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Abstract: In a combined experimental and model study, we investigated effects of surface 

topography (relief) on the thermal L-band emission of a sandy soil. To this end, brightness 

temperatures of two adjacent footprint areas were measured quasi-simultaneously with an 

L-band radiometer at the observation angle of 55° relative to nadir for one year.  

One footprint featured a distinct relief in the form of erosion gullies with steep slopes, 

whereas the surface of the second footprint was smooth. Additionally, hydrometeorological 

variables, in situ soil moisture and temperature were measured, and digital terrain models 

of the two scenes were derived from terrestrial laser scanning. A facet model, taking into 

account the topography of the footprint surfaces as well as the antenna’s directivity, was 

developed and brightness temperatures of both footprints were simulated based on the 

hydrometeorological and in situ soil data. We found that brightness temperatures of the 

footprint with the distinct surface relief were increased at horizontal and decreased at 

vertical polarization with respect to those of the plane footprint. The simulations showed 

that this is mainly due to modifications of local (facet) observation angles and due to 

polarization mixing caused by the pronounced relief. Measurements furthermore revealed 

that brightness temperatures of both areas respond differently to changing ambient 

conditions indicating differences in their hydrological properties. 
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1. Introduction 

Within the last decades, microwave radiometry at L Band (1–2 GHz) has become a well-established 

method for the remote sensing of soil moisture [1,2]. It is currently being deployed, e.g., in the 

European Space Agency’s (ESA) Soil Moisture and Ocean Salinity (SMOS) mission, to globally 

monitor soil moisture with a spatial resolution of approximately 45 km and a revisit time of less than 

three days [3]. It was first suggested almost 30 years ago that soil moisture can be retrieved from 

remotely sensed thermal radiance measured by an L-band radiometer [4,5]. Since then, many 

methodological studies have attempted to improve the emission models applied to retrieve soil 

moisture from measured L-band brightness temperatures, and have investigated the influence of,  

e.g., vegetation [6,7], soil temperature [8,9], snow cover [10,11], soil frost [12–14] and surface 

roughness [15–17] on the microwave emission of land surfaces. 

In most of these studies, the observed scene is considered to be a horizontal plane with uniform 

(effective) dielectric and thermal properties observed at the same observation angle throughout the 

entire footprint. This is an appropriate assumption when the antenna field of view is narrow and the 

observed surface has no pronounced surface relief. In a more rigorous description, however, different 

regions within the scene are observed at different observation angles even for a horizontal surface. 

When the scene furthermore features a distinct relief, the observed surface is no longer a horizontal 

plane, but consists of different surface patches (facets), which are tilted with respect to the horizontal. 

This causes an additional modification of local observation angles for those surface patches and leads 

to a rotation of the direction of linear polarization, depending on the slope and the orientation of the 

surface patch as well as on its position with respect to the main view direction of the radiometer 

antenna. The tilted surfaces furthermore imply a variable and elevated horizon that may obscure parts 

of the sky. Along these directions, the downwelling radiance incident on the ground is no longer the 

cold sky radiation (<10 K at the L band) but the much stronger radiation from the elevated 

landscape [18]. 

Only in recent years the effects of relief on passive microwave radiance have been increasingly 

addressed in scientific studies (e.g., [19–24]), and little appropriate experimental data is available to 

date [25]. Moreover, most of this research has concentrated on large-scale topographic effects, such as 

the impact of mountain slopes and valleys, and is mostly based on simulation results only. In this 

study, a combined experimental and modeling approach was developed to investigate the influence of 

much smaller surface features, namely erosion gullies, which are not accounted for in the studies 

mentioned above. The main objective of our work was the investigation and quantification of such 

relief effects on the L-band emission of a bare soil surface. This is achieved by means of tower-based 

radiometer measurements and concurrent brightness-temperature simulations. 

To this end, brightness temperatures at 1.4 GHz of two adjacent footprint areas with similar soils 

but different relief characteristics were measured quasi-simultaneously for one year by an L-band 
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radiometer mounted on a tower. The first observed footprint was crossed by distinct erosion gullies, 

whereas the surface of the second footprint can be regarded as being planar. In addition to the 

brightness temperatures, ancillary hydrometeorological variables, in situ soil moisture and temperature 

were measured, and digital terrain models of the footprint surfaces were derived from terrestrial laser 

scanning (Section 2). 

