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Abstract: Supervised classification is the commonly used method for extracting ground information
from images. However, for supervised classification, the selection and labelling of training samples
is an expensive and time-consuming task. Recently, automatic information indexes have achieved
satisfactory results for indicating different land-cover classes, which makes it possible to develop
an automatic method for labelling the training samples instead of manual interpretation. In
this paper, we propose a method for the automatic selection and labelling of training samples
for high-resolution image classification. In this way, the initial candidate training samples can
be provided by the information indexes and open-source geographical information system (GIS)
data, referring to the representative land-cover classes: buildings, roads, soil, water, shadow, and
vegetation. Several operations are then applied to refine the initial samples, including removing
overlaps, removing borders, and semantic constraints. The proposed sampling method is evaluated
on a series of high-resolution remote sensing images over urban areas, and is compared to
classification with manually labeled training samples. It is found that the proposed method is able
to provide and label a large number of reliable samples, and can achieve satisfactory results for
different classifiers. In addition, our experiments show that active learning can further enhance the
classification performance, as active learning is used to choose the most informative samples from
the automatically labeled samples.

Keywords: image classification; training samples; maximum likelihood classification; support
vector machine; active learning

1. Introduction

Classification is one of the most vital phases for remote sensing image interpretation, and
the classification model learned from the training samples should be extended and transferred in
the whole image. To date, many different pattern recognition methods have been successfully
applied to remote sensing classification. Maximum likelihood classification (MLC) has proved to
be robust for remote sensing images, as long as the data meet the distribution assumption (e.g., a
Gaussian distribution) [1]. However, MLC does not achieve satisfactory results when the estimated
distribution does not represent the actual distribution of the data [2]. In such cases, a single class
may contain more than one component in the feature space, the distribution of which cannot be
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described well with a single MLC. A Gaussian mixture model therefore deals with such complex
situations better than simple MLC [3,4]. In order to avoid the distribution assumption, researchers
have introduced non-parametric classifiers, such as the multi-layer perceptron (MLP) and support
vector machine (SVM). The MLP has achieved good results in high-resolution image classification [5],
pixel unmixing [6], change detection [7], and combination with other classification methods [8].
SVM has proven effective in hyperspectral image classification [9], high spatial resolution image
classification [10], and multi-classifier ensemble strategies [11,12]. However, like MLC, SVM also
suffers from the Hughes effect with a small-size training set [13]; thus, dimensionality reduction is
important when training with limited samples. Meanwhile, the random forest (RF) classifier has
received much attention in recent years, due to its robustness in high-dimensional classification
problems. RF employs a bagging strategy to enhance the individual decision tree (DT), which is a
weak classifier [14].

All the supervised classifiers introduced above need sufficient and efficient training samples,
which are usually selected and labeled by visual inspection or field survey. However, collection of
representative samples is expensive, both in terms of time and money [15]. Thus, researchers have
introduced semi-supervised methods to solve the problem of insufficient sampling, by considering
the unlabeled samples in an image. Meanwhile, active learning [16–22] has received increasing
attention in recent years, aiming to reduce the cost of training sample selection by only labelling
the most uncertain samples. Active learning has been extensively studied in the existing literature,
for applications such as diverse sample selection [16], multi-view strategies [17], convergence [18],
optimization of field surveying [19], image segmentation [20], and domain adaptation [21]. In general,
however, most of the classification algorithms depend on manually labeled samples, even though
semi-supervised learning and active learning need fewer labeled samples [15,23].

To the best of our knowledge, there have been few papers discussing machine learning methods
that can automatically label training samples from remote sensing images. In this context, we
propose to automatically select and label the training samples on the basis of a set of information
sources, e.g., the morphological building/shadow index (MBI, MSI) [24,25], the normalized difference
water/vegetation index (NDWI, NDVI) [26,27], the HSV color space, and open-source geographical
information system (GIS) data, e.g., road lines from OpenStreetMap (OSM) [28]. These information
indexes can be automatically obtained from remote sensing images, and hence have the potential to
select and label training samples for buildings, shadow, water, vegetation, and soil, respectively. The
objective of this study is to automate remote sensing image classification, and alleviate the intensity
of manual image interpretation for choosing and labelling samples. Please note that active learning is
a tool for selecting the most informative samples, but not for automatically labelling them. However,
the proposed method can simultaneously select and label samples, especially for high-resolution
images. An interesting point in this paper is that the OSM, which publically provides detailed
road lines all around the world, is used to generate the samples of roads. Subsequently, in order to
automatically collect reliable training samples, a series of processing steps are proposed to refine the
initial samples that are directly extracted from the indexes and OSM, including removing overlaps,
removing borders, and semantic constraints. In the experiments, four test datasets, as well as a
large-size dataset, were used to evaluate the proposed method, using four state-of-the-art classifiers:
MLC, SVM, MLP, and RF.

