
Remote Sens. 2015, 7, 3690-3709; doi:10.3390/rs70403690 
 

remote sensing 
ISSN 2072-4292 

www.mdpi.com/journal/remotesensing 

Article 

Estimation of Aerodynamic Roughness Length over Oasis in the 
Heihe River Basin by Utilizing Remote Sensing and Ground Data 

Qiting Chen 1,2,3, Li Jia 1,2,*, Ronald Hutjes 4 and Massimo Menenti 5 

1 State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth, 

Chinese Academy of Sciences, Beijing 100101, China; E-Mail: chenqt@radi.ac.cn 
2 Joint Center for Global Change Studies, Beijing 100875, China 
3 University of Chinese Academy of Sciences, Beijing 100049, China 
4 Earth System Sciences, Wageningen University, P.O. Box 47, Wageningen 6700 AA,  

The Netherlands; E-Mail: Ronald.hutjes@wur.nl 
5 Department of Geosciences and Remote Sensing, Delft University of Technology, Stevinweg 1,  

Delft 2628 CN, The Netherlands; E-Mail: M.Menenti@tudelft.nl 

* Author to whom correspondence should be addressed; E-Mail: jiali@radi.ac.cn;  

Tel./Fax: +86-10-6480-7982. 

Academic Editors: Heiko Balzter and Prasad S. Thenkabail  

Received: 20 November 2014 / Accepted: 23 March 2015 / Published: 27 March 2015 

 

Abstract: Most land surface models require information on aerodynamic roughness length 

and its temporal and spatial variability. This research presents a practical approach for 

determining the aerodynamic roughness length at fine temporal and spatial resolution over 

the landscape by combining remote sensing and ground measurements. The basic framework 

of Raupach, with the bulk surface parameters redefined by Jasinski et al., has been applied 

to optical remote sensing data collected by the HJ-1A/1B satellites. In addition, a method for 

estimating vegetation height was introduced to derive the aerodynamic roughness length, 

which is preferred by users over the height-normalized form. Finally, mapping different 

vegetation classes was validated taking advantage of the data-dense field experiments 

conducted in the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) 

project. Overall, the roughness model performed well against the measurements collected at 

most HiWATER flux tower sites. However, deviations still occurred at some sites, which 

have been further analyzed. 
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1. Introduction 

Aerodynamic roughness length z0m is a surface parameter that scales the vertical profile of the 

horizontal component of wind speed and characterizes the ability of the surface to absorb momentum 

from airflow. In many applications of surface hydrology and meteorology, the aerodynamic roughness 

length is a very important parameter for estimating momentum, heat and mass exchange between the 

land surface and atmosphere [1]. 

The roughness length is the vertical length scale of the logarithmic wind profile, which is established 

when the air flow attains equilibrium (i.e., constant vertical momentum flux) with the underlying 

homogeneous surface under neutral conditions [2]. In field experiments, z0m is usually directly estimated 

by fitting mean horizontal wind velocity observations at different levels with the logarithmic wind profile 

equation. Alternatively, z0m is estimated from turbulence measurements by using the eddy covariance 

(EC) technique [1,3,4]. These methods can produce credible results when the underlying surface is 

relatively homogeneous. As a rule of thumb, the ratio of the effective fetch of the EC observations to the 

measurement height should be about 100/1 [5] so that the momentum flux is measured within the surface 

layer in dynamic equilibrium with the surface. The horizontal scale of variability of the land surface may 

lead to conditions where no constant (momentum) flux layer, i.e., no logarithmic wind profile, is 

established. Under such conditions the aerodynamic roughness length becomes an effective land surface 

property which requires complex measurements over large areas. 

The aerodynamic roughness is closely related with the geometric features and distributions of the roughness 

elements [6]. Remote sensing data products can provide wide spatial coverage and efficient temporal 

sampling of vegetation canopies, making it possible to parameterize z0m at the regional scale [7–12].  

For instance, Sarwar and Bill (2007) used ASTER data to derive z0m and, consequently, 

evapotranspiration over an irrigated area in the Indus Basin in Pakistan [12]. In a study conducted by 

Hasager and Jensen (1999) [8], z0m at high spatial resolution (30 m) was obtained from classified satellite 

images. In the past decades, several methods for estimating z0m at the regional scale based on canopy 

structure features have been provided in the literature. For example, Brutsaert (1982) [2] noted that  

z0m = 0.13 h for a homogeneous vegetation canopy, where h represents the height of the vegetation.  

Jia et al. (1999) used the Normalized Difference Vegetation Index (NDVI) to parameterize z0m using an 

empirical relationship [13]. Lettau (1969) used the obstacle height and frontal area index to derive z0m [14]. 

MacDonald et al. (1998) improved Lettau’s method by considering the overlapping effects of obstacles 

at a high areal density of roughness elements [15]. Choudhury and Monteith (1988) derived z0m by using 

the Leaf Area Index by applying the second order closure model of Shaw and Pereira (1982) [16,17]. 

