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Abstract: The satellite-derived growing season time-integrated Normalized Difference 

Vegetation Index (GSN) has been used as a proxy for vegetation biomass productivity. The 

250-m GSN data estimated from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) sensors have been used for terrestrial ecosystem modeling and monitoring. High 

temporal resolution with a wide range of wavelengths make the MODIS land surface 

products robust and reliable. The long-term 30-m Landsat data provide spatial detailed 

information for characterizing human-scale processes and have been used for land cover and 

land change studies. The main goal of this study is to combine 250-m MODIS GSN and 30-m 

Landsat observations to generate a quality-improved high spatial resolution (30-m) GSN 

database. A rule-based piecewise regression GSN model based on MODIS and Landsat data 

was developed. Results show a strong correlation between predicted GSN and actual GSN 

(r = 0.97, average error = 0.026). The most important Landsat variables in the GSN model 

are Normalized Difference Vegetation Indices (NDVIs) in May and August. The derived 

MODIS-Landsat-based 30-m GSN map provides biophysical information for moderate-scale 

ecological features. This multiple sensor study retains the detailed seasonal dynamic 

information captured by MODIS and leverages the high-resolution information from 

Landsat, which will be useful for regional ecosystem studies.  

Keywords: Landsat; MODIS; growing season averaged NDVI; biomass; data mining; cubist 

regression models; downscaling; multi-sensor 
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1. Introduction 

Satellite remote sensing has become an essential tool for measuring and monitoring the dynamics of 

terrestrial ecosystems over large areas because of its wide coverage, high spatial and temporal resolutions, 

and consistency [1–8]. The satellite-derived Normalized Difference Vegetation Index (NDVI) is the 

normalized reflectance difference between the near-infrared (NIR) band and the visible red band [9,10]. 

NDVI represents the photosynthetic potential (or greenness) of a vegetation canopy. Higher NDVI 

values usually reflect greater vigor and greenness of the vegetation [10–12]. The growing season 

averaged (or integrated) NDVI (GSN) has been used as a proxy for vegetation biomass productivity, 

because GSN captures the seasonal dynamics related to ecological disturbances or weather variations 

through the growing season [13–20]. One limitation of using GSN to estimate vegetation productivity is 

that NDVI can reach saturation in dense vegetation canopies (i.e., NDVI becomes insensitive at high 

values of leaf area index) [14,21–25], which may lead to an underestimation of vegetation productivity 

in high (dense) biomass regions. Gu et al. developed an approach that adjusted NDVI (and GSN) pixel 

values that were near saturation to better characterize the cropland productivity in the Greater Platte 

River Basin, USA [26]. Generating a regional to global long-term time series GSN database with 

multiple spatial resolutions (e.g., 30-m and 250-m) can help better understand the biophysical character 

of a region, the dynamics of local to global ecosystems (e.g., changes and trends), and climate change 

impacts on ecosystem services. This long-term multi-scale GSN database can also be used as an input 

for biogeochemical, ecological, and climate change models [27]. 

The Moderate Resolution Imaging Spectroradiometer (MODIS), a key instrument aboard the Terra 

and Aqua satellites, has been widely used for monitoring and studying global dynamics and processes 

on the land, in the oceans, and in the lower atmosphere [28]. MODIS provides radiometrically sensitive 

(12-bit) data for 36 spectral bands (wavelengths range from 0.4 µm to 14.4 µm) for the entire Earth’s 

surface every one to two days. The spatial resolutions for MODIS data are 250 m for red and NIR bands, 

and 500 m and 1000 m for the other bands. High temporal resolution with a wide range of wavelengths 

make the MODIS land surface products (atmospherically corrected for cloud, cloud shadows, and 

aerosols) robust and reliable [29]. The long-term time series of 250-m MODIS GSN data derived from 

the MODIS red and NIR bands has been successfully used for terrestrial ecosystem modeling and 

monitoring [17,19,30–33]. However, these 250-m MODIS GSN maps can only provide the approximate 

ecological conditions and spatial patterns of a region and cannot capture the more detailed site-specific 

information at a regional scale. Therefore, developing a high spatial resolution (e.g., 30-m) GSN map 

for better understanding the site-specific biophysical and ecological dynamics of a region is needed. 