In Section 3, we present the complete modeling chain used to simulate brightness temperatures of 

the two scenes for comparison with the tower-based radiometer measurements. To this end, we 

approximated the footprint surfaces by mosaics of planar surface elements (facets), corresponding to 

the pixels of the digital terrain models. Soil-moisture and temperature profiles were computed from the 

hydrometeorological and in situ soil data with a numerical soil-water and heat-transfer model.  

They were then used as input to a coherent radiative transfer model to calculate the reflectivity of each 

facet taking into account the local observation angles of the individual facets. From the angular 

dependent facet reflectivities, the contribution of each facet to the total emission of the scene was 

calculated with a radiative transfer scheme, considering for polarization mixing and shadowing effects, 

which are caused by the tilt of the facets. The local facet emissions were then summed up to total simulated 

antenna temperatures, taking into account projection effects as well as the antenna’s directivity. 

Simulated and measured brightness temperatures were analyzed in conjunction with the 

hydrometeorological and in situ soil data to determine the impact of relief on L-band emission for a 

wide range of environmental conditions. Furthermore, footprint surface characteristics and their 

influence on local facet emission were analyzed in detail (Section 4). 

2. Experimental Setup and Measurements 

2.1. Investigation Area and General Setup 

In the late summer of 2008, the ETH L-BAnd RAdiometer (ELBARA) [26] was installed in the 

artificial research catchment “Chicken Creek” [27,28], close to the city of Cottbus in Eastern Germany 

(51°36′N, 14°16′E; 130 m a.s.l.). This catchment area was established as a joint research site of the 

interdisciplinary research project “Structures and Processes of the Initial Ecosystem Development 

Phase in an Artificial Water Catchment” [29]. It was completed in 2005 and then left to allow an 

ecosystem to develop without further restrictions and with minimum interference. Shortly after its 

completion, distinct erosion gullies had begun to develop in the catchment area. They developed 

rapidly at first, but once the gully network had formed, they remained fairly stable over time. Due to 

these distinct erosion gullies in combination with the comprehensive monitoring network present, the 

catchment was considered to be well suited to investigate relief effects on L-band emission under 

natural, but well-characterized, conditions. 

ELBARA was mounted on a tower at the southwestern boundary of the research catchment with the 

phase center of the receiving horn antenna approximately 10 m above the ground (Figure 1).  

The radiometer was equipped with an automated elevation stage [30], making it possible to change its 

view direction in elevation to perform regular sky measurements for calibration purposes. 

Furthermore, a revolving platform [31] enabled to change the radiometer’s view direction also in 
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azimuth, and therewith to measure brightness temperatures of two footprints with different surface 

characteristics quasi-simultaneously. 

 

Figure 1. (a) ELBARA, mounted on the tower and looking toward footprint A1 at the 

observation angle θRM = 55°. (b) The investigated areas A1 and A2. The dashed circles 

show approximately the −12 dB footprint areas and the arrows indicate their dimensions. 

The footprint ellipses appear as circles since the pictures were taken oblique to the surface 

from the top of the radiometer tower. 

Footprint Area 1 (A1, situated within the research catchment) was crossed by two very distinct 

parallel erosion gullies (≈0.5 m deep) with steep and differently oriented slopes. A third less distinct 

gully ran through A1 approximately midway between the other two. Footprint Area 2 (A2), situated 

just outside the catchment, was leveled and smoothed prior to beginning the measurements to restore 

the area to a state comparable to the initial state of the research catchment just after completion.  

No distinct gullies were therefore present in A2 at the start of the measurement campaign, and the 

surface can be regarded as smooth. Both areas were covered with only very sparse vegetation (A1) or 

none at all (A2), and its presence is assumed to have no significant influence on the L-band brightness 

temperatures measured. The soil material of both areas is a sandy substrate several meters thick, 

underlain by a layer of clay. The substrate is characterized as loamy sand with a bulk density of 

approximately 1700 kg∙m−3 and a porosity between 31% and 38% [27]. Neither the relief nor the 

vegetation cover in A1 changed significantly throughout the measurement campaign. In A2, a sparse 

vegetation cover similar to that in A1 developed in 2009, while the relief remained approximately the 

same during the campaign. 
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2.2. Brightness-Temperature Measurements 

Brightness temperatures were measured with the ETH L-BAnd RAdiometer (ELBARA) [26].  

