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Abstract: In this paper, we propose a novel method to continuously monitor land cover 

change using satellite image time series, which can extract comprehensive change 

information including change time, location, and “from-to” information. This method is 

based on a hidden Markov model (HMM) trained for each land cover class. Assuming a 

pixel’s initial class has been obtained, likelihoods of the corresponding model are calculated 

on incoming time series extracted with a temporal sliding window. By observing the 

likelihood change over the windows, land cover change can be precisely detected from the 

dramatic drop of likelihood. The established HMMs are then used for identifying the land 

cover class after the change. As a case study, the proposed method is applied to monitoring 

urban encroachment onto farmland in Beijing using 10-year MODIS time series from 2001 

to 2010. The performance is evaluated on a validation set for different model structures and 

thresholds. Compared with other change detection methods, the proposed method shows 

superior change detection accuracy. In addition, it is also more computationally efficient. 
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1. Introduction 

The monitoring of land cover requires that changes be distinguished from stable land cover classes 

over time. Satellite image time series constantly provide global coverage of the earth’s surface 

information, which makes them perfect data sources for land cover change detection applications [1]. 

The general problem of change detection in monitoring time series has been extensively studies in 

the field of statistics [2] and data mining [3]. Autocorrelation techniques [4], segmentation algorithms [5], 

predictive approaches [6], statistical parameter change approaches [7], harmonic analysis [8], and 

subsequence clustering [9] are some of the time series change detection algorithms that have been 

successfully applied in the remote sensing field. Most of these methods aim at identifying changes from 

stable time series. However, they cannot provide detailed “from what, to what” information. A study on 

continuous change detection and classification (CCDC) was presented in [6], which used all available 

Landsat images acquired within the same area to estimate a time series model. The CCDC algorithm 

applies the model predictions for change detection and uses the model coefficients as the inputs for land 

cover classification. Because CCDC needs to estimate a model for each individual pixel, it is somewhat 

computational expensive and data storage costly.  

Hidden Markov model (HMM) is a powerful statistical learning algorithm for temporal information 

modeling and forecasting, which has been successfully applied to various kinds of scientific and 

engineering change detection problems, including intrusion detection [10,11], video anomaly event 

detection [12,13], equipment fault diagnosis [14,15], and human daily activity monitoring [16,17]. Some 

researchers have introduced HMM to remote sensing change detection applications [18–20]. For 

example, Bouyahia et al. [21] used a hidden Markov chain model performed on a spatial sliding window 

to produce a change map from bi-date SAR images. Salberg and Trier [22] applied a two-state HMM to 

modeling time series of each pixel, each state in the model corresponded to a “forest” or “non-forest” 

type, and then detected forest changes from the subsequent state estimates. Mithal et al. [23] trained an 

HMM for land cover label sequences and used the model to relabel misclassified pixels. Ito et al. [24] 

proposed an HMM-based anomalous signal detection algorithm to predict the precursor of an earthquake. 

In this study, we present a novel HMM-based continuous change detection and classification 

(HCCDC) algorithm that can provide detailed “from–to” change information. HCCDC works in a  

class-wise manner, without the need of constructing a separate model for each pixel. It is motivated by 

a simple idea. First, an HMM is learned for each land cover class. Then, for a particular pixel (its class 

at the initial time is known), likelihoods of the corresponding HMM on incoming time series will 

maintain relatively high values if its class is persistent. However, when change occurs, likelihoods are 

supposed to decline to rather low values. Therefore, by applying a temporal sliding window on incoming 

series and observing likelihood change over the windows, land cover change can be precisely detected. 

Finally, classification is made to provide land cover-land use conversion information. 
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For the validation of HCCDC, a case study in Beijing, China is provided. The encroachment of urban 

land onto farmland is one of the most pervasive forms of land cover change in Beijing. The proposed 

method is applied to monitoring farmland loss using 10-year MODIS time series from 2001 to 2010. 

The results are evaluated on a validation set and compared with the outcomes of the other two 

contemporary change detection methods. 