The Landsat data series provides the longest (>40 years) continuous global record of space-based 

Earth surface observations and improves our understanding of Earth systems [34,35]. The advantage of 

the 30-m spatial resolution Landsat imagery available since 1981 is that it is global in coverage, and the 

resolution is detailed enough for characterizing human-scale processes (e.g., urban growth and 

deforestation) [36]. The long-term Landsat data have successfully been used for land cover and land 

change studies, ecological characterizations, and other Earth science applications [36–48]. Despite the 

advantage of the historical high spatial resolution Landsat data, using Landsat data for terrestrial 

ecosystem monitoring compared to MODIS land surface products has some limitations. For example, the 

16-day Landsat revisit time (or possible 8-day revisit capabilities through two Landsat satellites) [49] lowers 
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the capability of detecting rapid ecosystem changes (e.g., ecological disturbances such as wildfire) [50] and 

decreases the availability of cloud-free surface observation data [51,52] relative to the 1~2 day revisit time 

of MODIS. The wide wavelength ranges in the Landsat NIR and shortwave infrared bands may decrease the 

spectral sensitivity to vegetation canopy and may induce more atmospheric contamination in the raw  

data [50,53]. The weak cloud and aerosol detection compared to the MODIS sensors may cause more 

uncertainty in the Landsat land surface products [51,54–57]. In addition, the sparse Landsat temporal 

observations limit the use of temporal smoothing techniques to correct the NDVI values for cloudy pixels. 

The main goal of this study is to develop an approach that combines both 250-m MODIS 

atmospherically corrected GSN data and 30-m Landsat observations to generate a quality-improved, 

atmospherically corrected, high spatial resolution (30-m) GSN product. A data mining technique is 

applied to develop the rule-based piecewise regression GSN models based on the MODIS GSN 

(dependent variable) and the degraded (250-m) Landsat data. The resulting 30-m GSN map provides 

biophysical and ecological information at a detailed level and will be useful for local, regional, and 

global ecosystem dynamic monitoring and modelling.  

2. Data and Method 

2.1. Study Area 

Our pilot study area covers one Landsat scene and is mainly located in northeastern Colorado, plus a 

small portion of Wyoming and Nebraska.  

 

Figure 1. Location of the study area (inside the blue outline) and the land cover types as 

identified in the National Land Cover Database (NLCD) 2001. 

The study area represents varying levels of vegetation productivity, ranging from the low productivity 

semiarid grasslands to the highly productive irrigated croplands. The main vegetation cover types in the 

study area include cultivated crops (>33%) and grassland and herbaceous (~51%). Other vegetation 

cover types are forest, pasture and hay, and shrubland [37]. Multiple vegetation cover types with a wide 

range of productivities in the study area provide a wide range of GSN and help insure a robust, unbiased, 
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and reliable model. The land cover types, state names and boundaries, and study area (within the blue 

outline) are shown in Figure 1. 

2.2. Data 

2.2.1. Landsat Data 

Six Landsat 7 (8-bit) scenes with low cloud cover were selected for the 2002 growing season using browse 

images [58]. These six Landsat 7 scenes represent each month from April to September of 2002. The 30-m 

land surface reflectance data for Landsat visible and infrared bands (bands 1–5), Landsat NDVI product, 

and cloud mask data (“CFmask” data for cloud and cloud shadow) for the six Landsat scenes were 

obtained through the U.S. Geological Survey (USGS) Landsat Surface Reflectance Climate Data Record 

(CDR) [59]. The CDR approach is based on the National Aeronautics and Space Administration 

(NASA)-funded Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) program [60]. 