Section 2 introduces the information indexes, the HSV color system, and OSM, based on which
the automatic sampling method is proposed in Section 3. The classifiers considered in this study
are briefly described in Section 4. The experimental results are provided in Section 5, followed by a
detailed analysis and discussion in Section 6. Section 7 concludes the paper.

2. Information Sources for Automatic Sample Collection

In this section, the four information indexes used to generate the initial candidate training
samples are introduced. MBI, MSI, NDWI, and NDVI can automatically indicate the information
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classes of building, shadow, water, and vegetation, respectively [29]. The HSV color space is used
to describe the distribution of the soil and road lines are provided by OSM. In [29], these multiple
information indexes were integrated and interpreted by a multi-kernel learning approach, aiming
to classify high-resolution images. In addition, the MBI has proven effective for building change
detection, where the change in the MBI index is considered as the condition for building change in
urban areas [30].

Morphological Building Index (MBI): Considering the fact that the relatively high reflectance of
roofs and the spatially adjacent shadows lead to the high local contrast of buildings, the MBI
aims to build the relationship between the spectral-structural characteristics of buildings and the
morphological operators [25]. It is defined as the sum of the differential morphological profiles (DMP)
of the white top-hat (W-TH):

MBI=
ÿ

d,s

DMPW-THpd,sq (1)

W-THpd, sq=I-γre
I pd, sq (2)

where γre
I represents the opening-by-reconstruction of the brightness image (I), and d and s denote

the parameters of direction and scale, respectively. The white top-hat DMP is used to represent the
local contrast of bright structures, corresponding to the candidate building structures [25].

Morphological Shadow Index (MSI): Considering the low reflectance and the high local contrast of
shadow, the MSI can be conveniently extended from the MBI by replacing the white top-hat (W-TH)
with the black top-hat (B-TH):

MSI=
ÿ

d,s

DMPB-THpd,sq (3)

B-THpd, sq=ϕre
I pd, sq-I (4)

where ϕre
I represents the closing-by-reconstruction of the brightness image, and is used to represent

the local contrast of shadows [25]. The MBI and the MSI have achieved satisfactory results in terms
of accuracies and visual interpretation in experiments [24,25]. In this study, they are used to generate
the initial training samples for buildings and shadows, respectively.

Normalized Difference Water Index (NDWI): Water has a low reflection in the infrared channel and a
high reflection in the green channel [26]. Therefore, the NDWI makes use of this difference to enhance
the description of water, and is defined as:

NDWI “
BGreen ´ BNIR
BGreen ` BNIR

(5)

Normalized Difference Vegetation Index (NDVI): According to the different reflection of vegetation
canopies in the NIR and red channels [27], the NDVI is defined as:

NDVI “
BNIR ´ BRed
BNIR ` BRed

(6)

HSV Color System: HSV is a common color system, standing for hue (0~1), saturation (0~1), and
value (0~1). The HSV color system is able to quantitatively describe the color space for an image [31].
In this research, HSV transform is used to detect the soil components which present as yellow or
yellowish-red in the color space.

Open Street Map (OSM): OSM is a free, editable map of the whole world, which contains a large
amount of location information, especially abundant and detailed road lines [28]. In this research,
the road networks are registered with the corresponding remote sensing images, and the training
samples for roads can then be obtained. As shown in Figure 1, accurate and reliable road sample
detection consists of four steps: (a) registering the OSM road lines with the image; (b) removing the
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samples labeled by other classes; (c) removing short lines; and (d) sample extraction by buffering the
road lines.Remote Sens. 2015, 7 page–page 
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Figure 1. Detection of road samples: (a) registering OSM road lines with the image; (b) removing 
samples labeled by other classes; (c) removing short lines; and (d) sample extraction by buffering road lines. 

A graphic example of a WorldView-2 image is used to show the effectiveness of the information 
indexes, the HSV-based soil detection, as well as the OSM road lines for the automatic sample 
collection (Figure 2). From the illustrations, it can be clearly seen that these information sources can 
provide effective descriptions of buildings, shadow, water, vegetation, soil, and roads. The visual 
results show that it is possible to automatically select candidate training samples. In particular, the 
soil components are highlighted as dark green in the HSV space, and can be detected as soil. 
However, it should be noted that there are overlaps between some similar classes, e.g., water and 
shadows. This suggests that the samples generated from the information sources cannot be directly 
used for classification, and refinement processing is needed. 

 
(a) (b) (c) 

Figure 2. Cont. 

Figure 1. Detection of road samples: (a) registering OSM road lines with the image; (b) removing
samples labeled by other classes; (c) removing short lines; and (d) sample extraction by buffering
road lines.

