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Abstract: Dry Land Asia is the largest arid and semi-arid region in the northern hemisphere 

that suffers from land desertification. Over the period 1982–2011, there were both overall 

improvement and regional degeneration in the vegetation NDVI. We analyze future climate 

changes in these area using two ensemble-average methods from CMIP5 data. Bayesian 

Model Averaging shows a better capability to represent the future climate and less 

uncertainty represented by the 22-model ensemble than does the Simple Model Average. 

From 2006 to 2100, the average growing season temperature value will increase by 2.9 °C, 

from 14.4 °C to 17.3 °C under three climate scenarios (RCP 26, RCP 45 and  

RCP 85). We then conduct multiple regression analysis between climate changes compiled 

from the Climate Research Unit database and vegetation greenness from the GIMMS 

NDVI3g dataset. There is a general acceleration in the desertification trend under the  

RCP 85 scenario in middle and northern part of Middle Asia, northwestern China except 

Xinjiang and the Mongolian Plateau (except the middle part). The RCP 85 scenario shows a 

more severe desertification trend than does RCP 26. Desertification in dry land Asia, 
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particularly in the regions highlighted in this study, calls for further investigation into climate 

change impacts and adaptations. 
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1. Introduction 

Dry lands are areas of land with low amounts of water in the soil; they encompass hyper-arid, arid, 

semi-arid and dry sub-humid areas [1]. A large majority of dry lands are located in Asia (34.4%) and 

Africa (24.1%), followed by the Americas (24%), Australia (15%) and Europe (2.5%) [2]. Dry lands 

occupy approximately 41% of the earth’s terrestrial surface and feed more than 33% of the world’s 

population [3]. Recently, dry land environments are extremely vulnerable, with fragile ecosystems, 

deterioration of lands, water shortages and the social impoverishment these induce [4,5]. Middle and 

East Asia contain the driest lands in the northern hemisphere; these areas have been greatly influenced 

by significant global warming and intensive human activities. Climate and environmental change in arid 

Central Asia will pose a threat to human vulnerability through food security, water stress and human 

health [6]. Normally, drought, land degradation and desertification occur simultaneously in dry lands. 

Desertification is one of the biggest socioeconomic problems over Dry Land Asia, but it is usually 

vaguely defined; the more general term “land degradation” is preferred to desertification unless it is quite 

clear that the degradation has led to the creation of desert-like conditions [7]. 

Warming trends and increasing temperature extremes have been observed in most of Asia over the 

past century, but there is much uncertainty in future precipitation; this is critical because water scarcity 

is expected to be a major challenge for humankind [8]. The negative effects of increased temperatures 

as well as unexpected changes in precipitation, storm events, snowfall and snowmelt, evapotranspiration, 

run-off and soil moisture will disturb the hydrological cycles in the dry lands [9]. Work by Huang and 

Guan indicates that semi-arid regions in mid-latitude semi-arid areas of Europe, Asia and North America 

are becoming warmer, especially in the cold season [10]. In the future, major expansion of arid regions 

will occur over southwest North America, the northern fringe of Africa, southern Africa and Australia, 

while major expansion of semi-arid regions will occur over the north side of the Mediterranean, southern 

Africa and North and South America [1]. As predicted by the HadCM2 model, dry lands and sub-humid 

arid areas in China will increase in size by the years 2030 and 2056, respectively [11]. There are few 

studies that evaluate the future impact of climate change on the vegetation growth over Dry Land Asia 

under rapid global environmental change. 

In recent decades, investigating satellite-derived vegetation greenness and its association with the 

climate change has provided useful information for the complex coupling of the biosphere and the 

atmosphere [12,13]. Our study aims to predict the future changes of climate and associated dynamics of 

land desertification over Dry Land Asia in 2020, 2050, 2080 and 2100 based on three climate scenarios. 

We firstly build multiple regressions between meteorological and GIMMS NDVI3g data and then 

attempt to predict the spatial and temporal dynamics of the future NDVI distribution through climate 

simulation data from CMIP5. The future temperature and precipitation data are derived from the results 
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of 22 CMIP5 models through two primary methods, Simple Model Averaging and Bayesian  

Model Averaging. 

2. Material and Methods 

2.1. Study Area 

Dry Land Asia comprises seven countries: the Republic of Mongolia (RM); the middle Asia countries 

(MA) of Tajikistan, Kazakhstan, Kyrgyzstan, Uzbekistan and Turkmenistan; and the six provinces in 

northwestern China (NWC) of Inner Mongolia, Shaanxi, Gansu, Ningxia, Qinghai and Xinjiang. Dry 

Land Asia has a temperate continental arid climate: it is hot in summer and extremely cold in winter. As 

shown in Figure 1, the mean temperature during the growing season (from April to October) ranges from 

−10 to 30 °C and the hottest regions are the MA, Xinjiang, Ningxia, Gansu, Shaanxi, Inner Mongolia 

and the southern part of RM. The total precipitation during the growing season ranges from 0-500 mm; 

precipitation is especially scarce in the MA, NWC and the western part of the Mongolian Plateau (MP). 