Raupach (1992; hereafter referred to as R92) provided an approach for determining z0m/h based on a precise 

analysis of the drag partitioning, which he simplified in 1994 (hereafter referred to as R94) [18,19].  

One common problem of these methods is that the parameters provided in the theoretical formulas are 

fixed, despite their dependence on vegetation type. Jasinski et al. (2005) revised the parameters in R92 

by using the Method of Moments with four IGBP land cover classes: Grasslands, croplands, evergreen 

needleleaf forests, and open shrublands. These authors used data from several international field 

experiments and other published sources [20,21]. 

The canopy structure and z0m of agricultural lands change rapidly during the growing season.  

Maps of time-dependent aerodynamic roughness length are useful to model land-atmosphere 
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interactions. For example, Zhou et al. (2012) demonstrated that the agreement of simulated with 

measured sensible heat flux [22] was significantly improved by using a time-dependent z0m. The primary 

objective of this study is to develop and validate a method to determine time-dependent patterns of 

aerodynamic roughness at the regional scale using remote sensing data. 

In this study, we used the R92 roughness model as a theoretical framework to estimate z0m/h in the 

middle reach of the Heihe River Basin in China. The parameters of the R92 model as revised by  

Jasinski et al. (2005) were adopted. In addition, we developed a method to estimate vegetation height so 

that the actual roughness length could be estimated from z0m/h. 

In the following section, we describe the case study area, the HJ-1A/1B CCD remote sensing data, the 

ground observations, and the land cover map used to drive the revised R92 model. In Section 3, we further 

detail the theoretical framework, and in Section 4, we present the intermediate and final results, followed 

by a validation based on flux measurements at twelve towers sampling the major vegetation types in the 

middle reach of the Heihe River Basin. Finally, we discuss some of the weaknesses and merits of the 

approach, followed by some concluding remarks on this first-ever high-resolution time series of the 

aerodynamic roughness lengths during the growing season in the middle reach of the Heihe River Basin. 

2. Study Area and Data 

2.1. Study Area 

The study area is located in the irrigated oasis in the middle reach of the Heihe River Basin around 

Zhangye, Gansu province, in the arid and semiarid region of northwest China. The Zhangye oasis is the 

main agricultural area in northwest China. Figure 1 is a 2012 land cover map of our study area.  

We produced this map by a supervised classification of multi-spectral data acquired by the HJ-1A/1B 

satellites. The training and evaluation samples were chosen from the available field survey data for the 

Zhangye oasis and high spatial resolution Google Earth images. The overall accuracy of the classification 

results reached 84.1%, and the Kappa coefficient was 0.81, which met the needs of this study. 

The vegetation in the oasis is heavily dominated by crops (mainly spring corn, spring wheat, and 

vegetables, such as chili, celery, and cauliflower), with small areas of grasslands, wetlands (reed), and 

deciduous broad-leaved forests (Table 1). The oasis is surrounded by the Gobi desert (Figure 1) and has 

a continental dry climate [23]. The net radiation (Rn) can reach 800 w/m2 during the growing season. 

Under sufficient irrigation, the latent heat flux (LE) in July and August can exceed 70% of the Rn on the 

oasis. During the non-growing season, the sensible heat flux (Hs) becomes dominant. In the last 30 years, 

several large field experiments have been carried out in this region, including the Atmosphere-Land 

Surface Processes Experiment conducted in the Heihe River Basin (HEIFI) [24] between 1988 and 1992, 

the Watershed Allied Telemetry Experimental Research (WATER) [25] experiment conducted between 

2007 and 2009 and the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) [26] 

study conducted between 2010 and 2015. The ground data we used are from the last of these experiments. 
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Figure 1. Land cover map of the middle reach of the Heihe River Basin in 2012. 

Table 1. The fractional abundances of the main vegetation classes over the study area 

resulting from the classification in Figure 1. 

Vegetation Cover Class Areal Percentage (%) Area (km2) 

Maize 53.6 1294 

Wheat 12.7 276 

Vegetables 14.5 350 

Grassland 11.5 308 

Forest 4.5 109 

Orchard (apple tree) 0.2 5 

Wetland 2.9 71 

2.2. Data 

2.2.1. In Situ Data 

In this study, we collected growing season (May-September) EC data from field experiments at twelve 

sites. These relatively homogeneous sites included the main vegetation types in the middle reach of the 

Heihe River Basin, i.e., cropland, wetland, orchard, and forest vegetation, which represent a range of z0m 

values from approximately 0.03 m to 0.8 m. All EC observations (10 maize sites, 1 orchard site, and  

1 wetland site) are products of the Multi-Scale Observation Experiment on Evapotranspiration over 

heterogeneous land surfaces that was conducted in 2012 (MUSOEXE-2012) [27,28] within the 



Remote Sens. 2015, 7 3694 

 

framework of HiWATER. For each EC site, an eddy covariance (EC) system and an automatic 

meteorological station (AWS) were installed, with a minimum of one 3-dimensional sonic anemometer, 

one CO2 and H2O gas analyzer, one four-component radiometer, one rain gauge, one wind speed sensor 

and one wind vane. The various EC and radiometer devices of the different models produced by different 

manufacturers used in the MUSOEXE-2012 were inter-compared in the Baji Gobi desert west of 

Zhangye City (100°18′15.17″ E, 38°54′53.87″ N), and the inter-comparison campaign showed good 

agreement [27]. Table 2 contains the location information of all twelve EC sites. 