A graphic example of a WorldView-2 image is used to show the effectiveness of the information
indexes, the HSV-based soil detection, as well as the OSM road lines for the automatic sample
collection (Figure 2). From the illustrations, it can be clearly seen that these information sources
can provide effective descriptions of buildings, shadow, water, vegetation, soil, and roads. The visual
results show that it is possible to automatically select candidate training samples. In particular, the
soil components are highlighted as dark green in the HSV space, and can be detected as soil. However,
it should be noted that there are overlaps between some similar classes, e.g., water and shadows.
This suggests that the samples generated from the information sources cannot be directly used for
classification, and refinement processing is needed.
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Figure 2. Multiple information sources, including (a) Roads from OSM; (b) MBI; (c) MSI; (d) 
NDWI; (e) NDVI; and (f) the HSV space, for selecting the initial sample set for roads, 
buildings, shadow, water, vegetation, and soil, respectively. 

3. Automatic Sample Selection 

This section introduces the proposed method for the automatic selection of training samples for 
buildings, shadow, water, vegetation, roads and soil, as illustrated in Figure 3, including the 
following steps. 

(1) Select initial training samples of buildings, shadow, water, vegetation, soil, and roads, 
respectively, from the multiple information sources. 

(2) Samples located at the border areas are likely to be mixed pixels, and, thus, it is difficult to 
automatically assign these pixels to a certain label. In order to avoid introducing incorrect 
training samples, these border samples are removed with an erosion operation. 

(3) Manual sampling always prefers homogeneous areas and disregards outliers. Therefore, in 
this study, area thresholding is applied to the candidate samples, and the objects whose 
areas are smaller than a predefined value are removed. 
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Figure 3. An example of a comparison between the initial samples derived from the multiple 
information sources and the samples refined by the proposed method (orange = buildings, magenta 
= shadow, blue = water, green = vegetation, cyan = roads, and yellow = soil). (a) Initial samples; (b) 
Refined samples. 

Figure 2. Multiple information sources, including (a) Roads from OSM; (b) MBI; (c) MSI; (d) NDWI;
(e) NDVI; and (f) the HSV space, for selecting the initial sample set for roads, buildings, shadow,
water, vegetation, and soil, respectively.

3. Automatic Sample Selection

This section introduces the proposed method for the automatic selection of training samples
for buildings, shadow, water, vegetation, roads and soil, as illustrated in Figure 3, including the
following steps.

(1) Select initial training samples of buildings, shadow, water, vegetation, soil, and roads,
respectively, from the multiple information sources.

(2) Samples located at the border areas are likely to be mixed pixels, and, thus, it is difficult to
automatically assign these pixels to a certain label. In order to avoid introducing incorrect training
samples, these border samples are removed with an erosion operation.

(3) Manual sampling always prefers homogeneous areas and disregards outliers. Therefore, in this
study, area thresholding is applied to the candidate samples, and the objects whose areas are
smaller than a predefined value are removed.

(4) The obtained samples should be further refined, in order to guarantee the accuracy of the samples.
Considering the fact that buildings and shadows are always spatially adjacent, the distance
between the buildings and their neighboring shadows should be smaller than a threshold, which
is used to remove unreliable buildings and shadows from the sample sets. Meanwhile, the road
lines obtained from OSM are widened by several pixels, forming a series of buffer areas, where
road samples can be picked out.

(5) Considering the difficulty and uncertainty in labelling samples in overlapping regions, the
samples that are labeled as more than one class are removed.
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Figure 3. An example of a comparison between the initial samples derived from the multiple
information sources and the samples refined by the proposed method (orange = buildings, magenta
= shadow, blue = water, green = vegetation, cyan = roads, and yellow = soil). (a) Initial samples; (b)
Refined samples.

The whole processing chain for the automatic sample selection is summarized in the following
algorithm. Please note that the values of the parameters, mainly referring to the binarization
threshold values for the multiple information indexes, and the area threshold values used to remove
the small and heterogeneous points, can be conveniently determined and unified in all the test images.
The suggested threshold values used in this study are not fixed, and can be appropriately tuned in
different image scenes, but rather represent a first empirical approach.

Algorithm: Automatic selection of training samples
1: Inputs:
2: Multiple information sources (MBI, MSI, NDWI, NDVI, HSV, OSM).
3: Manually selected thresholds (TB, TS, TW, TV).
4: Step1: Select initial training samples from the information sources.
5: Step2: Erosion (SE=diamond, radius = 1) is used to remove samples from borders.
6: Step3: Minimal area (m2): ABuild = 160, AShadow = 20, AWater = 400, AVege = 200, and Asoil = 400.
7: Step4: Semantic processing:
8: (1) The distance between buildings and their adjacent shadows is smaller than 10 m (about
9: five pixels in this study).
10: (2) Road lines are widened for buffer areas.
11: Step5: Remove overlapping samples.

In Figure 3, the initial samples extracted by the multiple information sources and the samples
refined by the proposed algorithm are compared, from which it can be seen that the pure samples for
the land-cover classes are correctly labeled in an automatic manner.

4. Classifiers Considered in This Study

In this paper, four classifiers MLC, SVM, RF, and MLP are used to implement the proposed
automatic training sample selection method. The chosen classifiers have proven effective in many
remote sensing applications [32].