The 30-m Landsat surface reflectance and NDVI data for the six scenes were upscaled to 250 m using 

the “spatial averaging” method. The percentage of 30-m cloudy/cloud shadow pixels within each 250-m 

MODIS pixel was calculated based on the 30-m CFmask data. The 250-m cloud mask maps for the six 

scenes were developed based on the percentage of cloud or shadow for each 250-m pixel (>85% cloudy 

pixel, <15% clear pixel). The 30-m averaged NDVI based on the six Landsat scenes was calculated and 

was used to evaluate the predicted 30-m GSN.  

2.2.2. MODIS GSN Data 

The 7-day maximum value composites of 250-m MODIS NDVI data were obtained from the USGS 

expedited MODIS (eMODIS) data archive [61]. The NDVI data were stacked by year and were 

saturation-corrected using an NDVI saturation correction approach [26]. The time series NDVI were 

then smoothed using a weighted least-squares approach to reduce additional atmospheric noise [62]. 

Finally, the growing season averaged NDVI for 2002 was calculated using weekly time series NDVI 

data with the start of season time as early April (~Julian date 100) and the end of season time as late 

October (~Julian date 300) [63]. 

2.3. Approach for Developing a 30-m GSN Map Based on MODIS and Landsat Data 

2.3.1. Building Rule-based Piecewise Regression GSN Models 

A data mining technique using Cubist software (version 2.05, [64]) was applied to develop the rule-based 

piecewise regression GSN models at 250-m resolution. Cubist models have been successfully used for 

ecosystem monitoring and modeling [5–7,65–69]. Cubist develops generalized rule sets (or piecewise 

regressions) from regression trees resulting in optimal multiple regression models that are constrained 

by data ranges of variables [64]. Data used for training the rule-based piecewise regression GSN models 

included (1) 250-m MODIS GSN data (dependent variables) and (2) 250-m multi-date (six scenes) 

Landsat 7 surface reflectance data for bands 1–5, NDVI data, and cloud masks (independent variables). 

More than 7200 samples were randomly extracted from the cloud-free regions and the cloudy regions 

across the six Landsat scenes and were used to build the GSN model.  
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2.3.2. Improving the GSN Model for Developing a 30-m MODIS-Landsat GSN Map 

The 250-m estimated GSN map was generated based on the GSN models and the 250-m multiple-date 

Landsat scene data. The estimated GSN error (absolute difference between the predicted GSN and the 

actual MODIS GSN) map was also produced to assess the performance of the GSN regression tree 

model. Several high absolute error regions were identified in areas of extreme high or low GSN values 

(e.g., cultivated crops or open water areas). To make the GSN model more robust and less prone to 

prediction bias, additional training points (~650 pixels) were manually selected from the high GSN error 

regions. These new points were added to the original training dataset to develop the final updated GSN 

regression tree model. Finally, a 30-m MODIS-Landsat GSN map was generated by applying the final 

updated GSN model to the original multiple-date 30-m Landsat data. Developing a model at a coarse 

resolution and then subsequently applying it to a higher resolution was successfully accomplished by 

Rover et al. [69]. Figure 2 summarizes our approach for developing the 30-m MODIS-Landsat GSN map. 

 

Figure 2. Flowchart for developing the 30-m MODIS-Landsat based GSN map. 

2.3.3. Evaluating the 30-m MODIS-Landsat GSN Map  

Statistical results derived from the Cubist software for assessing the performance of the GSN regression 

tree model including the important Landsat variables that contributed more in the GSN model, as well as 

the less important (or unused) Landsat variables. The final 30-m MODIS-Landsat GSN map was evaluated 

by comparing it with the 250-m MODIS GSN map, the original 30-m Landsat RGB images, and the 

average NDVI map based on the six Landsat scenes. The zoomed GSN maps for both cloud-free (clear) 

regions and cloudy regions are illustrated and discussed in the “Results and Discussion” Section.  