Table 2. Information summary for the studied eddy covariance (EC) sites. 

Site Land Cover Geographic Coordinates Obs. Height Period (2012) 

EC01 Maize 100°21′54.83′′E 38°52′36.37′′N 3.8 m 29/5–18/9 

EC02 Maize 100°21′14.63′′E 38°53′13.10′′N 3.7 m 7/6–19/9 

EC03 Maize 100°21′2.34′′E 38°52′32.78′′N 3 m 3/6–18/9 

EC04 Maize 100°21′35.00′′E 38°52′16.32′′N 4.6 m 28/5–21/9 

EC05 Maize 100°22′35.28′′E 38°52′21.17′′N 3.2 m 28/5–21/9 

EC06 Maize 100°23′44.53′′E 38°52′32.50′′N 4.8 m 4/6–17/9 

EC07 Maize 100°20′31.12′′E 38°52′11.77′′N 3.5 m 29/5–18/9 

EC08 Maize 100°21′58.79′′E 38°51′54.57′′N 3.5 m 28/5–21/9 

EC09 Maize 100°21′11.23′′E 38°51′31.27′′N 4.6 m 30/5–21/9 

EC10 Maize 100°22′20.09′′E 38°51′20.04′′N 4.5 m 25/5–15/9 

EC11 Orchard 100°22′11.08′′E 38°50′42.43′′N 7 m 31/5–17/9 

EC12 Wetland 100°26′47.04′′E 38°58′30.50′′N 5.2 m 25/6–26/9 

The raw turbulence data were recorded at 10 Hz and averaged to 30 min intervals. Detailed information 

on data processing can be found in Liu et al. [28]. The following criteria were used for data selection:  

(1) u* > 0.15 m/s; (2) no rain; (3) −1 < (z−d)/L < 0.1. 

The leaf area index (LAI) and vegetation height h were manually measured at each site listed in Table 2 

and one vegetable site (100°21′29.26″E, 38°53′35.59″N) every few days during the growing season [29]. 

These measurements were used to estimate the empirical constants in Equations (7) and (8) (Section 3.2). 

2.2.2. Remote Sensing Data 

The HJ-1A/1B satellites were launched for environmental monitoring and disaster prevention by China 

on 6 September 2008 [30]. The data of the HJ-1A/1B satellites were obtained by combining the data 

acquired by the CCD (Charge Couple Device) sensors on both satellites (Table 3) resulting in a 2-day 

revisiting cycle with a 700 km swath from the visible to infrared wavelength spectrum.  

Table 3. The main specifications of the HJ-1A/1B satellites and the Charge Couple Device 

(CCD) sensors. 

Satellite Sensors Band Number Spectrum (mm) Resolution (m) Scene Width (km) 
Revisiting  

Period (day) 

HJ-1A/1B CCDs 

1 0.43–0.52 

30 360 4 
2 0.52–0.60 

3 (red) 0.63–0.69 

4 (nir) 0.76–0.90 
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3. Methodology 

3.1. The R92 Remote Sensing Model to Estimate the Aerodynamic Roughness Length 

We used the method proposed by Raupach (1992) [18] (R92 model). The foundation of the R92  

model [18] is a precise analysis of the drag partition between the roughness elements and the underlying 

substrate. A turbulent wake is generated downwind of individual roughness elements, and, with increasing 

density, drag will increase before they begin to shelter each other, stabilize and eventually decrease again. 

The R92 model rests on two hypotheses: (1) shelter area and volume are related to the structure of the 

roughness elements and (2) the bulk shelter effects of the individual elements can be superimposed 

randomly. The ratio of aerodynamic roughness length to canopy height, z0m/h, is expressed as follows: 

/ (1 / )exp( )
*

u
hz h d h k

om u
     (1)

where k is the von Kármán constant (taken as 0.41), z0m (m) is aerodynamic roughness length, h (m) is 

the canopy height, uh (m/s) is the mean horizontal wind velocity at h, u* (m/s) is friction velocity, d (m) 

is the zero-plane displacement height, and η is the profile influence function in R92, which accounts for 

the departure of the actual momentum diffusivity within the roughness sublayer from that above the 

roughness sublayer. In a study conducted by Raupach (1994), z0m/h was insensitive to η. In this study,  

η = 0.193 was used as in R94. 