(1) Maximum Likelihood Classification: MLC is a statistical approach for pattern recognition. For a
given pixel, the probability of it belonging to each class is calculated, and it is assigned to the class
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with the highest probability [14]. Normally, the distribution of each class in the multi-dimension
space is assumed to be a Gaussian distribution. The mean and covariance matrix of MLC are
obtained from the training samples, and used to effectively model the classes. If the training set
is biased compared to the normal distribution, the estimated parameters will not be very accurate.

(2) Support Vector Machine: SVM is a binary classification method based on minimal structural risk,
and it can be extended to multi-class classification with multi-class strategies. When dealing
with linearly separable datasets, the optimal decision line is obtained by maximizing the margin
between the two parallel hyperplanes. This type of SVM ensuring that all the samples are
classified correctly is called hard-margin SVM. On the other hand, allowing the existence of
misclassified training samples, soft-margin SVM introduces slack variables for each sample. SVM
generates nonlinear decision boundaries by mapping the samples from a low-dimension space
to a high-dimension one, and the kernel trick is used to avoid the definition of the mapping
function [33].

An SVM model is constructed by support vectors, which usually locate in the decision boundary
region between the class pairs. The most representative and informative samples will be close to
the boundary of the class pair [15,34]. A better sample set for training an SVM model is not to
accurately describe the classes, but to provide information about the decision boundary between
the class pairs in the feature space [35]. Meanwhile, in the case of a small-size sample set, the
outliers have an obvious influence on the decision boundary.

(3) Neural Networks: NNs can be viewed as a parallel computing system consisting of an extremely
large number of simple processors with interconnections [32]. NNs are able to learn complex
nonlinear input-output relationships, use sequential training procedures, and adapt themselves
to the data [32]. The MLP is one of the most commonly used NNs. It consists of input, hidden,
and output layers, where all the neurons in each layer are fully connected to the neurons in
the adjacent layers. These interconnections are associated with numerical weights, which are
adjusted iteratively during the training process [36]. Each hidden neuron performs a mapping of
the input feature space by a transform function. After an appropriate mapping by the previous
layer, the next layer can learn the classification model as a linearly separable problem in the
mapped feature space, and thus NNs are able to deal with nonlinearly separable datasets [8].
In this study, the conjugate gradient method (e.g., scaled conjugate gradient, SCG), is used for
training of the MLP, since it can avoid the line search at each learning iteration by using a
Levenberg-Marquardt approach to scale the step size [36].

(4) Decision Tree: A hierarchical DT classifier is an algorithm for labelling an unknown pattern by the
use of a decision sequence. The tree is conducted from the roof node to the terminal leaf, and
the feature for each interior node is selected by information gain or the Gini impurity index. A
pruning operation is employed in simplifying the DT without increasing errors [14]. Due to the
unsatisfactory performance, an ensemble of DTs, such as RF, is more commonly used than the
simple DT [37]. RF combines predictors from trees, and the final result of a sample is the most
popular class among the trees. Each tree is conducted via a sub-randomly selected sample set and
a sub-randomly selected feature space [38]. Each tree in RF is grown to the maximum depth, and
not pruned. RF is relatively robust to outliers and noise, and it is insensitive to over-fitting [14].

5. Experiments and Results

A series of test images were used to validate the proposed method for the automatic selection
of training samples. In the experiments, the proposed method was compared with the traditional
method (i.e., manually collected samples), in order to verify the feasibility of the automatically
selected samples.
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5.1. Datasets and Parameters

Figure 4 shows the four test datasets, as well as the manually selected samples (the ground
truth). The study areas are located in Hangzhou, Shenzhen, Hong Kong, and Hainan, respectively,
with a size of 640 ˆ 594, 818 ˆ 770, 646 ˆ 640, and 600 ˆ 520 in pixels, as well as a resolution of
2 m, 2.4 m, 2 m, and 2 m. These datasets were acquired by WorldView-2, GeoEye-1, WorldView-2,
and WorldView-2, respectively, with eight, four, four, and eight spectral bands, respectively The
study areas exhibit the characteristics of a set of typical urban landscapes in China, and mainly
consist of six classes: buildings, shadow, water, vegetation, roads, and bare soil. The six classes
can be automatically extracted by the proposed method, the effectiveness of which was tested in the
experiments. For the manually collected samples, 40% of the labeled samples were randomly selected
from the ground truth as the training sample set (named ROI in the following text), while the rest were
used for the testing (Table 1).
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The parameters of the linear structuring element (SE) for the MBI and the MSI, including the 
minimal value, maximal value, and the interval, {Smin, Smax, ΔS,}, can be determined according to the 
spatial size of the buildings and the spatial resolution of the images used. These parameters were 
unified in this study as: Smin = 8 m, Smax = 70 m, and ΔS = 2 m, respectively. In addition, the binarization 
threshold values for the information indexes were set according to the suggestions of our previous 
study [25]. Please note that these thresholds can be simply and conveniently determined since we 
merely aim to choose pure and reliable samples for the further consideration. 
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Figure 4. The images (left) and ground truth (right) used in the experiments: (a) Hangzhou; (b) 
Shenzhen; (c) Hong Kong; and (d) Hainan (orange = buildings, magenta = shadow, blue = water,  
green = vegetation, cyan = roads, and yellow = soil). 

