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Abstract: Over the past few years, there has been an increasing need for tools that automate 

the processing of as-built 3D laser scanner data. Given that a fast and active dimensional 

analysis of constructive components is essential for construction monitoring, this paper is 

particularly focused on the detection and segmentation of columns in building interiors from 

incomplete point clouds acquired with a Terrestrial Laser Scanner. The methodology 

addresses two types of columns: round cross-section and rectangular cross-section. 

Considering columns as vertical elements, the global strategy for segmentation involves the 

rasterization of a point cloud onto the XY plane and the implementation of a model-driven 

approach based on the Hough Transform. The methodology is tested in two real case studies, 

and experiments are carried out under different levels of data completeness. The results show 

the robustness of the methodology to the presence of clutter and partial occlusion, typical in 

building indoors, even though false positives can be obtained if other elements with the same 

shape and size as columns are present in the raster. 
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1. Introduction 

For more than two decades, 3D building reconstruction has become an active research topic in remote 

sensing, photogrammetry and computer vision communities [1–3]. This trend has continued due to the 

increasing demand of updated, accurate and automatically produced models [4]. Although several 

methodologies have been developed for the automatic reconstruction of a building interior and envelope 

based on point clouds and/or imagery, most of them are focused on reconstructing buildings that are 

already finished, whereas not much attention has been paid to buildings under construction. 

A systematic dimensional and quality assessment of construction components during the early stage 

of the construction process is essential for the successful completion of a construction process within the 

time given, thereby saving costs. The direct costs of rework in the construction industry are approximately 

5% of the total construction costs [5]. 

Currently, the methods for the dimensional analysis of construction components are mostly based on 

the use of remote-sensing instruments such as Total Stations. Although they are very accurate, their use 

is time consuming and subject to operator errors and are consequently impractical at a large scale [6]. 

Terrestrial Laser Scanners (TLS) have received increasing attention for the collection and analysis of 

three-dimensional data of the as-built status of large-scale civil infrastructures, either during the 

construction phase, the put into service phase or in the operation stage [7]. The geometric acquisition 

with TLS devices is fast, and point clouds have a relatively high quality in terms of accuracy, precision 

and resolution [8]. Prompt collection and analysis of data are essential for the active monitoring of the 

production during the construction phase of a project and for the automatic 3D layout of built assets. 

Within this context, production monitoring enables the comparison of the as-built state of a project with 

the as-designed state defined in the contractual agreement. The importance of production monitoring lies 

in its usability to provide the complete details of a facility and an updated layout, to track the changes 

based on decisions during construction, and to record the deviations from decisions, which are the limits 

of the technical characteristics of the acquisition device and registration errors if more than one scan 

position is needed [7]. 

Although Terrestrial Laser Scanners acquire accurate and productive geometric data, point clouds are 

composed of massive and raw information that should be processed to extract the information that is 

useful for the applications they are intended to serve. For example, a point cloud composed of several 

thousand partial 3D point clouds that describe a building in an early construction phase is not useful, 

although the geometric position of the constructed columns and beams, their cross-sections and/or their 

height are known, given that these are aspects of interest for construction monitoring. Therefore, there 

is an increasing need for the automatic processing of as-built 3D laser scanned data and more particularly 

the comparison of this as-built data to planned works. In recent years, intense efforts have been made to 

facilitate the automatic processing of 3D laser scanning data. Although most approaches aim at the 

reconstruction of as-built elements, quality control and monitoring require additional functionality [9]. 

For instance, in the field of quality control and monitoring, 3D laser scanners have been recently applied 

to the structural monitoring of dams [10]; to track Mechanical, Electrical, and Plumbing (MEP) 

components such as ducts, pipes and conduits [11]; to control slab flatness [12]; and to the performance 

of the dimensional quality assessment of precast concrete elements [13]. 
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The focus of this work is to detect and segment both round cross-section and rectangular  

cross-section columns in buildings. Cylinder detection in point clouds has been extensively studied 

because of their importance and high presence in urban environments (i.e., light poles) or in industrial 

infrastructures (i.e., ducts, conduits, pipes). 