This Dicke-type radiometer is equipped with a dual-mode Picket-horn antenna [32] with 23.5 dB gain 

and a −3 dB full beam width of ±6° around the antenna main direction. ELBARA measures brightness 

temperatures T
p 

B at horizontal (p = H) and vertical (p = V) polarization in the protected frequency range 

1400–1427 MHz, corresponding to a vacuum wavelength of λ ≈ 0.21 m. All measurements are 

recorded with 12 s integration time, resulting in an absolute accuracy of the measured T
p 

B  of around  

±1 K and a sensitivity better than 0.1 K. Instrumental noise was estimated by comparing measured sky 

brightness temperatures with theoretical L-band sky brightness and corrected for in the T
p 

B measured 

according to [33]. 

Quasi-simultaneous T
p 

B measurements of the footprints A1 and A2 (Figure 1b) were carried out from 

October 2008 until the end of 2009. One complete measuring cycle consisted of 22 individual T
p 

B  

measurements. First, 16 measurements of A1 were carried out, before ELBARA rotated toward A2. 

Then, six T
p 

B  measurements of A2 were taken, before ELBARA rotated back toward A1, and the 

measuring cycle started again. The individual T
p 

B measurements were initiated every five minutes, and 

a whole measuring cycle lasted 120 min. Both footprints were observed at the fixed radiometer 

observation angle θRM = 55° relative to the vertical direction. Sky measurements for external 

calibration were performed on a regular basis about once every month at θRM = 140°. Due to several 

failures of the power supply and a broken gear belt connecting the motor with the revolving stage, the 

time series of T
p 

B contains several gaps and after August 2009 only measurements of A1 are available. 

Nevertheless, measurements could be made during all seasons and from mid-February until mid-May 

2009 an almost uninterrupted time series of T
p 

B measurements of both scenes was obtained. 

2.3. Hydrometeorological and in situ Soil Measurements 

Hydrometeorological measurements were carried out in the established monitoring network [34]. 

Meteorological variables (precipitation, air temperature, relative humidity, shortwave radiation and 

wind speed) were recorded by two standard weather stations every 10 min, and daily webcam images 

provided estimates of snow cover and snow depth. Groundwater level measurements were made 

manually at least once a month in groundwater observation pipes located on a 20 m × 20 m grid across 

the catchment. Volumetric soil-water content and soil temperature were recorded at numerous 

locations both inside and outside the gullies in the catchment area, and also specifically in the two 

footprints observed by the radiometer. We used ECH2O EC-TM sensors from Decagon Devices [35], 

which were installed upright at 10–15 cm depth. For the sake of clarity it is mentioned here that these 

in situ measurements are used to calibrate the soil-water and heat-transfer model to estimate high 

resolution (2 mm) soil moisture and temperature profiles, ultimately used to simulate soil emissivities 

as will be described in Section 3.1.  

2.4. Topography Measurements 

To analyze the impact of surface relief on the T
p 

B measured, we relied on accurate Digital Terrain 

Models (DTM) of the two footprints A1 and A2. These were derived from terrestrial laser scanning, 



Remote Sens. 2015, 7 14332 

 

 

carried out with the time-of-flight laser scanner RIEGL LMS-Z420i [36] in August 2009. The scanner 

was mounted on the highest platform of the radiometer tower (≈3 m beneath the pivotal point of 

ELBARA), and had approximately the same view of the footprints as the radiometer. Additionally, two 

scans were made with the scanner set up on a mobile tower and looking toward ELBARA, to obtain 

information about the gully slopes facing away from the radiometer. 