Land use types mainly include meadow, typical and desert steppe, and desertification is one of the most 

serious problems in regional land suitability. Figure 1a shows the growing season NDVI from 1982 to 

2011. Bare soil and sparse vegetation regions have red colors (NDVI < 0.1) and are defined as potential 

desertified areas in the following calculation [14]. We find that most of the desertified areas correspond 

to low precipitation patterns. 

2.2. Datasets 

(1) Remote-sensing-based vegetation data 

The NDVI index is used to trace the vegetation dynamics and distribution. It is a proxy for vegetation 

productivity of the terrestrial ecosystem [15,16]. The GIMMS (Global Inventory Modeling and Mapping 

Studies) 15-day composite NDVI3g dataset applied here has been shown to be more accurate than the 

GIMMS NDVI for monitoring vegetation activity and phonological change [17–19]. Its spatial 

resolution is 8 km. It is acquired by a NOAA (National Oceanic and Atmospheric Administration) 

satellite over the 30-year period spanning from 1982 to 2011. 

(2) Climate observations and model data 

The climate observations are from the Climatic Research Unit and extend from 1950 to 2011 

(http://www.cru.uea.ac.uk/). The simulated climate dataset is from the Coupled Model Intercomparison 

Project Phase 5 (CMIP5) experiment and spans 1850 to 2100 (http://cmip-pcmdi.llnl.gov/cmip5/ 

data_portal.html). As introduced in Table 1, twenty-two global climate models from CMIP5 provide 

simulated temperature and precipitation data in three future scenarios (RCP 26, RCP 45 and RCP 85). 

Historical data extends from 1850 to 2005, while the future dataset runs from 2006 to 2100. The three 

RCP pathways represent low- (RCP 26), medium- (RCP 45) and high- (RCP 85) emission scenarios with 

radiative forcings of 2.6, 4.5 and 8.5 Wm−2, respectively. Under these different radiative forcings, 

greenhouse gases and anthropogenic aerosols will affect vegetation growth in different ways. 
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Figure 1. Average vegetation NDVI (a); mean temperature (b); and total precipitation (c) 

over the growing season from 1982 to 2011. 

Table 1. List of 22 CMIP5 climate models with a historical run and three future scenarios 

with their sources. 

 GCM Resources 

1 BCC-CSM1-1 Beijing Climate Center, China 

2 BNU-ESM Beijing Normal University, China 

3 CanESM2 Canadian Centre for Climate, Canada 

4 CCSM4 National Center for Atmospheric Research, USA 

5 CNRM-CM5 Centre National de Researches Meteorologiques, France 

6 CSIRO-Mk3-6-0 Commonwealth Scientific and Industrial Research, Australia 

7 FGOALS-g2 Institute of Atmospheric and Industrial Research, Australia 

8 FIO-ESM The First Institute of Oceanography, SOA, China 

9 GFDL-CM3 Geophysical Fluid Dynamics Laboratory, USA 

10 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory, USA 

11 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory, USA 
12 GISS-E2-H NASA Goddard Institute for Space Studies, USA 
13 GISS-E2-R NASA Goddard Institute for Space Studies, USA 
14 HadGEM2-AO Met Office Hadley Centre, UK 
15 IPSL-CM5A-LR Institut Pierre-Simon Laplace, France 
16 IPSL-CM5A-MR Institut Pierre-Simon Laplace, France 
17 MIROC5 Atmosphere and Ocean Research Institute, Japan 
18 MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Japan 
19 MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology, Japan 
20 MPI-ESM-LR Max Planck Institute for Meteorology, Germany 
21 MRI-CGCM3 Meteorological Research Institute, Japan 
22 NorESM1-M Norwegian Climate Centre, Norway 
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2.3. Methods 

(1) Multi-model ensemble mean and assessment 

Both Simple Model Averaging (SMA) and Bayesian Model Averaging (BMA) are widely applied in 

multi-model ensemble simulations [20–22]. We compare these two methods to obtain the ensemble 

mean of the 22 climate models. The SMA is calculated by assigning the same weight to each model 

without evaluating the performance of each model [20]. The BMA generates a probability density 

function (PDF), which is a weighted average of the PDFs centered on the forecasts. Thus, BMA weights 

reflect the relative contributions of the component models to the predictive skill over a training  

sample [21]. Then, a Taylor diagram is used to summarize multiple aspects of model performance in a 

single diagram that maps the correlation, centered root mean-square-error (RMSE) and the amplitude of 

the standard deviations of each model. It provides a direct evaluation of the output performance of 

different models and allows us to track changes in model performance [23]. 