In Equation (1), the ratio uh/u* is related to the bulk drag coefficient (u*/uh)2, which was approximated 

by using the following dimensional analysis: 
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where cs and cr are the drag coefficients of the underlying substrate and an individual roughness element 

respectively, c is a constant accounting for overlapping effects of elements, and λ is the frontal area 

index, which is usually replaced by the canopy area index (Λ). For isotropically oriented canopy elements, 

λ and Λ are simply related as λ = Λ/2 [19]. Equation (3) implies that, the drag stress due to aerodynamic 

drag will remain constant when the areal density of roughness elements increases beyond a critical value. 

In Equation (1), the ratio of the zero-plane displacement height to h, d/h, was deduced according to 

Thoms’s center-of-pressure hypothesis, which defines d as the vertical height of momentum absorption 

as [31]: 
1 1/2( )(1 )

2

d

h
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where α is an empirical constant associated with the geometric structure of roughness elements, and β is the 

ratio of cr to cs. The substrate drag coefficient, cs, which is constant in agricultural areas, was  

assumed = 0.003, as proposed in R94. 

In this method, five roughness parameters, cr, α, c, (u*/u)max and Λmax, are crucial. Jasinski et al. [20] has 

applied the Method of Moments to estimate these five parameters for four IGBP land cover classes, 

evergreen needleleaf forests, grasslands, croplands, and open shrublands. In our study area, more 
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vegetation types are found than the four Jasinski’s classes. Following the method of Borak et al. (2005) [21], 

all vegetation types in our study area are associated with most similar ones of the four classes parameterized 

by Jasinski et al. (2005) [20]. The parameters for each vegetation class in our study are shown in Table 4. 

Table 4. Parameters applied in the R92 model for the study area of Heihe River Basin for 

2012 (adapted from [20,21]). 

Vegetation Cover Class cr (u*/u)max c α Λmax 

Forest 
0.14 0.29 0.18 1.8 3.2 

Orchard 

Grass 
0.23 0.32 0.28 1.53 2.3 

Wetland 

Maize 

0.11 0.26 0.17 2.46 3.0 Wheat 

Vegetables 

3.2. Canopy Structure Parameters 

3.2.1. Canopy Area Index 

The canopy area index Λ was used to express the canopy density, and composed of two parts:  

One-side area of all green canopy elements per unit ground area, i.e., the Leaf Area Index LAI, and the 

dead leaf and woody branches area, denoted as Ls: 

sLAI L    (5)

Ls was computed using the method of Zeng et al. (2002) [32] as follows: 

 1 1
minmax [ max( ,0)],n n n n

s s sL L LAI LAI L      (6)

where Lsmin is the minimum Ls, which consists of stems and dead leaves and depends on the vegetation 

type, n denotes the nth month, and the term (1−) denotes the monthly removal rate of the dead leaves. 

Satellite measurements of Red and NearInfraRed radiance can be used to determine the NDVI. Many 

studies, including early spectroradiometer measurements, documented a strong correlation between 

NDVI and ground measurements of LAI [33–35]. 

We used an empirical exponential relationship between NDVI and LAI to map LAI: 

(x,y, t) (x,y, t)bLAI a NDVI   (7)

where a and b are empirical parameters that depend on vegetation type. Once the constants (a and b) for 

each vegetation type are known, LAI(x,y,t) can be mapped from NDVI(x,y,t), and the latter can be 

determined using the Red and NearInfraRed radiometric data acquired by the HJ-1A/1B satellites. 

Field measurements of LAI during the growing season at the 12 EC sites and one vegetable site and 

the concurrent 30 m satellite NDVI were used to estimate the constants (a and b) for each vegetation type 

by applying Equation (7) and minimizing the least squares residuals. For wheat, grassland and forest 

where the field LAI measurements were not available, the empirical constants for Equation (7) were set 

to the same values as maize, reeds and orchard, respectively. 
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Finally, 5-day time series of LAI maps between May and September 2012 were produced. First,  

37 cloud-free images (approximately 50% of the available 75 overpasses) of HJ-1A/1B with 30 m spatial 

resolution were pre-processed using an image-to-image geometric correction, followed by radiometric 

and atmosphere corrections; then, the 37 NDVI maps of 30 m spatial resolution were used to reconstruct 

a gap-free NDVI time series from May to September of 2012 using the Harmonic ANalysis of Time 

Series (HANTS) approach, and then the time series of LAI maps using Equation (7). The HANTS is a 

method for time series analysis and reconstruction based on the principles of Fourier Transform by 

decomposing a periodical series into Fourier components and it is a reliable method commonly used by 

many researchers for time series reconstruction [36]. HANTS has multiple advantages: It can deal with 

time series with irregularly spaced observations, detect outliers automatically, and capture the complex 

phenology of land cover by estimating the amplitude and phase of the periodic components used to 

model the NDVI time series [37,38]. Figure 2 shows an example of the original and reconstructed time 

series of NDVI using the HANTS approach. 