2. Study Area and Data 

2.1. Study Area  

Beijing is located in the northern edge of the North China Plain, covering 16,808 km2 between 

39°26ʹN and 41°03ʹN latitude and 115°25ʹE and 117°30ʹE longitude (Figure 1). As the capital city of 

China, Beijing has experienced rapid urban development since the implementation of the reform and 

opening-up policy in 1978, and agricultural land has declined sharply since then. According to the 

Second National Land Survey, farmland of Beijing was 22.71 million hectares at the end of 2009,  

11.67 million hectares less than it was in 1996. The encroachment of urban land has been a major cause [25]. 

In order to achieve sustainable development of ecological environment, it is extremely important to 

continuously monitor farmland change for land use planners. 

 

Figure 1. Study area location. 

2.2. MODIS Time Series Data 

The MODIS 16-day composite 250 m products (MOD13Q1) for the period January 2001 to December 

2010 (23 scenes per year) are downloaded from the Level 1 and Atmosphere Archive and Distribution 

System (LAADS) website. This product includes four spectral reflectance bands designed for the study 

of vegetation and land surface, i.e., band 1 (red: 620–670 nm), band 2 (NIR: 841–875 nm), band 3 (blue: 

459–479 nm), and band 7 (MIR: 2105–2155 nm). Two tiles (H26V04, H26V05) are mosaicked to cover 
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the study area. The advantages of using MODIS data include their large-scale coverage, high temporal 

resolution, and open data policy [26]. 

2.3. Ancillary Data 

ESA Global Land Cover (GlobCover) map version 2.3 for 2009 [27] is used as ancillary data for 

model training. GlobCover 2009 map was produced at 300 m spatial resolution by automatic classification 

of time series of Medium Resolution Imaging Spectrometer Instrument (MERIS) Fine Resolution 

surface reflectance mosaics. Based on the GlobCover nomenclature, farmland is marked as class value 

11 and 14, while built-up is marked as class value 190. The map is resampled to 250 m resolution to be 

consistent with MODIS. 

Two additional ancillary datasets are used for accuracy assessment. The first dataset are two scenes 

of Landsat TM (row 32/ path 123) acquired in 31 August 2001 and 8 August 2010, respectively. They 

are used for the manual selection of a validation set. The other dataset are high spatial resolution images 

from Google Earth, used for examining the validation set. 

3. Methodology 

HCCDC consists of a model training process and a change detection process, as illustrated in Figure 2. 

 

Figure 2. Workflow of the HMM-based continuous change detection and classification 

(HCCDC) method. 

The model training aims at learning an HMM for each land cover class. It includes three major steps: 

data preprocessing, time series clustering based on reference land cover map, and HMM training. The 
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training data are MODIS time series in 2009, which are consistent with the land cover map of GlobCover 

2009 map. The output data are a group of HMMs.  

When new time series have been preprocessed, the change detection process finds land cover change 

by running the following three steps iteratively: likelihood calculation within a temporal sliding window, 

change detection on likelihood series, and land cover classification. The results include the location, 

time, and type of a land cover change. 

3.1. Data Preprocessing 

All MODIS images are projected to UTM 50N zone with WGS84 coordinate system. 

Outliers caused by cloud and snow cover are common in satellite image time series. To avoid the 

impact of outliers on change detection results, it is necessary to reconstruct cloud/snow free time series. 

The quality flags in the MODIS product are used to identify pixels contaminated by cloud and snow. 

Some unlabeled cloudy points are also masked if their blue reflectance values are over 0.2, as suggested 

in [28]. The masked values are then replaced by interpolants obtained by Fourier regression fitting to 

yearly time series. Fourier regression has been claimed to have several advantages for fitting functional 

curves to time series of general spectral bands [29]. This procedure is illustrated in Figure 3, where the 

black circles of Figure 3a indicate the identified noisy points, while the black pentagrams of Figure 3b 

designate the interpolants.  

 

Figure 3. Fourier regression fitting implemented on time series of a pixel: (a) original time 

series; and (b) interpolated time series with Fourier regression using only high quality points. 