(2) Calculation of the relationship between vegetation NDVI and climate change 

Partial correlation analysis is employed to determine whether vegetation NDVI over dry land Asia is 

primarily determined by surface temperature or by precipitation [24,25]. Because the growing season 

NDVI is better correlated to climate change than the annual NDVI [26], we construct a multiple linear 

regression relationship between NDVI and climate change during the growing season (from April to 

October) in Equation (1). It is based on the assumption that the surface vegetation NDVI correlates 

directly with the temperature and precipitation, which is supported by previous studies focusing on the 

dry lands [13,27,28]. The land degradation area is defined as the area of potential desertification among 

all of the areas in the following calculation [7]. As for the discrepancies of spatial resolution between 

the climate and NDVI data, we match these data based on their geographic locations. When multiple 

pixels in the NDVI data occupy the same grid point of climate data, we simply assigned them the grid 

point value based on the assumption that data within a single grid point is homogeneous. Finally, the 

spatial resolution of all databases is 8 km. 

NDVI a T b P c= × + × +  (1)

Here, T is the average surface temperature during the growing season; P is the average precipitation 

during the growing season; a, b are the regression coefficients; and c is a constant. 

(NDVI NDVI )
NDVI

m n

n
P −=  (2)

To assess the change in percentage of the vegetation NDVI, we use Equation (2). Here, P means the 

percentage of change from year m to year n. 

3. Results 

3.1. Multi-Model Ensemble Mean by SMA and BMA 

We predict spatial and temporal trends in future temperature and precipitation during the growing 

season over the period 2006–2100 and use Taylor diagrams to evaluate the performance of 22 climate 

models in simulating these changes. As shown in Figure 2a & 2b, the correlation coefficient between the 

22 GCM temperatures and the CRU observation ranges from 0.30 to 0.80 and from 0.60 to 0.90, 
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respectively. Our study also confirms that temperature and precipitation simulations through SMA and 

BMA both improve the simulation accuracy over single-model simulations, as shown in Figure 2a. In 

particular, the BMA method has a better performance in our research area than the SMA and the  

single-model output (the closer a model’s data point is to REF, the more accurate the model is). 

Precipitation simulations from different models have more scatter than temperature simulations do, as 

shown in Figure 2b. This ensemble mean can be interpreted as our best estimate of the climate responses 

to a given external forcing because individual ensemble runs simulate random internal variations and 

contain errors associated with individual models [1]. Thus, because the BMA simulations have more 

accurate values and lower uncertainties, we use these results. The multi-model ensemble means 

calculated by SMA and BMA are able to eliminate the uncertainty among all climate models over 

northern Eurasia by Miao’s study [21]. 

 

Figure 2. The accuracy of the modeled temperature (a) and precipitation (b) during the 

growing season, as evaluated by Taylor diagrams. 

3.2. Temperature and Precipitation Projections from 2006–2100 

(1) Temporal trends of the future temperature and precipitation  

We compare the performance of the SMA and BMA methods when simulating the temperature and 

precipitation. The result shows that BMA gives more accurate predictions than SMA. Figure 3 shows 
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the temporal trend of growing season temperature and precipitation based on the BMA method in three 

scenarios (RCP 26, RCP 45 and RCP 85) during the period from 2006–2100 (Why the BMA is superior 

is explained in section 3.1.) All three scenarios conclude that the growing season temperature will 

increase, on average, from 14.4 °C to 17.3 °C from 2006 to 2100 and that the temperature will increase 

at a rate of at least 0.7 °C per century (R = 0.61, p < 0.05), 2.5 °C per century (R = 0.95,  

p < 0.05) and 6.4 °C per century (R = 0.99, p < 0.05) for the RCP 26, RCP 45 and RCP 85 scenarios, 

respectively. Meanwhile, the annual precipitation will increase slowly from 1.5 mm in 2006 to 1.6 mm 

in 2100 at a rate of 0.03 mm per century (R = 0.49, p < 0.05), 0.08 mm per century (R = 0.81, p < 0.05) 

and 0.11 mm per century (R = 0.90, p < 0.05), respectively, for the three scenarios. In the RCP 85 

scenario, the warmest and wettest weather will occur for the next 100 years. 