2.4. Testing and Identifying the Optimal Landsat Date Combinations for the GSN Model 

One goal of this study is to apply our downscaled MODIS-Landsat GSN approach to the historical 

Landsat data over a large area or globally. A computer with a high-speed processer and large disk space 

is needed for successfully implementing this approach globally. Therefore, reducing Landsat dates to 

decrease the computational time and disk space is advantageous. In this study, we tested and assessed 
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the GSN regression tree models using six, five, and three Landsat date combinations. The best and the worst 

five- and three-date combinations for the GSN models were identified and compared with the six-date GSN 

results. The possibility of using three Landsat scenes (by selecting the optimal combination) to predict 

30-m GSN based on MODIS and Landsat is also discussed in the paper.  

3. Results and Discussion 

3.1. GSN Regression Tree Model for the Cloud-Free Pixels 

In order to investigate the relationship between MODIS GSN and Landsat data directly without any 

cloud impacts, we first tested and built the MODIS-Landsat GSN regression tree models (250-m scale) 

for the cloud-free regions in the six scenes. Results show a strong correlation between the actual MODIS 

GSN and the predicted GSN (r = 0.98, absolute average error = 0.015 for the 249 test samples), indicating 

that using Landsat products can successfully predict the MODIS GSN (Figure 3a). The most important 

Landsat variables that contribute more in the rule-based piecewise regression modeling for predicting 

GSN are Landsat NDVI in late spring (May) and in the late summer (August and September). This 

finding suggests that spring and late summer Landsat NDVI values play essential roles in the GSN 

prediction. None of the Landsat cloud mask data for the six scenes was used in the GSN model because 

this model only investigated cloud-free regions.  

 

Figure 3. Scatterplots for the actual MODIS GSN and the predicted GSN. (a) Clear pixels 

only; (b) Clear and cloudy pixels. 

The correlation coefficients (r) and the average errors between the actual MODIS GSN and the  

Landsat-based predicted GSN for the six, five, and three Landsat date combinations are shown in Table 1. 

Results indicate that the three-scene combination could have the same strong correlation and similar absolute 

error between the actual MODIS GSN and the Landsat-based predicted GSN (r = 0.98, absolute average 

error = 0.015, Table 1) as the six- or five-scene combination did. The best three-date Landsat combinations 

for the optimal GSN regression tree model are May-July-September or June-August-September (r = 0.98, 

absolute average error = 0.015) and the worst three-date combination for the GSN regression tree model 

is April-May-June (r = 0.93, absolute average error = 0.026). These results suggest that the three-date 
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Landsat combinations, which include early, middle, and late (or middle and late) portions of the growing 

season, would generate the best GSN model. On the other hand, the three-date Landsat combination that 

was only selected from the early portion of the entire growing season, where late season effects would 

not be represented, would lead to a weaker GSN model. Figure 4 is the error (i.e., the difference between the 

predicted GSN and the actual MODIS GSN) histograms for the “6-scene” (blue) and the “worst 3-scene 

combination, April-May-June” (green) listed in Table 1. The “3-scene” based predicted GSN has more 

pixels with large errors (i.e., error < −0.05 or error > 0.05) than the “6-scene” based predicted GSN  

(Figure 4). The possibility of using optimal three-date Landsat scene combinations to develop the MODIS 

Landsat-based GSN model is discussed in the “Discussion” section.  

Table 1. The highest and the lowest correlation coefficients (r) and the absolute average 

errors between the actual MODIS GSN and the predicted GSN for the six, five, and three 

Landsat date combinations (for clear pixels only).  

 6-Scene 
Highest r for the  

5-Scene Combination 

Lowest r for the  

5-Scene Combination 

Highest r for the  

3-Scene Combination 

Lowest r for the  

3-Scene Combination 

Month 4–9 4,5,6,8,9 4,6,7,8,9 5,7,9 (or 6,8,9) 4,5,6 

r 0.98 0.98 0.97 0.98 0.93 

Average error 0.015 0.014 0.015 0.015 0.026 

 

Figure 4. Error (difference between the predicted GSN and the actual MODIS GSN) 

histograms (% of total) for the “6-scene” (blue) and the “3-scene, April-May-June” (green). 