3.2. Time Series Clustering Based on Reference Land Cover Map 

A land cover class may include several subclasses with distinct phenological patterns and spectral 

characteristics. To identify temporal homogeneous land cover classes, the training time series are 

initially clustered into some clusters using K-Means algorithm, then labeled with the reference land 

cover map, as shown in Figure 4. The Euclidean distance is used as the similarity measure in the  

K-Means algorithm. Specifically, for each cluster, its distribution (histogram) is computed in terms of 

classes of the reference land cover map. If the proportion of a class in the histogram exceeds a certain 
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threshold, the cluster is assigned to this class. According to [30], the clusters obtained by the K-Means 

algorithm are closely related to the actual vegetation in the local region. 

 

Figure 4. The training time series clustered based on the reference land cover map. 

It should be noted that a seemingly more preferable approach would be to cluster time series class by 

class according to the reference map. In this way, the clusters will directly have a label. However, initial 

experiments based on this method did not produce good results. This is mainly due to the spatial consistency 

between MODIS images and GlobCover 2009 map is not satisfied. 

3.3. HMM Training 

3.3.1. Basic Principles of HMM 

In this work, an HMM is used to incorporate the temporal dynamics of each cluster. We adopted 

HMM because its state-oriented topology represents well the vegetation development in terms of 

underlying phenological phases with different governing rules [31].  

HMM is defined by a compact notation λ , , π A B  to indicate the complete parameter set, where 

π, A, B are the initial state distribution vector, the state transition probability distributions, and the 

observation probability distributions, respectively [32]. 

   1, P ,i i is S   π  (1) 

   1, P | ,ij ij t j t ia a s S s S   A  
(2) 

      , P | ,1 , ,1 .i t i t t t ib o b o o s S i j N t T      B  (3) 

Here, the state set is donated by S= {si}; ot is the observation at time t and st is the associated state. T 

is the total length of the training time series.  

In this study, the observations are the multispectral band values, 4
ot  R ; and the states implicitly 

correspond to the phenological phases of local vegetation, as suggested in [33–35]. 

3.3.2. The Extension to Hidden Semi-Markov Model 

HMM has an intrinsic limitation. The Markovian hypothesis imposes restrictions on the distribution 

of the sojourn time in a state, which should be geometric distributed [36]. The geometric distribution is 
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apparently inconsistent with prior knowledge of phenology. For example, the whole growth season of 

wheat can be divided into five stages: wintering, greening, jointing, heading, and grain filling. The 

durations of these stages range from 15 to 90 days in length and are non-geometric in terms of distribution. 

Therefore, HMM does not provide adequate representation of temporal dynamics of a land cover class.  

To overcome the limitation of HMM, we relax the Markov assumption by using a hidden  

semi-Markov model (HSMM) instead [37]. HSMM is a generalized version of HMM, in which one state 

could produce a sequence of observations with explicit duration. The state duration probability 

distributions of an HSMM are denoted by D: 

     { }, P |i i t t ip d p d d s S   D  (4) 

where t  denotes the residual time of the current state st before time t. Figure 5 provides an example of 

an HSMM. First, a sample d1 (i.e., d1 = 2) is drawn from the state duration distribution p1 (d) of the first 

state. Consequently, d1 observations o1,…,
1do are emitted according to the corresponding observation 

distribution b1(o). Then the second state is entered and the same process is repeated for the  

remaining sequence. 

 

Figure 5. Example of a hidden semi-Markov model (HSMM). 

3.3.3. Model Specification and Parameter Estimation 

Before model training, the structure of the HSMMs should be fitted to the problem. In particular, the 

number of states, the possible transitions, the types of observation probability distributions B, and the 

duration probability distributions D have to be determined. 

For all clusters, a left–right model topology, with no skip path, has been adopted, this to accommodate 

for the intra-annual variations. In this model, from each state only the succeeding state is reachable, and 

the final state cannot convert to any other states. The number of states has been fixed for all the models. 

The observation probability distributions, B, are modeled as single Gaussian functions, and the duration 

probability distributions, D, are modeled as Gamma functions. Their parameters have been set empirically. 