 

Figure 2. Observations (dots) and the HANTS reconstructed (solid line) NDVI time series 

for one pixel in oasis area of Heihe River Basin in 2012. 

3.2.2. Vegetation Height 

A map of vegetation canopy height is required to obtain a map of the aerodynamic roughness length 

parameter z0m using the ratio z0m/h estimated using Equation (1). Multi-spectral image data cannot be 

used to estimate directly canopy height. Satellite-based laser altimeters (i.e., the Geoscience Laser 

Altimeter System (GLAS) on Ice, Cloud, and land Elevation Satellite (ICEsat)-1/2 [39]) can provide 

measurements of vegetation height along the satellite ground-track, but the ICEsat across-track 

separation is about 60 km in the study area, so not sufficient for the purpose of this study.  

Airborne LiDAR with high spatial density detection could provide a higher resolution Digital Elevation 

Model (DEM) and Digital Surface Model (DSM) [40–42]. Vegetation height could be retrieved from 

the differences between the DSM and DEM values in the vegetated regions [7,9–11]. Airborne LiDAR 

data were acquired in the study area in 2012, and mapping h and z0m by utilizing the LiDAR data will be 

the subject of another study in the near future. 

We mapped vegetation height, h, using an empirical relationship with LAI, constructed using ground 

measurements collected at most of the sites listed above (Table 2). The evolution of h and LAI is nearly 

simultaneous in herbaceous crops like maize [43], in which case h/hmax = LAI/LAImax at any time during 
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the growing season, while in some species h tracks LAI and in other ones is the other way round.  

We used two empirical species-dependent parameters to account for this time-lag. The general form of 

our empirical relationship reads: 

max max

(x, y, t) min(e (x, y, t) ,1)
h LAI

f
h LAI

   (8)

where e and f are the empirical species-dependent parameters: (1) e > 1 applies when the maximum 

vegetation height is reached earlier than the maximum LAI; (2) e < 1 when the maximum vegetation height 

is reached later than the maximum LAI; and (3) e = 1 and f = 0 in Equation (8) give h/hmax = LAI/LAImax. 

The detailed steps for vegetation height estimate are:  

1. Ground measurements of h and LAI for each annual herbaceous plant at the 11 EC sites (10 maize 

sites and 1 wetland site) and one vegetable site were divided by the highest observed value of h 

and LAI at each site. 

2. The normalized vegetation height (h/hmax) and leaf area index (LAI/LAImax) values were used to 

estimate the constants (e, f) by applying Equation (8) and minimizing the least squares residuals 

for maize, wetland, and vegetable. 

3. For wheat and grasslands where no measurements of h and LAI were available, the empirical constants 

(e and f) in Equation (8) were set equal to those of maize and wetland vegetation, respectively. 

4. Equation (8), the values of the LAImax and hmax and the revised empirical constants (e and f) were 

used to map vegetation height. 

In Step 4, LAImax was set to the maximum LAI (retrieved using Equation (7)) for each pixel over all 

dates, the hmax values for maize, wetland and vegetable were 1.8 m, 1.6 m and 0.5 m respectively, based 

on the field measurements, and the hmax values for wheat and grass were 1.0 m and 0.5 m, respectively, 

which is in agreement with past experiences. Furthermore, the vegetation heights of the orchard and 

forest were considered constant and were 5 m and 8 m, respectively, during the whole growing season 

based on local experience. 

3.3. Local Roughness Lengths Estimated from Eddy-Covariance Measurements 

The aerodynamic roughness length was estimated from the eddy covariance measurements at the sites 

listed in Table 2 to evaluate the map of aerodynamic roughness length constructed using Equation (1). 

In the boundary layer the Monin-Obukhov similarity theory applies and the scaled profile of the mean 

horizontal wind speed reads: 
*

( ) [ln( ) ( )]m
om

u z d z d
u z

k z L
 

   (9)

which can be expressed as: 

*

(z)
ln ( )m

om

z d ku z d

z u L
 

   (10)

Here, L is the Monin-Obukhov length, ψm is the stability correction term and the displacement height d 

cannot be accurately derived from eddy covariance measurements. For dense and uniform vegetation the 

simple relationship d = 2/3 h applies [6] and was used in this study. 

Chen and Wang (1993) found that the value of ku(z)/u* + ψm depends on stability, becoming higher 

under stable conditions and lower under unstable conditions. By plotting ku(z)/u* against (z − d)/L for 
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both stable and unstable conditions, the two intercepts of the fitted lines, i.e., at ψm = 0 (neutral 

conditions), provide ln((z − d)/z0m), which gives estimates z0m values applying to the height of the EC 

measurements [44]. Our calculation of z0m was done by applying this method. In this study, half hourly 

data were filtered based on criteria defined in Section 2.2.1. The filtered u(z), u* and L measurements 

for each 5 days period, during which we assumed that the aerodynamic roughness was constant, were 

divided into two groups: Stable and unstable conditions. Then, a robust regression method  

(MatLab @ routine “robustfit”), which can minimize the influences of outliers, was used to perform a 

linear fitting between (z − d)/L and ku(z)/u* for stable and unstable data to obtain the intercepts. Finally, 

the degrees of freedom for unstable and stable data fittings were used as weighting factors to obtain the 

weighted intercept and the mean value of z0m over 5 days. In addition, the standard error of the regression 

coefficient estimates was used to indicate the uncertainty of the observed z0m. 