Lari and Habib [14] provided a detailed review of cylindrical feature segmentation methods, classifying 

them into three categories: spatial-domain, parameter-domain and hybrid methods. The first category 

includes region-growing approaches, which are mostly based on the geometric properties of individual 

laser points through a Principal Component Analysis of the local neighborhood [15]. In spatial-domain 

methods, the quality of results is dependent on the quality of the initial values of the parameters and, 

consequently, dependent on the quality of data [14]. In this regard, the noise problem in region growing 

procedures has been recently addressed through the introduction of Robust Principal Component Analysis 

(RPCA) to calculate point normals [16], the use of statistical techniques for outlier detection and curvature 

estimation [17] or taking the maximum of the distribution of possible normals from an image created by 

filling the Hough transform accumulator [18], resulting in a reduction of over-segmentation present in 

other region growing procedures. Other features such as the density of projected points, point 

eigenvalues, and intensity have also been used to detect cylindrical vertical elements such as poles or 

trees in urban scenes [19–21]. These segmentation strategies involve the recovery of a local 

neighborhood for each 3D point and the extraction of different features followed by a classification 

process. Weinmann et al. [22] provided a recent review of these methods, mostly applied to urban scenes, 

in which data are acquired from a Mobile Laser Scanner, resulting in high-quality datasets in terms of 

data completeness. 

In the parameter-domain category, methods are based on finding predefined parametric shapes. 

Parameters are initially estimated from the local neighborhood of each point, and detection is based on 

searching peaks in the attribute space. These methods are considered slow with regard to spatial-domain 

methods, especially if the number of parameters involved is high but are more robust to the presence of 

clutter and occlusions [23]. The Hough Transform is an approach belonging to this category. A cylinder 

is defined by five parameters, making the direct use of the Hough Transform impractical [24]. 

Alternatives to the direct use of the Hough Transform have been proposed in recent years to extract 

cylinders from point clouds. For example, pipes have been detected into orthogonal slices of point clouds 

using a 2D-based Hough Transform [25,26]. This methodology has also been used with regard to round 

cross-section column detection [27], although the methodology is tested under conditions of data 

completeness. Rabbani and van den Heuvel [24] introduced a sequential two-step Hough transform 

consistent on first detecting the direction of the cylinder axis (2D Hough Transform) and then obtaining 

the radius and pose (3D Hough Transform). Finally, the third category proposed by Lari and Habib [14] 

includes hybrid methods such as Random sample consensus (RANSAC), in which features are classified 

in the parameter domain and fitted in the spatial domain [28]. 

With regard to rectangular prism elements, most efforts have been focused on reconstructing only the 

visible planar surfaces from which they are compounded. For instance, indoor walls have been extensively 

recognized and modeled by surface-based methods [29–32], whereas only a few volumetric-based 

approaches have been developed [33,34]. Methods for fitting volumetric primitives to the data are more 

susceptible to inaccuracy and incompleteness of the data. 
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Whereas spatial-domain approaches directly extract features from data, parameter-domain approaches 

use previous knowledge to search for the most appropriate model. This fact makes parameter-domain 

approaches more robust in the presence of partial occlusion [23]. 

The main objective of this work is to develop a methodology to detect and segment both round and 

rectangular cross-section columns in buildings. Specific objectives of the paper are related to the 

robustness of the methodology under different levels of clutter, occlusion and data completeness 

typically present when building indoors. On the one hand, point cloud completeness depends on the scan 

positions from which data are acquired, which are determined according to the shape complexity and the 

occupied parts of the indoor building. On the other hand, indoor scenes are typically occluded and 

cluttered environments, during both the construction and use phases because of the presence of other 

objects such as auxiliary construction elements and furniture, respectively. The proposed methodology 

is based on model-driven techniques such as the Hough Transform and the Generalized Hough 

Transform. These techniques are robust in the presence of partial occlusion because they incorporate 

knowledge of the shape of the object to be recognized. 

The paper is organized as follows. Section 2 describes the methodology developed for round  

cross-section and rectangular cross-section column reconstruction. Section 3 is focused on the results 

and the discussion extracted from the application of the methodology to two case studies under different 

levels of data completeness. Finally, Section 4 addresses the conclusions extracted from the work. 

2. Methodology 

This section presents the methodology proposed for the automatic detection and segmentation of 3D 

columns (Figure 1). Section 2.1 includes the preceding steps required for column detection, which is 

addressed in Section 2.2. Finally, Section 2.3 describes the segmentation of the column candidates in the 

point cloud. 