Given the model structure and a training set O = {Oi, 1 ≤ i ≤ L where L is the number of training 

samples, some well-established approaches have been proposed to automatically optimize the model 

parameters by maximizing the observation likelihood P (O|λ). First, individual observations in the time 

series are clustered using the K-Means algorithm, in order to find the initial parameters of B. Then, an 
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extended Baum–Welch algorithm is employed to train the model, which is claimed to be general to 

various applications and kinds of data [37]. 

3.4. Likelihood Calculation within a Temporal Sliding Window 

Given the cluster label of a particular pixel at the initial time (obtained by HSMM-based classification), 

the corresponding model likelihood is calculated over subsequences that are extracted with a temporal 

sliding window. 

A subsequence, with length w and position t, is defined as   1 1, ,...,t t t t wo w o o o   . The sequential 

subsequences    1, ,...
p pt to w o w  are extracted using a sliding window, which moves with one time step 

increment. Here, w is set to 23, which is equal to the number of observations per year. The likelihood 

calculation is performed on each subsequence, its result being assigned to the last observation (time of 

the window). In our implementation, the forward-backward algorithm is used to calculate the model 

likelihood [37]. 

Figure 6b shows the obtained likelihood series of a pixel. Assume this pixel belongs to the ith cluster 

in 2001. First a subsequence O1 (23).is extracted from the time series. The model likelihood P (O1 (23)|λi) 

of cluster i is calculated and assigned to time t = 23. Then the sliding window moves to the next time 

step to extract the subsequence O2 (23), and the same procedure is repeated. Finally, a series of 

likelihoods is obtained by moving the sliding window through the whole time series. 

 

Figure 6. (a) Likelihood calculation operated on a subsequence within a temporal sliding 

window. The window is indicated by a grey box. (b) The obtained (log-) likelihood series. 

It should be noticed that only subsequences starting from the first observation of a year can be directly 

operated by the algorithm. Since the established model is noncyclic, it is unable to calculate the transition 

probability from the last observation of a year to the first observation of the next year. To cope with this 

problem, we rearrange individual observations in a sub-sequence according to their sequential number 

in a year. For example, the mth observation in the nth year is donated as 
n

mo . A subsequence 
1 1

1 23 1 1, 1, ,... , ,...,n n n n n

m m m mo o o o o 

    is converted to 
1 1 1

1 2 1 22 23, ..., , ,..., ,n n n n n n

m mo o o o o o  

  after the rearrangement. 

The proof of the validity of this rearrangement is given in the supplement of this paper. Moreover, we 

illustrate in Section 5.3 that the HSMM accommodates to the data rearrangement when the class of the 

observation sequence does change from one year to another. 
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3.5. Change Detection on Likelihood Series 

The major contribution of this paper is a novel procedure to detect land cover change based on 

likelihood change. Indeed, as it can be seen in Figure 6, when there is no change before 2005, the 

likelihoods are relatively high. When a change occurs at the end of 2005, the likelihoods decline sharply 

and stay low in the subsequent time period. In our approach this is implemented as follows, if the 

likelihood is lower than a threshold, M, for three consecutive times, a change is detected. Formally, this 

is achieved as follows. 

The mean likelihood of each cluster is estimated on the training time series O = {Oi}, 1 ≤ I ≤ L: 

 
1

1
log P | λ

L

i

i

E O
L 

   (5) 

The difference between the likelihood of subsequence ot (w) and E is: 

  log P | λtE o w    (6) 

If   is larger than a threshold M for three consecutive times, a change is identified. Otherwise, if   

for only one or two consecutive observations is larger than M, it is regarded as a temporary change. 

When a change is detected, the first observation for which   is larger than M is identified as an 

approximate change-point. Since M may be different for distinct clusters, it is set to γ times of the 

standard deviation (STD) of the likelihoods for each cluster: 

  
2

1

1
P | λ

L

i

i

M O E
L




    (7) 

Figure 7 illustrates the proposed change detection procedure on likelihood series. By running this 

procedure continuously on incoming time series, changes can be detected in near real-time. 