4. Results 

4.1. Canopy Structure Parameters Estimated from Remote Sensing Data 

The coefficients (a and b) in Equation (7) for different vegetation types were obtained by least squares 

regression analysis using filed LAI measurements collected at the 12 EC sites and one vegetable site, 

and HJ-1A/1B NDVI data for the pixel of the corresponding site. The results together with the correlation 

coefficient (R) and the root mean square error (RMSE) are shown in Table 5. Due to lack of field LAI 

measurements over forest, wheat and grass, the relationships for these three surfaces were chosen to be 

same as those of orchard, maize, and wetland, respectively. A summary of the NDVI-LAI relationships 

is shown in Table 5. 

Table 5. The empirical constants in the NDVI and LAI relations (Equation (7)) for different 

vegetation types used in this study. 

Vegetation Type (a, b) R RMSE Number of Observations 

Maize 
(6.2784, 2.3011) 0.91 0.63 112 

Wheat 

Vegetable (8.5609, 4.1193) 0.65 0.66 7 

Orchard 
(4.9578, 2.1994) 0.87 0.20 6 

Forest 

Wetland 
(9.8268, 3.4428) 0.63 0.80 13 

Grass 

The LAI map was constructed using Equation (7) applying the empirical coefficients in Table 5 to the 

HJ-1A/1B NDVI data in combination with the land cover map. For each 5 days period, the map of the 

canopy area index Λ was then produced by applying Equations (5) and (6) to the LAI map.  

Figure 3 depicts the evolution of the area-averaged Λ(t) for each vegetation class listed in Table 1. It is 

found the Λ(t) first began to increase during the vegetative growth stage and decrease during senescence. 

All vegetation types exhibit clear seasonal variations in Λ. Cropland and wetland vegetation showed a 

more pronounced seasonality because of the relatively low dead-leaf removal rate. Differences in the 

phases of Λ(t) among classes indicate differences in the phenology of vegetation. 
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Figure 3. Time series of the area-averaged canopy area index Λ(t) of different vegetation 

types during the growing season of 2012 in the middle reach of the Heihe River Basin. 

The maps of vegetation height h(t) for annual herbaceous plants were constructed by applying 

Equation (8) to the LAI(t) maps. The empirical constants (e and f) in Equation (8) were obtained from 

the field canopy height and LAI measurements as explained above (see Section 3.2.2). Table 6 gives the 

resulting e and f values, together with the R and RMSE. A summary of the LAI-h results for annual 

herbaceous plants is shown in Table 6. 

Table 6. The empirical parameters e and f in the h(LAI) relationship (Equation (8)) for 

different vegetation types. 

Vegetable Type (e, f) R RMSE 

Maize 
(0.95, −0.053) 0.96 0.085 

Wheat 

Vegetable (0.83, 0.12) 0.98 0.042 

Wetland 
(0.58, 0.54) 1.0 0 

Grassland 

 

Figure 4. Time series of the area-averaged vegetation height of different herbaceous vegetation 

types during the growing season of 2012 in the middle reach of the Heihe River Basin. 
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The maps of vegetation height h(t) for the whole study area were derived from the LAI(t) maps 

(estimated from HJ-1A/1B NDVI data) using the e and f values in Table 6 and the land cover map.  

The area-averaged vegetation height (Figure 4) of annual herbaceous plants increased over time as 

growing conditions became more favorable during the early growing season, and then stabilized in the 

mid growing season. 

4.2. Regional Scale Aerodynamic Roughness Length 

Maps of the aerodynamic roughness length z0m(t) from May to September 2012 were constructed by 

applying Equation (1) using all canopy structure parameters derived from the HJ-1A/1B data and the 

model parameters described above. Figure 5 shows a time series of the area-averaged aerodynamic 

roughness length for different vegetation types from May to September of 2012. The magnitudes of the 

roughness length agree with values published for similar vegetation in the literature. Forest-type classes 

(orchard and forest) have much higher aerodynamic roughness lengths than non-forest type classes. The 

aerodynamic roughness lengths of the orchards and forests are about 0.46–0.5 m and 0.69–0.76 m (or 

approximately 0.09–0.1 h), respectively. The range of the aerodynamic roughness lengths for the  

non-forest vegetation types is larger (Figure 5b), and the roughness lengths of maize and wetland showed 

the largest variability. This result is consistent with the canopy area index Λ shown in Figure 3. The 

grasslands displayed smaller aerodynamic roughness lengths and narrower ranges than the agricultural 

classes because of the relatively low vegetation height, the smaller variability of the roughness elements 

density and the absence of harvesting. The aerodynamic roughness length of grasslands and wetlands 

did not begin to decrease until September 2012, which is consistent with a longer growing season and a 

late season leaf loss. 