 

 Figure 3. Ensemble mean temperature and precipitation simulations by BMA during the 

growing season from 2006–2100 in three scenarios (RCP 26, RCP 45 and RCP 85). 

(3) Spatial trends of future temperature and precipitation  

Figure 4 shows the spatial trends of the growing season temperature and precipitation over dry land 

Asia during the 95 years of the period 2006–2100. Spatially, the RCP 85 scenario shows a much warmer 

and wetter trend than the RCP 45 and RCP 26 scenarios: the average temperature increase in RCP 85 

ranges from 4.4 °C to 7.6 °C and the liner precipitation ranges from −0.2 mm to 0.7 mm. The southern 

and middle parts (e.g., the western Mongolian plateau and northwestern China) show warmer conditions. 

The precipitation trends show a stripe from the west to the east with decreased precipitation trends for 

the RCP 26 scenario. Precipitation trends in the future are also enhanced in almost the entire region, with 

a gradually increasing gradient from the west to the east for the RCP 45 and RCP 85 scenarios. This 

result agrees with that of Shi in 2003, which indicated that the climate in northwest China will change 

from warm and dry to warm and wet in the future because the warming will accelerate the hydrological 

cycle [29]. 
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Figure 4. Future temperature (a) and precipitation (b) trends during the growing season from 

2006–2100 in the three scenarios studied. Precipitation trends with black points are 

statistically significant at the 95% level. All temperature trends passed significance tests at 

the 95% level.  

3.3. Relationship between Vegetation Growth and Climate Factors 

Figure 5a,b show the partial correlation between NDVI and temperature and between NDVI and 

precipitation during the growing season from 1982 to 2011. There are divergent correlations among 

temperature, precipitation and NDVI. The spatial variation of the partial correlation coefficients shows 

that neither temperature nor precipitation produces a coherent effect on the entire region. Positive 

correlations (red section of Figure 5b) between NDVI and temperature indicate that increases in 

temperature enhance the growth of vegetation, although excessively high temperatures may also lead to 

loss of soil moisture due to evaporation in dry lands. In fact, water is the limiting factor for vegetation growth 

when the relationship is negative (blue section of Figure 5b), while energy is the limiting factor for 

vegetation growth when the relationship is positive (red section of Figure 5b) [30,31]. Precipitation plays 

a positive role in most of our study area: sufficient precipitation will reduce the chances or intensities of 

drought and improve the growth of steppes during the growing season in dry land regions. We locate the 

main controls of temperature and precipitation on vegetation growth over the entire area in Figure 5c. 

Regions such as the NWC and the middle part of MA (in yellow) are dominated by the effects of 

temperature, with positive or negative correlation. Regions such as the northern MA and MP show a 

significant positive relationship between precipitation and vegetation NDVI.  
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Figure 5. Partial correlation between NDVI and temperature (a) and between NDVI and 

precipitation (b) during the growing season and dominant control on the NDVI (c). 

3.4. Projections of Future Vegetation NDVI Dynamics 

Based on previous work, prediction of future climate and building upon multiple liner regression, we 

are able to predict the future vegetation dynamics using Equation (3) on a decadal scale from  

2020–2100, as shown in Figure 6. This shows that there is an overall improvement but regional 

degeneration in the vegetation NDVI over dry land Asia from 1982–2010. Most of the degradation area 

is located in Xinjiang, northern Qinghai, northern Gansu, MP and eastern MA. We list the years 2020, 

2050 and 2080 as specific time points for short-, middle- and long-term plans for future Chinese national 

development. According to the future predictions for the years 2020, 2050, 2080 and 2100 under the 

three scenarios, there is a substantial difference among the three scenarios in terms of the spatial patterns 

of the desertification extent. RCP 85 shows more serious desertification trends than the RCP 26 and RCP 

45. The RCP 26 and RCP 45 scenarios show almost identical patterns, with most of the desertified 

regions located in the middle and northern MA, the NWC except the middle Xinjiang and the MP except 

the central part. Under the RCP 85 scenario, desertification from 2010–2100 in the middle and northern 

MA, NWC and the southwestern and northeastern MP will intensify from its status over the past three 

decades from 1982–2011. Vegetation in some local areas, however, may improve: for example, northern 

MA and the middle MP. 