 

Figure 7. Change detection operated on a likelihood series. The red solid line shows the 

mean likelihood, and the red dashed line marks the minimum value for unchanged 

likelihood. The likelihoods highlighted in red are considered as changed. The arrow indicates 

the approximate change-point. 
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3.6. Land Cover Classification 

Once a change is detected, it is necessary to know the land cover class after the change. Instead of 

classifying individual images using conventional methods, the trained HSMMs are used for land cover 

classification as a standard Bayesian maximum posteriori probability (MAP) classifier: A pixel is 

classified into the cluster whose corresponding model achieves the maximum likelihood among all the 

models on the yearly time series after the change-point. If the cluster labels of a pixel before and after 

the change belong to different classes, a real land cover change is detected. Otherwise, if the cluster 

labels before and after the change belong to the same land cover class, the identified change is considered as 

a false alarm. HMM-based classification procedure has been reported in previous studies and has achieved 

good performance [34,35]. In this study, HSMM and HMM give comparable classification performance. 

After land cover classification, the change detection process is restarted on incoming time series to 

monitor land cover change continuously. 

4. Validation 

4.1. Feasibility Analysis 

In this study, we apply HCCDC to monitor urban encroachment upon agricultural land in Beijing. 

Two land cover classes are considered in the case study: farmland and built-up. The basic hypothesis 

underlying this study is that when the sensed area of a pixel converts from farmland to built-up, the 

model likelihoods of farmland will drop sharply. Hence, it is required that the established models have 

good separability between farmland and built-up. This assumption will be verified through experiments 

over the training data.  

4.2. Validation Dataset 

Since it is difficult to find reliable ground truth to evaluate the change detection performance, a 

manually selected validation set from Landsat TM images is used for accuracy assessment, as proposed 

in [6]. The validation set is composed of a total of 500 pixels, in which 250 pixels are from farmland 

areas where the land cover class are persistent throughout the time of analysis, and 250 pixels are selected 

within the areas where conversions from farmland to built-up are found. The validation samples are 

examined using high resolution images from Google Earth before and after a possible change. The ENVI 

region of interest (ROI) tool is used to export digitized ROIs to a vector file, which is imported into 

Google Earth to examine whether interested changes occur. Figure 8c shows a changed pixel in the 

validation set. Its corresponding area is manually digitalized from the Landsat TM images (Figure 8a,b) 

and overlaid with high resolution images from Google Earth (Figure 8d).  
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Figure 8. A changed pixel in the validation set. The reference Landsat TM images acquired 

in (a) 2001 and (b) 2010, respectively, where the changed area is marked with a yellow 

polygon; (c) time series of the corresponding pixel in the MODIS images; and (d) high 

resolution images from Google Earth. 

4.3. Comparison with Other Approaches 

The performance of HCCDC is compared with the outcomes of other change detection approaches. 

One is the CCDC algorithm proposed in [6]. It is based on pixel-wise curve fitting. If the differences 

between observed and predicted pixel values are larger than a threshold for three consecutive times, a 

change is identified. Then the model parameters are re-estimated on incoming time series after change 

and used for land cover classification. HCCDC is also compared with a post-classification change 

detection (PCCD) method developed in [38]. PCCD detects change by implementing a temporal moving 

window over a series of land cover maps. Two consecutive years of farmland or built-up is assumed.  

All these algorithms are able to detect multiple changes, but only the last change is used for accuracy 

assessment. It is because the change from farmland to built-up is generally irreversible. Built-up areas 

usually do not change any more.  
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5. Results and Discussion 

5.1. Results of Time Series Clustering 

The time series in 2009 are automatically clustered into 30 clusters. According to GlobCover 2009 

map, six of them are labeled as farmland while two are assigned to built-up. Figure 9 illustrates the 

cluster centroid for each spectral band. We can see that for farmland clusters, seasonal variations in all 

the spectral bands are significant. Specifically, the NIR reflectance profiles of cluster 4 and 6 have two 

peaks a year while the others have only one, due to different cropping systems (monocropped vs.  

double-cropped). In contrast, variations in built-up clusters are relatively weak. In particular, the NIR 

reflectance values of cluster 1 are higher than those of cluster 2, due to the vegetation cover, such as 

trees and lawns within the urban areas. 