Histogram with “orange” color represents the differences between the upscaled LANDSAT 

NDVI and the 250-m MODIS NDVI for a single scene. Discussion on the “Orange” 

histogram can be found in the “Discussions” section.  

3.2. GSN Regression Tree Model for the “Clear and Cloudy” Pixels 

The final MODIS-Landsat GSN regression tree model, which included cloudy examples, was 

developed using a set of five successive piecewise regression models, with each successive model 
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improving on the errors of the previous model (“Five-committee member model”) [70]. The first 

committee model includes 47 rules and associated pricewise regression equations with different 

combinations of independent variables and stratification criteria. The GSN model has 232 piecewise 

regression equations for all five committee models. The final prediction for each pixel is the averaged 

values of all the committee predictions. 

Strong correlation between the actual MODIS GSN and the predicted GSN (r = 0.97, absolute average 

error = 0.026, Figure 3b) suggests that this MODIS-Landsat GSN approach can also be successfully 

applied to the minor amounts of cloudy coverage in the Landsat scenes. The most important Landsat 

variables that contribute more in the GSN rule-based piecewise regression modeling for “clear and 

cloudy” regions are NDVI in May and August (Table 2). The input Landsat variables that are not 

important and rarely used in the GSN regression tree models are Fmask data (only one Fmask data in 

June was used by the GSN model, Table 2). This implies that the Landsat reflectance data have already 

accounted for the cloud information. Theoretically, only spectral information from specific locations or 

data conditions, which helps explain significant variations in MODIS GSN, will be used by the 

regression tree model in prediction. Therefore, Landsat cloud masks may not be necessary for developing 

the GSN regression tree model if cloud coverage is low. Exclusion of the cloud mask should improve 

computational efficiencies and minimize disk space requirements and running time. The contributions 

of Landsat variables in the GSN regression tree model for the “clear and cloudy” areas (Table 2) are in 

good agreement with the cloud-free results (Table 1), with spring and late summer Landsat NDVIs 

having essential roles in the GSN prediction and demonstrating the reliability of our method and model.  

Table 2. Attribute usage in the rule-based piecewise regression GSN model. Name 

explanation: (1) the first character of the name represents the month (e.g., 4 represents April) 

and (2) B1–5 represents reflectance of the Landsat bands 1–5 (e.g., 4B5 means Landsat 

surface reflectance for April derived from band 5; 8NDVI means NDVI for August).  

Name Usage in Rule Stratification Usage in Regression Model  Average Usage  

8NDVI 74% 81% 78% 

5NDVI 55% 81% 68% 

4B5 32% 58% 45% 

4NDVI 29% 61% 45% 

9NDVI 14% 74% 44% 

6NDVI 32% 53% 43% 

9B4 19% 65% 42% 

7NDVI 11% 73% 42% 

5B3 16% 67% 42% 

8B1 16% 65% 41% 

5B1 8% 66% 37% 

8B2 6% 68% 37% 

9B3 3% 70% 37% 

8B4 7% 63% 35% 

9B1 6% 64% 35% 

8B3 70% - 35% 

9B2 70% - 35% 

4B2 2% 64% 33% 
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Table 2. Cont. 

Name Usage in Rule Stratification Usage in Regression Model  Average Usage  

5B4 8% 58% 33% 

5B2 3% 62% 33% 

5B5 26% 35% 31% 

4B4 6% 54% 30% 

7B3 1% 59% 30% 

4B1 59% - 30% 

7B2 2% 53% 28% 

6B3 2% 53% 28% 

7B5 9% 45% 27% 

7B4 1% 53% 27% 

4B3 53% - 27% 

9B5 2% 44% 23% 

6B4 5% 40% 23% 

6B2 1% 44% 23% 

8B5 42% - 21% 

6B1 2% 38% 20% 

6B5 9% 30% 20% 

7B1 2% 33% 18% 

6Fmask 7% - 4% 

Table 3. Correlation coefficients (r) and the absolute average errors between the actual 

MODIS GSN and the predicted GSN for the three Landsat date combinations for the “clear 

and cloudy” regions.  