Table 1. Numbers of training samples (ROI) and test samples, which were manually generated (in pixels). 

 
Hangzhou Shenzhen Hong Kong Hainan 

ROI Test ROI Test ROI Test ROI Test 
Building 13,004 19,507 16,598 24,897 12,388 18,583 4631 6947 
Shadow 5742 8614 9774 14,661 3788 5682 570 857 
Water 6186 9279 13,759 20,639 11,725 17,588 4,483 6726 

Vegetation 7118 10,678 12,829 19,244 6042 9063 8601 12,902 
Road 3784 5678 5185 7778 1264 1898 2142 3214 
Soil 400 601 256 385 496 746 8875 13,314 

Figure 4. The images (left) and ground truth (right) used in the experiments: (a) Hangzhou;
(b) Shenzhen; (c) Hong Kong; and (d) Hainan (orange = buildings, magenta = shadow, blue = water,
green = vegetation, cyan = roads, and yellow = soil).

Table 1. Numbers of training samples (ROI) and test samples, which were manually generated
(in pixels).

Hangzhou Shenzhen Hong Kong Hainan
ROI Test ROI Test ROI Test ROI Test

Building 13,004 19,507 16,598 24,897 12,388 18,583 4631 6947
Shadow 5742 8614 9774 14,661 3788 5682 570 857
Water 6186 9279 13,759 20,639 11,725 17,588 4,483 6726

Vegetation 7118 10,678 12,829 19,244 6042 9063 8601 12,902
Road 3784 5678 5185 7778 1264 1898 2142 3214
Soil 400 601 256 385 496 746 8875 13,314

The parameters of the linear structuring element (SE) for the MBI and the MSI, including the
minimal value, maximal value, and the interval, {Smin, Smax, ∆S,}, can be determined according to
the spatial size of the buildings and the spatial resolution of the images used. These parameters
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were unified in this study as: Smin = 8 m, Smax = 70 m, and ∆S = 2 m, respectively. In addition,
the binarization threshold values for the information indexes were set according to the suggestions of
our previous study [25]. Please note that these thresholds can be simply and conveniently determined
since we merely aim to choose pure and reliable samples for the further consideration.

For the SVM classifier, the radial basis function (RBF) kernel was selected, and the regularization
parameter and kernel bandwidth was optimized by five-fold cross-validation. For the RF classifier,
500 trees were constructed. The MLP classifier was carried out with two hidden layers, and the
number of neurons in each layer was also optimized by five-fold cross-validation.

In the experiments, training with ROI or Auto means that the classification model was trained
with manually labeled samples or automatically labeled samples, respectively. Each classification
was conducted 10 times with different initial training samples that were randomly chosen from the
candidate training sample set, and the average accuracies were recorded as the classification accuracy.
For each classification experiment, 100 training samples per class were used for the training.

5.2. Results

The automatically selected training samples of the four datasets are displayed in Figure 5, and
their numbers are provided in Table 2. It can be clearly observed that the automatically labeled
samples are correct, pure, and representative, and are uniformly distributed in the whole image.
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Figure 5. Automatically labeled samples from the four datasets (orange = buildings, 
magenta = shadow, blue = water, green = vegetation, cyan = roads, and yellow = soil).  
(a) Hangzhou; (b) Shenzhen; (c) Hong Kong; (d) Hainan. 

Figure 5. Automatically labeled samples from the four datasets (orange = buildings,
magenta = shadow, blue = water, green = vegetation, cyan = roads, and yellow = soil). (a) Hangzhou;
(b) Shenzhen; (c) Hong Kong; (d) Hainan.
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Table 2. Numbers of automatically selected training samples (in pixels).

Hangzhou Shenzhen Hong Kong Hainan

Buildings 10,686 24,177 12,287 3208
Shadow 7282 10,306 7126 1419
Water 17,418 34,307 41,569 13,572

Vegetation 29,801 83,425 44,571 85,022
Roads 8210 2938 2211 6170

Soil 269 852 2263 27,369

In general, from Table 3, the Auto samples achieve satisfactory accuracies, which are close to the
accuracies achieved by the ROI samples. In particular, for the Shenzhen and Hong Kong datasets, the
classification results obtained by the Auto samples are very similar and comparable to the manually
selected ones, for all the classifiers. With respect to the Hangzhou and Hainan datasets, the accuracy
achieved by the proposed automatic sampling is also acceptable (80%~90%), although their accuracy
scores are slightly lower than the ROI samples by an average of 4%~7%. Considering the fact that
the proposed method is able to automatically select samples from the images, it can be stated that the
method is effective, making it possible to avoid time-consuming manual sample selection.