 

Figure 1. Schema of the methodology proposed for column detection and segmentation. 
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2.1. Building Rasterization 

To fulfill the requirements of the subsequent steps, the point cloud with rectangular cross-section 

columns is rotated such that the building floor and/or ceiling are parallel to the XY plane and to walls. 

In this way, columns are ensured to be vertically oriented and column faces are parallel to the X-axis or 

Y-axis. The first condition is necessary for a correct rasterization, whereas the second is required by the 

column detection step, which is orientation dependent. 

The rotation angles are estimated from the distribution of the normal vectors of the points, calculated 

using Principal Component Analysis. Normal vectors are clustered into three groups according to the X-, 

Y- and Z-axes using the k-means algorithm. Cluster centers are used to form a 3D rotation matrix from the 

aligned to the original coordinate system; inverse rotation is then applied [32]. 

Once the point clouds are oriented, they are converted to images, which are the inputs of column 

detection. The first step in building rasterization consists of the projection of the point cloud onto the 

XY plane. For this purpose, a rectangular matrix is created, and pixels are assigned with the number of 

points that fall inside each pixel (Figure 2). As a result, a gray-level raster is obtained by weighting 

values according to the minimum and maximum number of points. Columns are vertically oriented elements, 

so the pixels corresponding to these elements are expected to have a high value in the matrix [35]. 

Finally, raster images are submitted to a binarization to divide the image into two basic classes.  

The first class, with the value 1 (white), corresponds to the vertical elements such as walls or columns, with 

a high number of points in the corresponding pixels. The second class, with the value 0 (black) refers to 

the remaining indoor elements such as the ground or parked cars with a typical low number of points per 

pixel (Figure 2c). The binarization step requires the introduction of a threshold to convert the grayscale 

image (raster image) to a binary image. The threshold with a value in the range [0, 1] is relative to the signal 

levels possible for the image’s class and is automatically obtained following the Otsu method [36], which 

chooses the threshold that minimizes the intraclass variance of the black and white pixels. 

Although edge pixels are the input to the subsequent column detection step, images are not submitted 

to an edge detection algorithm because column contours can already be considered edges. 

 

Figure 2. Top view of a point cloud dataset (a), its correspondent raster after rotation (b), 

and the final binarized raster (c). Brightness and contrast are increased by 20% (b) and 40% 

(c) to improve its visualization. 
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2.2. Column Detection 

The detection of columns is based on the determination of parametric shapes, such as circles or 

rectangles, in an image. In this methodology, the use of the Circle Hough Transform is proposed to detect 

round columns in the image, whereas the Generalized Hough Transform is applied to the detection of 

rectangular columns. 

Both techniques are based on the Hough Transform [37] developed for detecting objects, which can be 

defined with a few parameters such as lines, planes or circles. Although the Hough Transform is used to 

detect objects defined with a few parameters such as lines, planes or circles, the GHT [38] transforms the 

shape detection process into a maximum analysis problem so that arbitrary shapes can be detected [28]. 

Both techniques are used due to their robustness in the presence of noise, occlusion, varying 

illumination and invariance to scale changes [23]. The Circle Hough Transform (CHT) is implemented 

in Matlab© 2014 [39], whereas the Generalized Hough Transform (GHT) is self-implemented as in [32]. 

On the one hand, the Circle Hough Transform aims at finding circular shapes in an image. For a circle 

described as Equation (1), where (a,b) are the coordinates of the circle center and r is the radius,  

an arbitrary edge point (xi, yi) can be transformed into a right circular cone in the (a,b,r) parameter space. 

(x − a)2 + (y − b)2 = r2 (1) 

Each edge point contributes to a circle of radius r and is allowed to cast a vote in an output 

accumulator space. If all edge points lie on a circle, then the cones will intersect at a single point in 

(a,b,r) corresponding to the parameters of the circle. In this case, circle centers are estimated by detecting 

the peaks in the accumulator array. Whereas the classical CHT requires a 3-D array to store the votes for 

multiple radius searches, the implemented method uses a 2-D accumulator array (a,b) for which a 

previous radius estimation is needed: a radius range is specified as a two-element vector formed by a 

minimum radius and maximum radius. Furthermore, instead of edge pixels (xi,yi), edge orientation (θi) 

is used because it is computationally more effective (Figure 3, left). 