 

Figure 9. Time series of K-Means centroids. Surface reflectance bands: (a) blue, (b) red,  

(c) NIR, and (d) MIR. 

5.2. Results of the Feasibility Analysis 

Five-state HSMMs are taken as an example for this feasibility analysis. The histogram of  

log-likelihoods of each built-up cluster produced by the model of each farmland cluster is illustrated in 

red in Figure 10. The histogram of the farmland cluster itself is shown in blue. It can be seen that there 

is significant difference in likelihood distribution between built-up and farmland: the likelihoods for 

most farmland samples are within the range (−650, −550) but for built-up samples, they are less than −600. 

Therefore, we can use the model likelihood of HSMM to distinguish built-up from farmland. 
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Figure 10. (a) The log-likelihood distribution of built-up cluster 1 produced by the model of 

each farmland cluster. (b) The log-likelihood distribution of built-up cluster 2 produced by 

the model of each farmland cluster. 

5.3. Likelihood Series of Rearranged Observation Sequences 

In this section, we illustrate that HSMM accommodates to the observation rearrangement, when the 

class of the observed sequence does change from one year to another. Figure 11 illustrates the three-year 

time series of a pixel, which converts from farmland to built-up land use. The change occurs at time t = 44 

(marked with a black line). 
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Figure 11. The three-year time series of a pixel with class change. 

The first changed subsequence 22|44o  after the arrangement is shown in Figure 12. Compared to its 

previous subsequence 21|43o , though only one observation is different ( 44o  vs. 21o ), the log-likelihood 

declined from –640 to –644. 

 

Figure 12. (a) The subsequences 22|44o  is indicated within the grey window. (b) The 

rearranged subsequence 22|44o  and 21|43o  are displayed. Only one observation between them 

is different, which is highlighted within the black circle. The other observations are 

overlapping displayed. 

Then we move the sliding window a time step further. The obtained subsequence 23|45o  is shown in 

Figure 13. Its log-likelihood is −643. 

Repeating the above process for the whole time series, we obtain the likelihood series where the 

detected change corresponds to the class change (Figure 14). This example demonstrates that, when there 

is a class change, the rearranged subsequence will drop because it no longer fits the trained HSMM.  
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Figure 13. (a) The subsequences 23|45o  is indicated within the sliding window. (b) The 

rearranged subsequence 23|45o  and 21|43o  are displayed. Two observations between them are 

different, which are highlighted within the black circle. The other observations are 

overlapping displayed. 

 

Figure 14. The original time series and the obtained likelihood series are displayed together. 

The arrow indicates the detected change-point. 

5.4. Accuracy Assessment 

Both HCCDC and CCDC are pre-classification algorithms. In this section, we evaluate their 

performance for the change detection step and the classification step separately. Then the final change 

detection accuracy is compared with that of PCCD. 

5.4.1. Accuracy Assessment for Change Detection 

We train HSMMs with different number of states ranging from three to eight, to find the optimal one. 

The receiver operating characteristic (ROC) analysis is used to evaluate the change detection 
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performance, without committing to a single decision threshold [39]. For both HCCDC and CCDC, the 

thresholds are varied to generate an ROC curve (Figure 15). Corresponding equal error rates (EER) and 

the area under the curve (AUC) are obtained. Table 1 shows the change detection accuracy of HCCDC 

with different number of states. By referring to Figure 15, the ROC curves of all the algorithms are 

similar. The best result is achieved by four-state HSMM, with EER of 20.00% and AUC of 0.882. It also 

shows that three or four states are sufficient to identify changes from farmland time series. In 

comparison, the obtained EER and AUC by CCDC are 20.32% and 0.869, respectively. Such results 

indicate that HCCDC can achieve comparable change detection accuracy with CCDC. 

 

Figure 15. The receiver operating characteristic (ROC) curves of true positive rates (TPRs) 

versus false positive rates (FPRs). Each point represents a pair of TPR and FPR obtained 

under different thresholds. 

