each pixel in the European portion of the Meteosat Second Generation 

(MSG) data. 

Line Sample x0 y0 a b θ 

474 160 0.5072 0.2835 0.4929 0.0998 0.8997 

474 161 0.5012 0.2948 0.4781 0.0949 0.9201 

474 162 0.5643 0.3468 0.3988 0.0815 0.8571 

474 163 0.5121 0.2693 0.4919 0.0891 0.8519 

474 164 0.5665 0.3251 0.4030 0.0882 0.8672 

474 165 0.5692 0.3543 0.3486 0.0920 0.9170 
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Table A1. Cont. 

Line Sample x0 y0 a b θ 

474 166 0.5340 0.3469 0.3639 0.0837 0.9885 

474 167 0.5800 0.4084 0.3297 0.0775 0.9038 

474 168 0.5237 0.3274 0.4455 0.0886 0.9003 

474 169 0.5405 0.3480 0.3931 0.0861 0.9328 

474 170 0.5951 0.4016 0.3040 0.0789 0.9138 

475 160 0.6117 0.4203 0.3253 0.0819 0.8063 

475 161 0.5702 0.3749 0.3796 0.0842 0.8654 

475 162 0.5515 0.3146 0.4327 0.0802 0.8227 

475 163 0.6199 0.3897 0.3318 0.0784 0.8043 

475 164 0.4897 0.2275 0.5337 0.0959 0.8413 

475 165 0.5534 0.3060 0.4167 0.0939 0.8504 

475 166 0.5835 0.3457 0.3675 0.0859 0.8991 

475 167 0.6162 0.4106 0.3041 0.0823 0.8676 

475 168 0.5346 0.2985 0.4371 0.0928 0.9232 

475 169 0.5802 0.3463 0.3709 0.0805 0.8844 

475 170 0.5507 0.2911 0.4406 0.0869 0.8766 

476 160 0.6121 0.3825 0.3575 0.0777 0.8126 

476 161 0.4251 0.1674 0.6484 0.0897 0.8404 

476 162 0.5404 0.2838 0.4796 0.0795 0.7862 

476 163 0.5939 0.3485 0.3807 0.0805 0.7794 

476 164 0.4297 0.1618 0.6455 0.0942 0.8003 

476 165 0.3563 0.0454 0.7726 0.1043 0.8423 

476 166 0.6293 0.3802 0.3374 0.0750 0.7847 

476 167 0.5240 0.2685 0.4897 0.0885 0.8293 

476 168 0.5773 0.3424 0.3748 0.0777 0.8350 

476 169 0.5375 0.2906 0.4335 0.0799 0.8601 

476 170 0.6128 0.3768 0.3268 0.0791 0.8487 

477 160 0.5485 0.2996 0.4447 0.0833 0.8317 

477 161 0.5791 0.3410 0.3885 0.0758 0.8155 

477 162 0.5927 0.3458 0.3770 0.0756 0.8020 

477 163 0.6110 0.3578 0.3573 0.0794 0.8083 

477 164 0.6124 0.3662 0.3546 0.0815 0.8050 

477 165 0.5737 0.3060 0.4333 0.0832 0.8164 

477 166 0.6054 0.3371 0.3805 0.0795 0.8271 

477 167 0.6195 0.3736 0.3439 0.0730 0.7998 

477 168 0.5570 0.2995 0.4296 0.0830 0.8455 

477 169 0.5445 0.2827 0.4541 0.0824 0.8534 

477 170 0.4421 0.1582 0.6187 0.0949 0.8616 

478 160 0.5487 0.3056 0.4228 0.0809 0.8623 

478 161 0.5534 0.3160 0.4134 0.0795 0.8372 

478 162 0.4654 0.2133 0.5550 0.0862 0.8256 

478 163 0.5473 0.2779 0.4662 0.0861 0.8482 

478 164 0.5659 0.3048 0.4291 0.0881 0.8500 

478 165 0.5828 0.3297 0.4020 0.0871 0.8203 

478 166 0.6295 0.3598 0.3512 0.0801 0.8093 
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Table A1. Cont. 

Line Sample x0 y0 a b θ 

478 167 0.6203 0.3470 0.3709 0.0783 0.7995 

478 168 0.6082 0.3383 0.3881 0.0805 0.7962 

478 169 0.6196 0.3635 0.3585 0.0780 0.7887 

478 170 0.5866 0.3411 0.3863 0.0781 0.8020 

479 160 0.5292 0.2973 0.4266 0.0839 0.8688 

479 161 0.5716 0.3373 0.3837 0.0805 0.8509 

479 162 0.6002 0.3711 0.3491 0.0764 0.8130 

479 163 0.5647 0.3199 0.4099 0.0855 0.8350 

479 164 0.5267 0.2606 0.4819 0.0873 0.8428 

479 165 0.5700 0.3015 0.4345 0.0847 0.8179 

479 166 0.5026 0.2212 0.5573 0.0866 0.7930 

479 167 0.5943 0.3159 0.4158 0.0821 0.7677 

479 168 0.5060 0.2348 0.5296 0.0881 0.8072 

479 169 0.5604 0.3084 0.4299 0.0793 0.8281 

479 170 0.6033 0.3663 0.3384 0.0771 0.8344 

480 160 0.5951 0.3741 0.3257 0.0821 0.8933 

480 161 0.6016 0.3923 0.3185 0.0743 0.8477 

480 162 0.5837 0.3541 0.3753 0.0737 0.8456 

480 163 0.5081 0.2420 0.5120 0.0889 0.8561 

480 164 0.6017 0.3441 0.3871 0.0787 0.8016 

480 165 0.5917 0.3180 0.4194 0.0812 0.7794 

480 166 0.6168 0.3501 0.3773 0.0795 0.7690 

480 167 0.5629 0.2926 0.4410 0.0819 0.8079 

480 168 0.6196 0.3632 0.3329 0.0775 0.8190 

480 169 0.5974 0.3470 0.3678 0.0765 0.8335 

480 170 0.5805 0.3442 0.3719 0.0780 0.8359 

481 160 0.5968 0.3844 0.3253 0.0779 0.8775 

481 161 0.5251 0.3024 0.4472 0.0788 0.8822 

481 162 0.5560 0.3279 0.4156 0.0776 0.8322 

481 163 0.5597 0.3172 0.4337 0.0763 0.8005 

481 164 0.5455 0.2972 0.4596 0.0776 0.7863 

481 165 0.6492 0.3912 0.3175 0.0765 0.7645 

481 166 0.6119 0.3539 0.3705 0.0758 0.7879 

481 167 0.5024 0.2277 0.5339 0.0878 0.8264 

481 168 0.5826 0.3212 0.3955 0.0754 0.8139 

481 169 0.6396 0.3984 0.3049 0.0677 0.7613 

481 170 0.6107 0.3766 0.3485 0.0741 0.7877 
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