 

Figure 3. Parameters involved in the CHT (left) and GHT (right) [9] for column detection. 

On the other hand, the GHT is implemented to find oriented rectangles, meaning that, if possible, 

rectangle sides should be parallel to the coordinate axis. The GHT uses a 4-D Accumulator Array (a, b, 

Sx, Sy), where a and b are the coordinates of the center point, and Sx and Sy are the scale parameters 

corresponding to width and length of the column, respectively. For each edge pixel, edge orientation is 
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also calculated (θi) and used to find the corresponding vectors (r,β) in an R-table where the shape of a 

rectangle is stored and represented by its edge orientation (θi) and a vector defined (r,β) to an arbitrary center 

point (Figure 3, right). As in CHT, rectangles are estimated by searching for peaks in the 4-D accumulator 

array. To enforce the detection, minimum and maximum width and length are considered. Because the 

number of columns is unknown, a large number of columns are searched, resulting in over-detection. Finally, 

the most voted columns are selected as column candidates. 

For each column shape, Figure 4 shows an example of a success and a failure in column detection. 

 

Figure 4. Successful results in column detection (left) and failures (right) showed over the 

raster images. Brightness and contrast are increased by 40% to improve the visualization of 

the images. 

2.3. Column Segmentation and Parameterization 

The 2D image parameters obtained from the previous step are transformed to the 3D coordinate 

system and used to segment the columns. The outcome of round cross-section detection consists of circle 

centers (x, y) in raster coordinates and radius. With regard to rectangular cross-sections, the results are 

the rectangle center (x, y) in raster coordinates and the height and width of the rectangle. Centers are 

transformed from the 2D raster coordinate system to the 3D point cloud coordinate system and radius, 

and height and width are used to define a circular and rectangular buffer, respectively. All points inside 

each buffer correspond to one column. In both cases, the buffer section is increased to ensure a complete 

segmentation of the column (Figure 5). 

 

Figure 5. Image of two automatically segmented columns: round cross-section (left) and 

rectangular cross-section (right). 
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3. Results and Discussion 

This section addresses the results obtained from the application of the proposed methodology to 

different real case studies: a building foundation with round cross-section columns and an indoor garage 

with rectangular cross-section columns. In both cases, the approach has been tested under different levels 

of data completeness. 

3.1. Data and Instruments 

Datasets consist of point clouds obtained from a Terrestrial Laser Scanner, model FARO Focus 3D. 

The technical characteristics of the laser device are summarized in Table 1. 

Table 1. Technical characteristics of the FARO Focus3D X 330 laser scanning device 

according to the manufacturer datasheet. 

Technical Characteristics 

Measurement range 0.6 m to 330 m 

Ranging error (25 m, one sigma) ±2 mm 

Step size (vertical/horizontal) 0.009°/0.009° 

Field of view (vertical/horizontal) 300°/360° 

Beam divergence 0.011° 

Measurement rate (points per second) 122,000–976,000 

Laser wavelength 1550 nm 

Two case studies are used for this work. On one side, a building foundation (case study 1) is chosen 

owing to the presence of visible columns with round cross-sections. On the other side, an indoor garage 

of a residential building (case study 2) is surveyed. Columns with rectangular cross-sections are present 

in the latter. Furthermore, several cars are parked in the garage, provoking occlusions. Figure 6 depicts 

an example of the point cloud of both case studies. 

 

Figure 6. Example of the point cloud from the building foundation (left) and the indoor 

garage of a residential building (right). 

The geometry of a building interior is complex due to the high presence of objects that provoke 

occlusions, necessitating data acquisition from different positions to complete the acquisition of 

available information. 
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Once data are acquired, point clouds are registered into the same coordinate system. The origin of the 

coordinate system is settled in the origin of one of the laser scanner positions, and the remaining scan 

positions are registered by manually selecting at least four control points between them and the point 

cloud of reference. Registration is carried out by finding corresponding tie point pairs in two different 

range data. This process allows the coarse determination of the transformation parameters (rotation and 

translation), which minimize the sum of squared distances (SSD) among all point pairs. Afterwards, a 

fine registration is performed based on the ICP method [40]. For this work, registration is performed 

until error is inferior to 0.02 m. The first point cloud is submitted to a cleaning process to deselect the 

information corresponding to the exterior of the building (Figure 1, left). Both point clouds are filtered 

using a 0.05 m octree (for X, Y, and Z directions) to ensure uniform density because binarization is 

sensitive to high density variations [41]. The process is carried out using Riscan Pro software. 