Table 3. The overall classification accuracies for the four datasets.

MLC (%) SVM (%) RF (%) MLP (%)

Hangzhou Auto 79.3 ˘ 1.7 80.4 ˘ 2.0 82.1 ˘ 1.2 82.6 ˘ 1.2
ROI 83.1 ˘ 1.7 85.6 ˘ 0.8 86.8 ˘ 0.9 86.4 ˘ 1.2

Shenzhen
Auto 81.8 ˘ 0.7 84.4 ˘ 1.0 84.0 ˘ 1.1 83.1 ˘ 2.0
ROI 82.8 ˘ 0.9 85.0 ˘ 0.9 85.1 ˘ 0.4 85.1 ˘ 0.8

Hong
Kong

Auto 91.3 ˘ 0.6 90.2 ˘ 0.9 91.2 ˘ 0.5 91.0 ˘ 0.7
ROI 92.2 ˘ 0.7 90.3 ˘ 1.6 90.4 ˘ 1.1 91.1 ˘ 0.9

Hainan
Auto 88.3 ˘ 0.9 86.5 ˘ 1.9 85.4 ˘ 0.8 86.1 ˘ 0.9
ROI 94.1 ˘ 0.5 92.4 ˘ 0.7 90.2 ˘ 0.6 93.4 ˘ 0.5

When comparing the performances of the different classifiers with the Auto sampling, MLC
achieves the highest accuracies in two test datasets (Hong Kong and Hainan). However, generally
speaking, all the classifiers perform equally in the four test images, showing the robustness of the
proposed automatic sampling method in different scenes.

5.3. Large-Size Image Testing

The previous experiments verified that the proposed automatic sampling strategy is able to
achieve satisfactory classification results over the four urban images. We also tested the practicability
of the automatic method by the use of a large-size image from the Shenzhen city center, which is
China’s first and most successful Special Economic Zone. The dataset was acquired on 25 March
2012, by the WorldView-2 satellite, covering 92 km2 with a 2-m spatial resolution, consisting of eight
spectral bands. As shown in Figure 6, the dataset (named WV-2 in the following text) covers the city
center of Shenzhen, and three sub-regions are manually labeled as the source of the training samples
(ROI). Please note that the whole image was manually labeled as the ground truth for testing, in
order to guarantee the reliability of the experimental conclusions. The numbers of available samples
for ROI, Auto, and test are provided in Table 4. The parameters used in this experiment were the
same as the previous ones.

The classification results, including the quantitative accuracy scores and the classification maps,
are shown in Table 5 and Figure 7, respectively. The experimental results convey the following
observations:
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‚ In general, the classification accuracies obtained by the automatic sampling are very promising
(80%~85%), which shows that it is fully possible to automatically classify large-size remote
sensing images over urban areas.

‚ By comparing the performances of the different classifiers, it can be seen that MLC achieves the
highest accuracy for the Auto samples, while SVM and the MLP give the best results for the
ROI samples.

‚ It is interesting to see that in the case of MLC, the automatic sampling strategy significantly
outperforms the manual sampling by 8% in the overall accuracy.

MLC performs better than the other classifiers with the automatic sampling. This phenomenon
can be explained by: (1) the difference in the properties between the Auto and ROI samples;
and (2) the difference in the decision rules between the classifiers.
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Figure 6. WV-2 Shenzhen image, as well as the three sub-regions as the source of the training sample 
set (ROI): ground truth of the whole image; automatically selected training sample set (Auto)  
(orange = buildings, magenta = shadow, blue = water, green = vegetation, cyan = roads, yellow = soil). 
(a) WV-2 urban image and training set; (b) Ground truth; (c) Automatic training set. 

Figure 6. WV-2 Shenzhen image, as well as the three sub-regions as the source of the training
sample set (ROI): ground truth of the whole image; automatically selected training sample set (Auto)
(orange = buildings, magenta = shadow, blue = water, green = vegetation, cyan = roads, yellow = soil).
(a) WV-2 urban image and training set; (b) Ground truth; (c) Automatic training set.
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Table 4. Numbers of samples for ROI, Auto, and test (in pixels).

Land Cover ROI Test Auto

Buildings 118,130 1,313,843 191,811
Shadow 14,446 185,650 76,723
Water 140,823 865,113 683,317

Vegetation 98,225 1,542,442 6,667,588
Roads 32,942 313,572 171,312

Soil 52,944 391,949 100,707

Table 5. The overall accuracy of the classification for the WV-2 large-size image.

Strategy MLC (%) SVM (%) RF (%) MLP (%)

Auto 84.2 ˘ 1.0 81.8 ˘ 1.7 80.9 ˘ 1.2 82.5 ˘ 0.9
ROI 76.9 ˘ 2.2 84.0 ˘ 1.5 82.6 ˘ 1.2 84.9 ˘ 1.3
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Figure 7. Classification maps of the large-size WV-2 image with the Auto and ROI training samples. 
(a) Classification maps using the Auto training samples with MLC (left) and SVM (right);  
(b) Classification maps using the ROI training samples with MLC (left) and SVM (right). 