Month 456 457 458 459 467 468 469 478 479 489 

Correlation coefficient (r) 0.95 0.95 0.95 0.93 0.93 0.94 0.94 0.94 0.94 0.93 

Absolute average error (×100) 3.9 3.3 3.1 3.8 3.7 3.3 3.6 3.6 3.5 3.6 

Month 567 568 569 578 579 589 678 679 689 789 

Correlation coefficient (r) 0.96 0.96 0.96 0.95 0.95 0.96 0.94 0.93 0.95 0.91 

Absolute average error (×100) 3.3 2.9 3.3 3.1 3.1 3.2 3.6 3.6 3.3 4.2 

We also tested and assessed the GSN regression tree models by using all possible combinations of 

six, five, and three Landsat dates for “clear and cloudy” areas to demonstrate the application of this 

approach to years with high cloud frequencies and low occurrences of cloud-free scenes. The correlation 

coefficients (r) and the average errors between the actual MODIS GSN and the Landsat-based predicted GSN 

for the three Landsat date combinations are presented in Table 3. The best three-date Landsat combination 

for the GSN regression tree model is May-June-August (r = 0.96, absolute average error = 0.029), and the 

worst three-date combination for the GSN regression tree model is July-August-September (r = 0.91, 

absolute average error = 0.042, Table 3). Results from Table 3 indicate that most of the three-date Landsat 

combinations (including “clear and cloudy” areas) can build a good quality GSN regression tree model  

(r > 0.93, absolute average error < 0.036, Table 3). The three-date combinations that only contained the 

early or latter part of the growing season (e.g., April-May-June and July-August-September) do not 

represent the entire growing season and resulted in relatively weak GSN regression tree models. 
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Therefore, using a three-date Landsat combination that includes Landsat acquisitions across the growing 

season is recommended to optimize the MODIS-Landsat GSN regression tree prediction. 

3.3. MODIS-Landsat GSN Map 

3.3.1. Comparing the Predicted 30-m GSN with the 250-m MODIS GSN 

The 30-m MODIS-Landsat GSN estimation map was generated based on the 30-m Landsat data and 

the final 250-m GSN regression tree model developed in the previous section. Figures 5a,b is the 250-m 

MODIS GSN (actual GSN) and the 30-m MODIS-Landsat GSN (predicted GSN) maps, showing 

agreement in the general spatial patterns between the actual and the predicted GSN maps. For example, 

both maps show the highly productive croplands along the South Platte River as well as the relatively low 

productive dryland rangeland located in the northern and southern parts of the study area (Figure 5a). The 

GSN regression tree model appears to have produced a high quality GSN map. Differences between the 

actual MODIS GSN and the predicted Landsat-based GSN are caused by the different spatial  

resolutions. To provide a more detailed view of the two GSN maps, we zoomed in on two small sample 

boxes located along the Platte River and southeastern Wyoming (red squares in Figures 5a,b) for the two 

GSN maps. 

 

Figure 5. GSN maps for the study area. (a) 250-m MODIS GSN; (b) 30-m MODIS  

Landsat-based predicted GSN. Locations of the two zoomed boxes are shown in Figures 5a,b 

(red squares). The main vegetation cover types are irrigated croplands and grasslands for 

Box 1 and row crops and rangeland for Box 2. 
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In the “Zoom Box 1” maps, highly productive irrigated croplands (dominated by center pivot 

irrigations) are clearly shown as circular features in the 30-m predicted GSN map, but they are not 

distinguishable in the 250-m MODIS GSN map. The 250-m MODIS GSN map only provides a more 

smoothed pattern of NDVI for the zoomed region, which is largely attributable to the coarse spatial 

resolution. Similarly, in the “Zoom Box 2” maps, the spatial patterns for the center pivot irrigated crop, 

strip cropping (crop rotations), and dryland rangelands are clearly illustrated in the 30-m predicted GSN 

map; however, these detailed ecological features are blurred in the 250-m GSN map. 