 

Figure 5. Time series of the regionally averaged aerodynamic roughness length during the 

growing season for different vegetation type: (a) forest vegetation; (b) non-forest vegetation. 

Figures 6 and 7 illustrate the spatial distributions and histograms of the regional aerodynamic 

roughness length over the study area from May to September of 2012. To generate the histograms the 

roughness over the periods indicated (May–June, July–August and September, respectively) was 

averaged first. Next, the histogram over the entire region was calculated. The smallest spatial variability 

of the aerodynamic roughness lengths within class and among different classes occurred in May, when 

most crops were in the early stages of development. The greatest spatial differences among the different 

classes occurred in July and August, when most of the vegetable crops were in the booting stage.  

In Figures 6 and 7, the spatial variability among the different classes is also apparent in September because 
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the canopy area index Λ included the woody branches and dead leaves, which slows down the decrease in 

the density of the roughness elements and extends in time the apparent variability of the aerodynamic 

roughness length. The greatest variability occurred in June, mainly because the oasis is dominated by 

maize, and some deviations occurred in the sowing time. For the spring maize, June is the vegetative 

growth period and is characterized by the largest variability in vegetation height. In addition, the spatial 

variations of soil moisture, irrigation conditions, and soil fertility can contribute to the spatial variability 

in plant development, and the resulting spatial variability of the aerodynamic roughness length. 

 

Figure 6. Aerodynamic roughness length in the period of May to September 2012 on days 

of year: (a) 137, (b) 167, (c) 197, (d) 227, and (e) 257. 
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Figure 7. Histograms of z0m in different growing seasons in 2012 (green curve: May–June; 

red curve: July–August; blue curve: September) for the different vegetation types over the 

study area (middle reach of Heihe River Basin): (a) maize; (b) wheat; (c) vegetable; (d) 

grassland; (e) wetland; (f) orchard and (g) forest. 

4.3. Validation and Comparison of the Aerodynamic Roughness Length Results 

The aerodynamic roughness length estimated at the flux tower sites by the profile method (see Section 3.3) 

was used to validate the remote sensing model results for each site (see Figure 8). The error bars indicate 

the confidence intervals of the data, and the diameter of the circle in the middle of each error bar indicates 

the number of degrees of freedom for each robust regression (equivalent to the number of observations). 

Figure 8 shows that the greater the degrees of freedom the shorter are the error bars, which is to be 

expected. The coefficient of correlation, R and the RMSE are used to evaluate the results. Overall, the 

R92 method with the revised parameter sets of Jasinski et al. (2005) [20] provided seasonal trends and 

magnitudes that were similar to the EC derived aerodynamic roughness length, except for the orchard 

(Figure 8l). For the orchard (Figure 8l), the correlation between the remote sensing model estimates and 

the ground measured roughness length was rather poor. Compared with the other vegetation classes, the 

remote sensing (RS) results for the orchard class show less variability, this is partly due to the fact that 

the period of ground measurement in the orchard site was too short to capture the full growth of the fruit 

trees. In this case, longer time series of ground measurements should be added for further comparison. 

For wetlands, the model performs well, with relatively high R-values and low RMSE values. For maize, 
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more sites are available for validation, and the RS roughness length model performed differently among 

different sites when compared with the measurements. Most of the sites showed high correlation, 

although the aerodynamic roughness length is usually underestimated by the remote sensing model. 

 

Figure 8. Comparison between the estimated aerodynamic roughness length and the ground 

measurements from EC experimental sites (a–l) in the middle reach of the Heihe River Basin in 

2012. Each circle is the area—Averaged value over five days. The diameters of the circle scale 

with the number of degrees of freedom (equivalent to the number of observations) for each 

robust regression. The error bars indicate the 95% confidence intervals of the regression estimate. 

5. Discussion 

Although Jasinski et al. (2005) [20] used a broader range of canopy density and land cover types for 

parameters estimation, the parameters used in this model are still locally limited. The four vegetation types 
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used by Jasinski et al. (2005) [20] may be insufficient to capture the geometric features of all vegetation 

types and finer model tuning may be needed (using ground measurements) for different vegetation classes. 

Multi-spectral image data cannot replace local and direct measurements of aerodynamic roughness 

length. However, compared with ground measurements, remote sensing data have the advantages of 

wider coverage, relatively inexpensive and are easily obtained. Fine temporal and spatial resolution 

image data will be available as multiple satellites will provide similar measurements. This will make 

regional monitoring of aerodynamic roughness length easier, especially in heterogeneous areas. In this 

sense, deriving the land surface roughness length data using remote sensing observations is valuable. 