Table 1. Change detection accuracy for HCCDC with different number of states. 

Number of States EER AUC 

3 20.16% 0.879 

4 20.00% 0.882 

5 22.63% 0.869 

6 23.20% 0.864 

7 23.75% 0.848 

8 22.15% 0.856 

Note: EER, equal error rates; AUC, area under the curve. 

The omission errors of HCCDC result from the following reasons: (1) partially changed pixels;  

(2) high coverage of urban vegetation; and (3) changes occur too late during the time of analysis. Due 

to the low spatial resolution of MODIS images, change in a part of a pixel is hard to detect.  

In Figure 16, though half of the (pixel) area has been converted into a construction site, change in the 

time series is minor. In addition, when built-up regions are covered with high density plants, they are 

easily to be confused with farmland. Finally, as we are dealing with changes between 2001 and 2010, if 
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a change happens at the end of 2010, it is hard to find three consecutive observations whose likelihoods 

are less than the threshold M. In Figure 17, a change occurred in mid-2010. However, there are only 

eleven observations left for identifying the change. 

The commission errors (or “false positives”) of HCCDC are mostly due to the following reasons:  

(1) overfitting of the model; (2) switching of crop types. On one hand, the overfitting problem caused 

by using too many states makes the model sensitive to noises in time series. On the other hand, some 

unchanged pixels in the validation set were actually diverted to other types of crop during the time of 

analysis, causing changes in temporal development curves. For example, in Figure 18, the sensed area 

of an unchanged pixel was switched from a typical double-cropping system to monocropping round 

2007, resulting in a change identified by the algorithm. 

 

Figure 16. Omission error in change detection: partially changed pixel. The black vertical 

line marks the time of the corresponding Google Earth image displayed on the right.  

(a) 17 December 2006, (b) 20 June 2009. 

 

Figure 17. Omission error in change detection: change occurs too late. The black vertical 

line marks the time of the corresponding Google Earth image displayed on the right.  

(a) 13 March 2010, (b) 23 June 2010. 

 

Figure 18. Commission error in change detection: switching to another crop type. The black 

vertical line marks the time of the corresponding Google Earth image displayed on the right. 

(a) 21 August 2006, (b) 11 August 2009. 
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5.4.2. Accuracy Assessment for Classification 

To assess the land cover classification accuracy, we set the threshold γ of HCCDC equal to 1 and 

classify all the changed pixels identified by the algorithm. The results are listed in Table 2. Here, the 

producer accuracy (PA) is the fraction of correctly classified pixels with regard to the extracted pixels 

of that class. The overall accuracy is calculated by summing the number of pixels classified correctly 

and dividing by the total number of the extracted pixels. According to Table 2, eight-state HSMM 

achieves the optimal overall (OA) classification accuracy (96.88%). It means that when eight-state 

HSMMs are used, 235 among 248 changed pixels are correctly detected and classified, at the same time, 

only one of the unchanged pixels is considered converted into built-up. Moreover, HSMMs using five 

to eight states perform better than those with three or four states. In all the cases, PA of farmland is better 

than that of built-up. This may be attributed to more number of clusters used for farmland, resulting in 

better modeling accuracy. It also indicates that most of the false changes can be eliminated in the land 

cover classification step.  

Table 2. Classification accuracy for HCCDC using different number of states. 

Number 

of States 

Number of the  

Extracted Pixels 

Number of Correctly 

Classified Pixels 
PA 

OA 

Built-up Farmland Built-up Farmland Built-up Farmland 

3 242 153 217 152 89.67% 99.35% 93.42% 

4 250 163 227 163 90.80% 100.00% 94.43% 

5 250 178 237 177 94.80% 99.44% 96.73% 

6 249 178 233 175 93.57% 98.31% 95.55% 

7 248 196 231 195 93.15% 99.49% 95.95% 

8 248 201 235 200 94.76% 99.50% 96.88% 

Note: PA, producer’s accuracy; OA, overall accuracy. 