Bail soil and sparse vegetation regions (NDVI < 0.1) are defined as the potential desertified area in 

the following calculation [14]. Figure 7 shows the temporal percentage of desertified area at eight time 

points (1982, 1990, 2000, 2010, 2020, 2050, 2080 and 2100). During the period from 1982 to 2011, we 

find that the desertified area decreased before 2000 and then increased rapidly from 2000 to 2011. For 

the period of 2020 to 2100, the desertified area under the RCP 45 and RCP 85 scenarios increased the 

most rapidly, increasing from 23.6% to 24.9% and from 23.5% to 27.7% of the region, respectively. The 

trend under the RCP 26 scenario is the opposite: the desertified area under this scenario is the smallest 

among all three scenarios and will expand slowly from 2020 to 2050, then decrease from 23.0% in 2050 

to 22.6% in 2100. 
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Figure 6. Gap of vegetation NDVI during the historical periods 1982–1990, 1982–2000 and 1982–2010 and the future periods 2010–2020, 

2010–2050, 2010–2080 and 2010–2100 under three scenarios. 
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Figure 7. Percentage of desertified area from 1982 to 2100. 

4. Discussion  

This result is consistent with previous study over Northern Eurasia: Miao indicated that the uncertainty 

of BMA simulation is the smallest among all the single model outputs and SMA simulation [21]. The 

ensemble technique BMA can greatly improve the temperature and precipitation simulation in dry land 

Asia according to the Taylor diagrams in Figure 2. All three climate scenarios agree that the future will 

become warmer over the dry land Asia, which confirm the global warming trend identified by the IPCC 

AR5. Based on the BMA method, the future average temperature and the average precipitation during 

the growing season will both increase in the next 100 years. In terms of the temporal trends, the average 

temperature during the growing season over the dry land Asia will enhance at a rate of 0.7 °C per century, 

2.5 °C per century and 6.4 °C per century under the RCP26, RCP45 and RCP85 scenarios, respectively. 

In terms of changes in spatial patterns, most of the warmer regions are located in western MP and the 

NWC. Precipitation trends in the future are also enhanced in the whole region, with a gradually 

increasing gradient from west to east, except in the western part. This highlights the vulnerable areas in 

arid Asia when considering future climate projections and raises the concern to look after the local 

environment with global warming. 

The control of climate for land use and vegetation dynamics is complex over the whole area, and the 

dominant factors are surface air temperature and precipitation [32,33]. Overall, NDIV in regions such as 

the NWC and the middle part of the MA is primarily controlled by temperature, with either positive or 

negative correlation. The vegetation NDVI in northern MA and MP is primarily controlled by 

precipitation, with positive correlation. However, stressors including regional climate change and 

economic development impact upon land use, population growth and an increasing demand for food 

production have resulted in significant impacts on the dry land ecosystems in the East Asia region [5,34]. 

Our prediction is based on the assumption that climate is the main natural driving factor controlling the 

vegetation dynamics, ignoring human activity and national policy. In fact, in the future, when population 

grows rapidly, human pressure on the land, land degradation and water scarcity will become vital factors 

that will require deep consideration. It is of great importance to determine the relative contribution of 

both climatic and human factors. 
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Overall, historical vegetation trends show an overall improvement, but they have decreased in eastern 

middle Asia, northwestern China and the western Mongolian Plateau during the past 30 years. The “dry 

gets drier, wet gets wetter” paradigm has become a standard catchphrase frequently used in studies and 

assessments of historical and future climate change [35]. According to RCP85 scenario, the middle and 

northern MA, NWC and the southwestern Gobi desert and northeastern grassland region in the Xilin Gol 

of MP will experience the most desertified status in the next 100 years; all of these regions are in an area 

that will experience pronounced future warming. These highlighted warm regions will have a higher risk 

of drought and desertification. The future dry lands area in Dry Land Asia will expand according to a 

rapid rate, which is not identified through climate index (the ratio of annual precipitation to annual 

potential evapotranspiration) [1]. 

5. Conclusions 

This work was the first attempt to assess the impact of future climate on desertification in dry land 

Asia by applying remote sensing data and climate model projections. The future temperature and 

precipitation trends were analyzed using SMA and BMA methodologies basing on 22 CMIP5 models 

output under the three RCP scenarios. In this study in dry land Asia, Bayesian Model Averaging Method 

proves to be an advanced tool applied in multi-model ensemble simulations and shows better coefficient 

than individual climate models or the Simple Model Average Method. Both the average growing season 

temperature and precipitation would increase in year 2100 than that in 2006. Based on the partial 

correlation analysis between climate and vegetation growth, we concluded that water and energy were 

controlling vegetation growth in different regions. Applying the historical relationships into future 

perspective, RCP85 scenario shows the most desertified trend in the future from 2020 to 2100 and most 

of the regions are located in the warming areas, including middle and northern parts of middle Asia, 

northwestern China and the Mongolian Plateau. In the future, human activities and extreme weather 

events will be discussed when conducting future prediction of desertification trends when dry land 

ecosystem adapts to climate change.  
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