The aerodynamic roughness length parameterizes momentum absorption, which can be affected by 

surrounding pixels, and the parameterization is non-linear. The aerodynamic roughness length is 

inherently related to the height over the surface of momentum flux measurements and their footprint. 

Different applications may require z0m maps at different spatial resolutions. Strictly speaking, the 

aerodynamic roughness length is meaningful only over on homogeneous surfaces and within the surface 

layer in dynamic equilibrium with the underlying surface. Thus, the mixed pixels of coarse resolution 

multi-spectral image data will result in large error of estimate on both aerodynamic roughness length and 

turbulent fluxes. Thus, this study investigated the aerodynamic roughness length at fine spatial (30 m) and 

temporal (5 day) resolutions which is meaningful for regional scale modelers. Maps of aerodynamic 

roughness length at very high resolution are not really consistent with the physics underlying the 

logarithmic parameterization of u(z) and momentum flux. In addition, with the development of high 

resolution earth system models, which resolve increasingly finer scales of atmosphere dynamics, more 

knowledge of the relationships between the vegetation geometry and the model parameters relevant to a 
specific scale should be included [45]. 

As illustrated in Figure 8, deviations exist between EC estimations and model results, as well as 

among different vegetation classes. These deviations could occur for the following reasons: (1) Errors 

could exist in the EC measurements. Although the EC technique is usually the most accurate method for 

estimating aerodynamic roughness length, errors still exist when measurement conditions do not 

completely satisfy the basic assumptions, e.g., flat wind field, Taylor hypothesis, fast enough sampling 

rate, and enough averaging time for large scale eddies [46]. (2) The aerodynamic roughness itself is not 

only related to the geometry of the vegetation but also affected by meteorological conditions, such as 

the velocity and direction of the wind and the atmospheric stability. Different wind directions result in 

different measurement footprints i.e., deviations will appear in the aerodynamic roughness length when 

the land surface is heterogeneous. Figure 9a shows that the distribution of the z0m values estimated from 

the EC measurements of maize (site 1) changes with wind direction. For site 1, three lines of windbreak 

trees south of the site result in a large value of z0m for that wind direction (see Figure 9a). Furthermore, 

because vegetation is not a rigid body, its geometry can change with wind speed. Figure 9b implies that 

this effect occurs, where z0m values decreased with increasing wind speed. Atmospheric stability 

provides an indication of thermal turbulence to some extent, and can also affect the EC measurements. 

(3) Topography may also result in a relatively large z0m; however, this effect is negligible given the very 

flat topography of our study area. 
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Figure 9. Examples of aerodynamic roughness length changing with atmospheric conditions: 

(a) variation of EC-derived roughness with wind direction for maize site 1, indicating 

suboptimal fetch conditions in the south; (b) EC-derived roughness against wind speed for 

maize site 1, indicating the effect of crop bending with increased wind on the roughness 

length. The size of the circles in both (a) and (b) scales by the degrees of freedom in each 

fitting program, and error bars centered at each data point indicate 95% confidence intervals 

of the regression estimate. 

6. Conclusions 

The current research presents a practical approach for generating regional vegetation aerodynamic 

roughness lengths with fine temporal and spatial resolutions by combining remote sensing and ground 

measurements. In this study, the basic framework of the Raupach (1992) [18] (R92) model and the new 

parameters revised by Jasinsiki et al. (2005) [20] were adapted to derive the ratio of height-normalized 

aerodynamic roughness length to vegetation height, z0m/h. The multi-spectral image data acquired by the 

HJ-1A/1B satellites were used to construct a land cover map based on a supervised classification method, 

fine resolution LAI maps and vegetation height maps using the empirical methods proposed in this paper, 

which performed well in our study area. Eventually, the aerodynamic roughness length, which is 

preferred by users, is generated rather than the ratio z0m/h. The values and seasonal variations of 

aerodynamic roughness lengths for different vegetation types were different. Trees (orchard and forest) 

have much higher aerodynamic roughness lengths and less variability than the non-forest type classes. 

Taking the advantage of the dense field EC tower measurements in the middle reach of the Heihe 

River Basin, the aerodynamic roughness length product was evaluated over different vegetation types. 

Aerodynamic roughness data from the EC tower sites were used as reference data and directly compared 

with the results derived from the remote sensing method using satellite data. Overall, the model 

performed well at wetland and maize sites but not at the orchard site. This discrepancy possibly occurred 

for several reasons, such as errors from EC ground measurements, and the accuracy of the model.  

The difference in the footprints between the ground measurements and remote sensing observations, 

combined with suboptimal fetch conditions from some of the former, may also explain some of this 

disagreement. Nevertheless, we are confident that implementing the R92 framework, enhanced by 

explicit vegetation height estimates, will provide improved distributed roughness length estimates for a 

range of applications. 
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