Figures 7 and 8 show a schema of the experiment design. In both cases, the most complete dataset 

corresponds to experiment (a). Experiment (b) considers two scan positions placed at different sides of 

the building, whereas experiment (d) uses data from two scan positions located at the same side. Finally, 

one isolated scan position is considered for experiment (c). 

 

Figure 7. A schema of the datasets considered in the indoor garage case study for testing the 

methodology under different levels of data completeness: complete dataset (a), two scan 

positions placed at different sides of the building (b), one isolated scan position (c), and two 

scan positions placed at the same side of the building (d). 

3.2. Building Rasterization 

Building datasets are filtered using a 0.05 m octree and rasterized to the XY plane. The main results 

of this process are shown in Table 2. A coarse resolution of 0.08 m is selected, which is sufficient for 

column detection. Each case study has a different point cloud size and image size because they are 

formed by the combination of different scan positions. 
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Figure 8. The proposed methodology is tested through four tests depending on the data 

completeness for the round column case study: complete dataset (a), two scan positions 

placed at different sides of the building (b), one isolated scan position (c), and two scan 

positions placed at the same side of the building (d). 

Table 2. The results of the rasterization process. 

Round Cross-section 

 Case Study 1.a Case Study 1.b. Case Study 1.c Case Study 1.d 

Point cloud size (points) 790,527 380,995 252,067 454,849 

Raster resolution (m) 0.08 0.08 0.08 0.08 

Image size (pixels) 603 × 707 557 × 594 511 × 544 572 × 707 

Rectangular cross-section 

 Case study 2.a Case study 2.b. Case study 2.c Case study 2.d 

Point cloud size (points) 488,333 247,832 211,011 288,571 

Raster resolution (m) 0.08 0.08 0.08 0.08 

Image size (pixels) 494 × 461 484 × 430 536 × 379 447 × 398 

After rasterization, raster images are submitted to binarization, whose threshold is calculated using 

the Otsu method [36]. Figure 9 shows the binarized images for the four experiments of the round  

cross-section case study. A centered area of the case study is selected to highlight the completeness of 

the information available. Figure 9a corresponds to the most complete dataset where central columns are 

acquired from different points of view and thus are completely depicted in the resulting image. 

Conversely, Figure 9c shows the result for the less complete dataset in which central pillars are partially 

depicted in the resulting image. 

 

Figure 9. The same binarized area is shown for the experiments (a), (b), (c) and (d) (Figure 8) 

of the round cross-section case study. 
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3.3. Column Detection 

Binarized images are submitted to the column detection approach: circular columns are detected with 

CHT, and rectangular images are detected with GHT. In both cases, the approach is tested under different 

levels of point cloud completeness. Figure 10 shows that column detection operates under different levels 

of data completeness. Images on the top correspond to the same column of the round cross-section case 

study, whereas images on the bottom do the same with a column of the rectangular cross-section case 

study. The images on the left (case study 1.a and 2.a) correspond to detection when data are complete, 

whereas images b, c and d present the same column successfully detected under different levels of data 

completeness. 

 

Figure 10. For each case study per column, an example of a column successfully detected 

with independence of data completeness. The results are shown over the raster image for 

experiments (a), (b), (c) and (d). 

The detection of rectangular columns is enforced with a minimum and maximum column size,  

40 cm and 100 cm, respectively. Furthermore, given that the number of columns is not known, 50 bins 

are searched resulting in over-detection. Final candidates are selected based on their voting rate in such  

a way that columns with a voting rate superior to the 75th percentile are considered column candidates 

(first quartile). 

To analyze the results, precision, recall and F1 score are evaluated. These parameters are based on 

the number of true positives (number of columns correctly labeled), the number of false positives 

(number of column candidates incorrectly labeled) and the number of true negatives (number of columns 

not detected). Precision, also called positive predictive value, represents the correctness of column 

detection such that true positives are evaluated with regard to total true and false positives. Recall, also 

known as sensitivity, indicates the ability to detect columns correctly; consequently, true positives are 

compared to existent columns. The F1 score combines recall and precision with equal weights to measure 

the accuracy of the method [42]. 