After a first post-processing of the raw scan data with the RiSCAN PRO 1.4.3 software package [36] 

(merging of the measurements from the radiometer tower with the measurements from the mobile 

tower, clipping of the data to the observed scenes, removal of measurement points related to 

vegetation), the resulting surface patches of both areas were converted to ESRI raster data sets for 

further manipulation in ArcGIS [37]. Above all, the irregularly spaced scan data were interpolated to a 

regular 5 cm × 5 cm grid using surface analysis tools of Arc-GIS (ESRI 2011. ArcGIS Desktop: 

Release 10. Environmental Systems Research Institute: Redlands, CA, USA), yielding the DTMs of 

the footprints A1 and A2. These DTMs consist of the spatial coordinates X = (x, y, z) of every grid 

cell, which describe the elevation z of 5 cm × 5 cm facets at position (x, y). Furthermore, the unit 

vectors ˆ n X X , normal to the facets’ surfaces, were calculated as the gradients 

(  , ,       x y z ) of the facet position vectors X using Arc-GIS. Facets that cannot be seen 

from the radiometer were identified and flagged as invisible. Finally, the facets of footprint A1 situated 

inside the erosion gullies were flagged as such, in order to discriminate between areas inside and 

outside the erosion gullies in the brightness-temperature simulations (Section 3). 

3. Brightness-Temperature Simulations 

The radiance received by a microwave radiometer observing a land surface is composed of surface 

and atmospheric contributions, both of which depend, amongst other things, on the relief [38].  

This relief-dependency is explicitly included in our emission model in order to relate differences 

observed between the emissions T
p 

B  from footprints A1 and A2 to corresponding differences in their 

surface relief. That means the different local observation angles and orientations of the plane of linear 

polarization of different regions within the radiometer footprints are considered. Furthermore, the 

shadowing of some regions from the downwelling sky radiance by the surrounding elevated terrain is 

taken into account. 

To this end, a facet model was implemented. The actual footprint surfaces were approximated by 

mosaics of small planar surface elements (facets), corresponding to the 5 cm × 5 cm pixels of the 

DTMs, which are tangent to the local surface. The locations of the individual facets are given by their 

spatial coordinates X, and the facets’ inclination (tilt) and orientation (aspect) are described by the 

associated surface normals n̂ . The facets were assumed to be locally smooth and specularly reflecting. 

For assigning soil temperature and water content we discriminated between facets inside and outside 

the erosion gullies. Otherwise, soil temperature and water content were assumed as uniform within 

both footprint areas. In a first step, the radiative contribution of each individual facet to the emission of 

the full scene toward the radiometer is calculated. Subsequently, the total scene emission received by 

the radiometer was modeled as the convolution of the local facet emissions and the antenna’s 

directional sensitivity. Similar facet models were proposed, e.g., in [18,39], and have been used, e.g., 

to describe the microwave emission of a mountainous region in Northern Italy in [22], although for 



Remote Sens. 2015, 7 14333 

 

 

facet dimensions much larger than the observation wavelength. However, using facets with dimensions 

5 cm × 5 cm smaller than the observation wavelength λ ≈ 21 cm, as we do in this study, is still 

appropriate since spatial gradients of facet emissions are in most cases very small, implying that local 

surfaces can be well approximated by tangent planes of dimensions of the observation wavelength  

(λ ≈ 21 cm). Accordingly, the incoherent superposition of electric fields emitted from 5 cm × 5 cm 

facets yields very much the same result as if electric fields emitted from 20 cm × 20 cm facet were 

summed up coherently. This was tested by evaluating our emission model for facets with dimensions 

20 cm × 20 cm comparable with the observation wavelength (λ ≈ 21 cm), which were derived from the 

5 cm × 5 cm facets by spatial smoothing (a 4 × 4 pixel window was applied). This exercise yielded 

almost unchanged results for the simulated total scene emission compared to using 5 cm × 5 cm  

facets. Beyond this model-based argumentation, the suitability of using facets with dimensions of  

5 cm < λ ≈ 21 cm is also confirmed experimentally in [40], where microwave measurements at  

2–12 GHz were successfully reproduced by a model also assuming incoherent superposition of 

radiances emitted from facets that are smaller than the observation wavelength. 

3.1. General Modeling Approach 

When calculating the emission from an individual facet toward the RadioMeter (RM), located at 

XRM = (xRM, yRM, zRM), one has to consider the tilt angle and orientation (aspect) of the facet as well as 

the deviation of the antenna main axis kRM from the view direction kF = XRM − X from the Facet (F) 

toward the radiometer (Figure 2). For this reason, we introduce three Planes Of Incidence (POI) and 

corresponding elevation angles, as depicted in Figure 2. 