According to the ROC analysis, two times the root mean square error (RMSE) is used for thresholding 

for CCDC. The corresponding OA is 81.63%, where 171 among 247 changed pixels are correctly 

detected and classified (PA of built-up is 69.23%), at the same time, 189 among 194 unchanged pixels 

are detected and recognized as false alarms (PA of farmland is 97.42%). The results demonstrate that 

HCCDC performs better in determining land cover class compared to CCDC. 

Taking consideration of both change detection and classification steps, the comprehensive accuracy 

can also be derived. Using five states and setting   to 1, the change detection rate of HCCDC is 94.80% 

with the false alarm rate of 0.40%. In comparison, the change detection rate of CCDC is only 68.40% 

with the false alarm rate of 2.00%, while that of PCCD is 89.6% with the false alarm rate of 0.40%. The 

comparison results indicate that the proposed method is better than the pixel-oriented change detection 

methods and the post-classification methods to some extent. 

5.4.3. Computational Efficiency 

To compare the computation time of HCCDC and CCDC, measurements are performed on a  

3.2-GHz quad-core machine with 8-GB main memory. Both algorithms are implemented and tested in 

Matlab®. For processing 500 time series, a five-state HCCDC requires 244 seconds compared to  
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306 seconds required by CCDC. By comparison, HCCDC is more computationally efficient. It may be 

because HCCDC does not need to retrain a new model when change occurs. The high efficiency of our 

method can improve the processing on large datasets. 

6. Strengths and Limitations of HCCDC 

Satellite image time series (SITS) provide striking temporal information regarding earth surface 

development, which makes them a better data source for land use/land cover studies. The proposed 

HCCDC method is designed for high temporal frequency time series and can be used for unsupervised 

change detection and classification.  

There are some remarkable advantages of HCCDC. (1) The change detection process is fully 

automated and is able to monitor land cover change as soon as new observations become available. 

Compared to post-classification algorithms, such as PCCD, HCCDC is capable of detecting inner-annual 

changes and avoids the impact of classification errors on change detection. (2) HCCDC can provide 

detailed “from–to” change information compared to previous pre-classification algorithms. (3) HCCDC 

is more computationally efficient and storage-saving in comparison with the pixel-oriented methods, 

such as CCDC. Since HCCDC is land cover class oriented, there is no need to train a specified model 

for each pixel or update the model when new data are entered. This characteristic makes HCCDC more 

practical for regional or global land cover monitoring. 

HCCDC also has limitations. First of all, training HMM needs a lot of samples. However, if there is 

no available land cover map, visual interpretation of a large number of training samples is very  

time-consuming and laborious. Second, HCCDC requires high temporal frequency of clear observations. 

The existence of too many noisy pixels could lead to inferior modeling results. Therefore, the preprocessing 

step has a strong impact on the following model training and change detection processes.  

7. Conclusions 

In this paper, a novel SITS-based algorithm—HCCDC, was proposed for continuous land cover 

change detection and classification. The idea is to observe the likelihood change of a pre-trained HMM 

for the initial class of a pixel on incoming time series, and detect changes from the dramatic drop of 

likelihoods. The HSMMs are then used for land cover classification after change to provide “from–to” 

information.  

To evaluate the performance of the proposed method, a case study has been conducted for monitoring 

urban encroachment onto farmland in Beijing. The results demonstrated that HCCDC is capable of 

detecting farmland changes and identifying change types. The optimal result of HCCDC was achieved 

using five states, with the final change detection rate of 94.80% and the false alarm rate of 0.4%. HCCDC 

was also compared with the CCDC algorithm. The comparison results suggested that HCCDC can 

achieve comparable change detection accuracy (e.g., with the best EER of 20.00% and AUC of 0.882 

for HCCDC, vs. EER of 20.32% and AUC of 0.869 for CCDC) and better classification performance 

(e.g., with the best OA of 96.88% for HCCDC, vs. 81.63% for CCDC). In addition, HCCDC is also more 

computationally efficient (e.g., required 244 seconds, vs. 306 seconds for CCDC).  

Though the described example was performed on farmland and built-up, HCCDC is also applicable 

for the near real-time change detection for a large range of land cover classes. 
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