Figure 7. Classification maps of the large-size WV-2 image with the Auto and ROI training
samples. (a) Classification maps using the Auto training samples with MLC (left) and SVM (right);
(b) Classification maps using the ROI training samples with MLC (left) and SVM (right).
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1. It should be noted that the Auto samples are purer than ROI, since the automatic selection prefers
homogeneous and reliable samples in order to avoid errors and uncertainties. Specifically, as
described in Algorithm 1, boundary pixels which are uncertain and mixed have been removed,
and the area thresholding further reduces the isolated and heterogeneous pixels.

2. The four classifiers considered in this study can be separated into parametric classifiers (MLC),
and non-parametric classifiers (SVM, RF, and MLP). The principle of MLC is to construct the
distributions for different classes, but the non-parametric methods tend to define the classification
decision boundaries between different land-cover classes. Consequently, pure samples are more
appropriate for MLC, but an effective sampling for the non-parametric classifiers is highly
reliant on the samples near the decision boundaries so that they can be used to separate the
different classes.

6. Discussions

In this section, several important issues regarding the proposed automatic sampling method
are discussed, including the influence of the number of training samples, the effectiveness of the
classifiers for the automatic training samples, and the limitations of the proposed approach.

6.1. Number of Training Samples

In this experiment, the classification was conducted with different numbers of training samples
extracted by ROI and Auto, respectively. The large-size WV-2 image of Shenzhen city was taken as
an example. The results are demonstrated in Figure 8, where the general conclusion is that, for both
ROI and Auto sampling, increasing the number of training samples does not significantly increase
the classification accuracy after 500~1000 samples per class are chosen. In addition, it can be seen
that Auto-MLC can provide much higher accuracies than ROI-MLC, which shows that the proposed
automatic sampling method is a satisfactory sampling strategy for the MLC classifier. The CPU time
for the various classifiers with different training samples is recorded in Figure 8b. Here, it can be
seen that MLP and SVM are more sensitive to the number of training samples, and a large number of
samples lead to more computational time. RF is less sensitive to the training sample number, as the
CPU time tends to be invariant when the number of samples is larger than 1500 pixels per class. It
should be noted that MLC, which aims to describe the probability of the class distribution, is totally
insensitive to the number of training samples.
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Figure 8. The accuracies (a) and computational times; (b) with different numbers of training samples. 
Auto-MLC and ROI-MLC represent the results achieved by the use of the Auto and ROI samples with 
MLC, respectively. 

6.2. Further Comparison Between Auto and ROI Sampling 

In order to further analyze and understand the automatic training samples, in this subsection, 
the class distributions derived from the ROI, Auto, and test samples are demonstrated and compared. 
In this analysis, MLC (Figure 9) and SVM (Figure 10) are taken as a representative example for the 
parametric and non-parametric classifiers, respectively. In the figures, the distributions are illustrated 
with a two-dimensional feature space (first and second principal components, namely, PCA1 and 
PCA2). From Figure 9, in the case of MLC, it can be clearly observed that the shape of the decision 
boundaries for the Auto and reference samples are quite similar. This reveals that the automatically 
selected samples are effective for modelling the probabilistic distributions of land-cover classes. 

(a) 

Figure 9. Cont. 

  

Figure 8. The accuracies (a) and computational times; (b) with different numbers of training samples.
Auto-MLC and ROI-MLC represent the results achieved by the use of the Auto and ROI samples with
MLC, respectively.

6.2. Further Comparison Between Auto and ROI Sampling

In order to further analyze and understand the automatic training samples, in this subsection,
the class distributions derived from the ROI, Auto, and test samples are demonstrated and compared.
In this analysis, MLC (Figure 9) and SVM (Figure 10) are taken as a representative example for the
parametric and non-parametric classifiers, respectively. In the figures, the distributions are illustrated
with a two-dimensional feature space (first and second principal components, namely, PCA1 and
PCA2). From Figure 9, in the case of MLC, it can be clearly observed that the shape of the decision
boundaries for the Auto and reference samples are quite similar. This reveals that the automatically
selected samples are effective for modelling the probabilistic distributions of land-cover classes.
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(c) 

Figure 9. Decision boundaries of (a) ROI; (b) Auto; and (c) reference samples for the MLC classifier. 
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Figure 10. Decision boundaries of (a) ROI; (b) Auto; and (c) reference samples for the SVM classifier. 

In addition, it can be seen that the decision boundaries derived from the Auto samples are more 
similar to those derived from the reference samples than those from the ROI samples, which can be 
used to explain and support the conclusion in Table 5. 