 

Figure 6. Illustration maps for a selected cloudy area. (a) Location of the selected cloudy 

area (red box); (b) Zoomed in Landsat scene for 2002 day of year (DOY) 167; (c) Zoomed 

in Landsat scene for 2002 DOY 199; (d) Zoomed in 250-m MODIS GSN; (e) Zoomed in 

30-m predicted GSN; (f) Zoomed in 30-m original Landsat GSN.  

3.3.2. Assessing the Impacts of Clouds 

Since our data-driven GSN regression tree model was based on all the cloud condition scenarios (i.e., 

cloud free, mixture, and cloudy), the final 30-m MODIS-Landsat GSN estimation map indicated that the 

GSN model handled the cloud condition very well. Figure 6 is an example showing how the 30-m GSN 

map looked under cloudy conditions. A heavily cloudy region (red box in Figure 6a) in Landsat 2002167 

scene (Julian date 167, 2002) was selected and zoomed in (Figure 6b). To illustrate the actual ecological 

and biophysical condition of the selected box, a cloud-free Landsat scene (Julian date 199, 2002) map 

for the selected box is shown in Figure 6c. The 250-m MODIS GSN, the predicted 30-m GSN map, and 

the original 30-m Landsat growing season averaged NDVI map for the same region were also illustrated 

in Figure 6d–f. Results from these zoomed in regions indicate that the predicted 30-m GSN map has 

similar spatial patterns to the Landsat cloud-free map (e.g., center pivot irrigation and strip cropping), 

better agreement with the 250-m MODIS GSN than the original 30-m Landsat GSN, and provides more 

detailed regional ecological information than the 250-m MODIS GSN (Figures 6c–e). These results 

demonstrate the robustness of the MODIS-Landsat GSN model. The original 30-m Landsat GSN values 

(Figure 6f) are much lower than the 250-m MODIS GSN (Figure 6d) in some regions, probably because of 
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the cloud impact (lower NDVI values) (Figure 6b). In addition, the wider range of wavelength in Landsat 

NIR band (compared with MODIS NIR band) may also contribute to the lower Landsat-derived GSN values.  

3.4. Discussion 

Although it might be simple to calculate the growing season averaged NDVI based on the original 

Landsat 30-m NDVI data, the derived GSN may be much lower than the actual GSN for the heavily 

cloudy regions. To demonstrate the improvement of the derived 30-m MODIS-Landsat GSN map, we 

upscaled the original 30-m Landsat NDVI to 250-m for one single scene (i.e., Julian date 167, 2002) and 

compared it with the 250-m MODIS NDVI acquired from the similar date (i.e., dates 165–171 for the 7-day 

MODIS composite in 2002). The correlation coefficient (r) between the upscaled Landsat NDVI and the 

MODIS NDVI (for Julian date 167) is 0.77, which is much lower than the correlation coefficients 

between the predicted GSN and the MODIS GSN shown in Tables 1 and 3 (r > 0.91). The absolute 

average error for the upscaled Landsat NDVI is 0.128, which is much higher than the absolute average 

error of the predicted GSN shown in Tables 1 and 3 (<0.042). The error histogram indicates that more 

than 67% of the total pixels had large negative NDVI differences (<−0.05) for the upscaled Landsat 

NDVI (Orange color in Figure 4). These results imply that using the original Landsat NDVI data to 

calculate the GSN may cause large errors, our proposed GSN model can improve the correlation from 

the original Landsat scene.  

Furthermore, applying temporal smoothing to the original Landsat NDVI data may reduce cloudy 

effects [62]. However, temporal smoothing may affect the NDVI peak values and miscalculate the 

shoulder season NDVI, which will lead to a poor GSN result. Therefore, further investigations on 

correcting the original Landsat NDVI values for cloudy pixels are needed before averaging the original 

Landsat NDVI data to estimate the 30-m GSN.  