The results are shown in Table 3. Regarding recall, although 12/19 round cross-section columns and 

7/10 rectangular cross-section columns were detected in all tests carried out (Section 3.1), the 

methodology is slightly dependent on the completeness rate. Undetected columns correspond to zones 

in the case studies where columns are not sufficiently acquired. Accordingly, case study 1.c and case 
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study 2.c, acquired from one isolated scan position (Figures 7 and 8, respectively), present lower rates 

of recall than those experiments acquired from different scan positions. 

With respect to precision, case study 1 does not present false positives. These high rates of precision 

are obtained because of the absence of other objects in the image that could be confused in shape and 

size with columns. In case study 2, the presence of other elements in the image such as wall corners 

causes the presence of false positives, and therefore, its precision is lower (Figure 11). 

Within the proposed methodology, the primary computational effort is concentrated on the column 

detection approach. With the purpose of quantifying computational effort, both CHT and GHT methods 

have been evaluated for different raster resolutions, considering an area of 200 m2 in plane XY for both 

case studies. Area is selected from a rectangle with dimensions of 10 × 20 m2 centered on the coordinate 

origin of the point cloud. 

Table 3. Recall, precision and F1 scores for the case studies. 

Round Cross-section 

 Case Study 1.a Case Study 1.b Case Study 1.c Case Study 1.d 

Recall 0.95 0.68 0.63 0.89 

Precision 1 1 1 1 

F1 score 0.97 0.81 0.77 0.94 

Rectangular cross-section 

 Case study 2.a Case study 2.b Case study 2.c Case study 2.d 

Recall 0.9 0.9 0.7 0.8 

Precision 0.69 0.64 0.53 0.67 

F1 score 0.78 0.75 0.61 0.72 

 

Figure 11. Wall corners can be detected as rectangular cross-section columns being false 

positives. The results are shown over the raster image. 

The data have been processed on a computer with an Intel Core i7 processor with a 2.30 GHz processor 

frequency and 8 GB of RAM. Figure 12 shows the results of CPU time versus resolution for both methods. 

Although the Hough transform-based methods are considered slow, especially if the number of parameters 

of the transformation is larger, in this case, results on the order of 0.03 s and 1.89 s are obtained for 

processing an area of 200 m2 with a resolution of 0.08 m, for round (three parameters) and rectangular 

(four parameters) cross-sections, respectively. Short processing times are due to preprocessing steps, 

which minimize pixels subjected to the column detection approach (Figure 2). 
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Figure 12. Computational effort is evaluated for different resolutions considering an area of 

200 m2: round cross-section method (left), rectangular cross-section method (right). 

3.4. Column Segmentation 

Finally, columns are segmented from the point cloud by creating a buffer from the parameters 

obtained in the previous section: center and radius for the round cross-section case study and center, 

width and height for the rectangular cross-section case study (Figure 13). The buffer is created by 

incrementing by 0.08 m (1 pixel size in this case) the parameters to ensure complete segmentation. 

 

Figure 13. Image with segmented columns visualized with different colors (case study 1.a 

and case study 2.a). 

4. Conclusions 

This paper presents a methodology for the detection and segmentation of columns in building interiors 

from point cloud data. 

From the results, the following main conclusions can be drawn: 
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 The proposed methodology is robust for column detection without submitting data to manual 

cleaning, therefore minimizing the processing time. 

 The detection step operates under different levels of data completeness. Therefore, it is robust to 

partial occlusions and clutter, which are very frequent in indoor environments. 

 False positives are obtained, especially if other elements with the same shape and size as columns 

are present in the XY raster. In the case of rectangular cross-section, false positives such as wall 

corners, information from other elements of the scene such as walls could be used for their 

identification as false positives. 

 The robustness of the methodology makes the acquisition of data from a complete point of view 

unnecessary and thus minimizes acquisition time. 

 A coarse resolution in the rasterization process is enough for column detection. 

In summary, incomplete point clouds enable the automatic detection and segmentation of columns in 

building interiors. A coarse rasterization is sufficient for detecting columns. The methodology could also 

be used in the geometrical characterization of section columns, but a finer resolution would be required. 

Base and top height could be determined from the height histograms of the segmented columns. Future 

work will address the quantitative analysis of data completeness for accurate detection and geometrical 

characterization of columns. 
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