On the other hand, in the case of the SVM classifier, as demonstrated in Figure 10, it can be seen 
that the boundaries derived from ROI are closer to the boundaries of the reference samples than the 
Auto sampling, which is reflected in the classification accuracy, i.e., 81.8% for Auto-SVM and 84.0% 
for ROI-SVM, respectively. As explained previously, the accuracy of the non-parametric classifiers is 
highly reliant on the samples near the decision boundaries (for instance, the so-called support vectors 
for the SVM classification), but automatic sampling is more capable of identifying the homogeneous 
and pure samples which are far from the decision boundaries. Therefore, in the case of SVM, the 
manually labeled samples seem more suitable than the automatically selected ones. This analysis is 
also consistent with the accuracies reported in Table 5. 

6.3. Active Learning for the Automatic Sampling 

As previously shown, the proposed approach is able to automatically and effectively label 
samples for different land-cover classes. On the other hand, active learning can select the most 
informative samples from the available sample set by considering the contribution of each sample to 

Figure 10. Decision boundaries of (a) ROI; (b) Auto; and (c) reference samples for the SVM classifier.

In addition, it can be seen that the decision boundaries derived from the Auto samples are more
similar to those derived from the reference samples than those from the ROI samples, which can be
used to explain and support the conclusion in Table 5.

On the other hand, in the case of the SVM classifier, as demonstrated in Figure 10, it can be seen
that the boundaries derived from ROI are closer to the boundaries of the reference samples than the
Auto sampling, which is reflected in the classification accuracy, i.e., 81.8% for Auto-SVM and 84.0%
for ROI-SVM, respectively. As explained previously, the accuracy of the non-parametric classifiers is
highly reliant on the samples near the decision boundaries (for instance, the so-called support vectors
for the SVM classification), but automatic sampling is more capable of identifying the homogeneous
and pure samples which are far from the decision boundaries. Therefore, in the case of SVM, the
manually labeled samples seem more suitable than the automatically selected ones. This analysis is
also consistent with the accuracies reported in Table 5.

6.3. Active Learning for the Automatic Sampling

As previously shown, the proposed approach is able to automatically and effectively label
samples for different land-cover classes. On the other hand, active learning can select the most
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informative samples from the available sample set by considering the contribution of each sample
to the classifier. In this regard, it is interesting to integrate the proposed automatic sample labelling
and active learning for sample selection and optimization. The processing chain is straightforward:
The candidate sample sets for various land-cover classes are selected and labeled by the proposed
automatic strategy, and these samples are then ranked by active learning in terms of their contribution
to the classifier. In this study, the SVM classifier is considered, and the commonly used breaking
ties (BT) method [39] is adopted for the sample selection. Note that the SVM parameters (kernel
parameter and penalty coefficient) are retuned during the active learning iterations. The experimental
results for the active learning with the automatically labeled samples are presented in Figure 11 for the
four test datasets. It can be clearly seen that in the Shenzhen, Hong Kong, and Hainan experiments,
active learning (Auto-AL) can provide additional accuracy increments compared to the original
automatic sampling approach (Auto-SVM). In the case of Hangzhou, active learning outperforms the
original algorithm in the early stage, but does not perform as well after about 300 samples are chosen.
However, in general, the difference is not significant. Therefore, it can be stated that active learning
can further optimize the proposed sample labelling method, since it can select the most informative
samples by considering their importance in the classification.
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7. Conclusions and Future Scope

In this paper, a novel method for automatic sample selection and labelling for image
classification in urban areas is proposed. The training sample sets are obtained from multiple
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information sources, such as soil from the HSV color space, roads from OSM, and automatic
information indexes referring to buildings, shadow, vegetation, and water. A series of processing
steps are further used to refine the samples that are initially chosen, e.g., removing overlaps, removing
borders, and semantic filtering.

The experiments with four test datasets showed that the proposed automatic training sample
labelling method (Auto) is able to achieve satisfactory classification accuracies, which are very close
to the results obtained by the manually selected samples (ROI), with four commonly used classifiers.
Furthermore, the experiments with a large-size image (WorldView-2 image from Shenzhen city,
92 km2) showed that the proposed method is able to achieve automatic image classification with a
promising accuracy (84%). It was also found that the automatic sampling strategy is more suitable
for maximum likelihood classification (MLC), which aims to describe the probabilistic distribution
of each land-cover class. In particular, in the experiments, active learning [40] was jointly used
with the proposed Auto sampling method, in order to select the most informative samples from the
automatically labeled samples. The results were interesting and promising, as active learning could
further improve the classification accuracies by about 2%~4% in most of the test sets.

The significance of this study lies in the fact that it has showed that automatic sample selection
and labelling from remote sensing images is feasible and can achieve promising results. Our future
research will address the mixing of manually and automatically selected samples. In this way,
the decision boundaries generated by the Auto method could be further enhanced by adding new
samples and removing wrong ones. It will also be possible to evaluate and compare the importance
of manual and automatic samples for classification. In addition, the samples used for the accuracy
assessment will be generated randomly, in order to avoid any bias in the results [41].
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