Using three-Landsat scene data to develop a MODIS-Landsat GSN regression tree model can reduce 

computer disk space and running time; however, the model may not be robust for areas where all three 

Landsat scenes could be covered by clouds. Therefore, additional Landsat scenes are needed and 

recommended for developing a more reliable GSN model. It appears that the GSN can be predicted at a 

reasonable degree of reliability by data from middle to late summer. The mid-late season data contain 

more vegetation growth information than the early season data, so the mid-late season data have some 

capability for estimating the total growing season productivity. The final GSN model indicates that the 

cloud mask data are not important and are rarely used in the regression tree models, we suggest excluding 

Landsat cloud mask data from the model training dataset for the future study (e.g., for a larger study area 

and a different geographic location).  

Since all the training data used for developing the GSN model was done at 250-m resolution to match 

the MODIS data, some extreme GSN values (e.g., extreme high or low values) in the 30-m Landsat data 

may be smoothed out by 250-m model development. Therefore, the 250-m GSN model may not capture 

the extreme cases and may need to apply an “extrapolation” approach [56] when estimating the 30-m 

GSN. An “extrapolation” approach is to set a relatively high extrapolation allowance in the GSN model, 

which will allow a wide range of the predicted GSN values (i.e., beyond the model development data 

range). Moreover, even though the NDVI plays an important role in the GSN model, results indicate that 

including all the variables (i.e., surface reflectance and NDVI for all bands and dates) to develop the 
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GSN model will increase the accuracy of the model (higher r value and lower average error). The Landsat 

surface reflectance derived from the different bands explains more of the MODIS GSN variation than 

Landsat NDVI alone does. Therefore, using NDVI and surface reflectance from different bands to 

develop the GSN model is recommended for the future study.  

Previous investigations on downscaling MODIS products (e.g., land channels, fraction of absorbed 

photosynthetically active radiation, land surface temperature, and vegetation indices) using Landsat 

observations and regression or Area-to-point prediction (ATPP) methods were conducted [71–77]. 

However, these studies were mostly focused on single data comparisons, we are not aware of similar 

studies that related to downscaling MODIS seasonal integrated NDVI (i.e., GSN) data. Zhu et al. [78] 

developed an algorithm for Continuous Change Detection and Classification (CCDC) of land cover 

using all available Landsat data. However, the CCDC algorithm did not include the atmospheric 

corrected MODIS products. Gao et al. [50] developed a spatial and temporal adaptive reflectance fusion 

model (STARFM) algorithm that blended Landsat and MODIS surface reflectance to produce a synthetic 

“daily” surface reflectance product at 30-m resolution. The STARFM approach used MODIS and 

Landsat observations to predict 30-m Landsat reflectance, which was different from the approach 

presented in this study. Our approach is using Landsat data and rule-based piecewise regression tree 

model to predict 30-m MODIS GSN. This study provides another method for downscaling MODIS GSN 

data. The advantage of this approach is that it requires relatively less computational costs, which will be 

an important advantage when the global data records need to be processed. This approach can also be 

applied to the other high spatial resolution data from multiple satellite data sources, such as Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER), China-Brazil Earth Resources 

Satellite (CBERS), or other commercial satellites.  

4. Conclusions  

This study develops an approach that integrates 250-m MODIS growing season NDVI and 30-m 

Landsat multiple-date observations to develop a GSN model based on MODIS and Landsat. Results 

show that there is a strong correlation between the predicted GSN and the actual GSN (r = 0.97, average 

absolute error = 0.026) for the “cloudy and clear” regions. The most important Landsat variables that 

contribute more in the GSN regression model are NDVI in May and August. On the other hand, Landsat 

cloud mask data were rarely used in the GSN regression tree models and were not important for 

predicting the MODIS GSN. Results also indicate that the GSN model handled cloud conditions very well 

and supported the hypothesized robustness of the MODIS-Landsat GSN model. The MODIS-Landsat  

30-m GSN estimation map provides detailed biophysical and ecological feature-based information of a 

site and can be used for regional dynamic ecosystem monitoring, modeling, and land management.  
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