 The RadioMeter Plane Of Incidence (RM-POI) is normal to the xy-plane, and comprises the 

antenna main axis kRM. Hence, it is spanned by the two unit vectors RM RM RM
ˆ k k k  and the 

vertical ẑ = (0, 0, 1). The corresponding radiometer elevation angle RM = 55° is the nadir 

angle of the antenna main axis. 

 The View-Direction Plane Of Incidence (VD-POI) of a Facet (F) is also normal to the xy-plane, 

but is spanned by the two unit vectors F F F
ˆ k k k  and ẑ, and is thus rotated in azimuth by 

the angle ϕ with respect to the RM-POI. The corresponding view-direction elevation angle 

θVD is the angle at which a facet is seen from the radiometer, and is given by the scalar 

product: 

VD F
ˆˆcos  z k

 (1) 

 The local or Facet Plane Of Incidence (F-POI) is normal to the facet’s surface and is spanned 

by Fk̂  and the facet’s surface normal n̂ . The corresponding facet elevation angle θF is the 

incidence angle of radiation incident on a facet that is reflected in the specular direction 

toward the radiometer. It is given by: 

F F
ˆˆcos  n k  (2) 

and thus deviates from θVD for facet tilt angles   0°. 
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Figure 2. (a) Illustration of the setup considered when calculating the reflection on and 

emission from a tilted facet. The RadioMeter (RM) is mounted at XRM = (xRM, yRM, zRM) 

with the observation angle RM = 55° relative to the vertical, and the antenna main axis 

kRM. The Facet (F) is at X = (x, y, z) and tilted with respect to the horizontal by the angle α. 

It is observed from the radiometer at the View-Direction (VD) elevation angle θVD, and kF 

is the view direction from the facet to the radiometer. The facet’s surface normal is n̂  and 

θF is the facet elevation angle. The vector F
ˆ k  points toward the radiation Tin incident on the 

facet that is reflected toward the radiometer. Additionally, the angle   between kRM and 

kF and the azimuth angle ϕ between the RM-POI and the VD-POI (grey-shaded areas) are 

shown. (b) Cut-out of the dotted box in (a) illustrating the relationship between the unit 

vectors Fk̂ , F
ˆ k , ẑ, n̂  and the angles  , F , VD , VD  . The F-POI (not especially 

illustrated for the sake of better readability) comprises the vectors n̂ , Fk̂  and F
ˆ k , but not 

necessarily the vertical ẑ. 

With the different planes of incidence and corresponding elevation angles defined, we followed the 

course of action illustrated in Figure 3 to simulate the T
p 

B  of the footprints A1 and A2. First, we 

calculated volumetric soil-water content and soil-temperature profiles for areas inside and outside 

gullies for the entire time span of the experiment with a numerical soil-water and heat-transfer model 

(Section 3.2). The soil-water content profiles were converted into soil-permittivity profiles and 

subsequently used as input to a coherent radiative transfer model for layered dielectric media. 

Evaluating this model yielded the facet reflectivities R
p 

F (θF) at polarization p = H, V with respect to the 

F-POI and at the elevation angle θF at the respective times of the radiometer measurements. 

Furthermore, also the effective soil temperatures Teff(θF) were computed from the soil-temperature and 

soil-permittivity profiles (Section 3.3). In the next step, we performed a transformation from the F-POI 

to the RM-POI to derive the facets’ reflectivities R
p 

RM at polarization p = H, V with respect to the  

RM-POI (Section 3.4). This transformation accounts for the deviation of the facets’ view directions Fk̂  

from the antenna main axis RMk̂  as well as for the rotation of the direction of linear polarization 

resulting from the tilt of the facets. 
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The facet reflectivities R
p 

RM were then used in a simple radiative transfer model to calculate the 

radiances of the individual facets toward the radiometer. In doing so, shadowing effects caused by the 

relief were taken into account. The individual radiative contributions of all facets within the respective 

footprint were then summed up to provide the total simulated antenna temperatures for the two 

footprints, taking into account the antenna’s directivity as well as projection effects (Section 3.5).  

This yielded simulated brightness temperatures T
p 

B  for the footprints A1 and A2 at all times of 

radiometer measurements to be directly compared to the measured time series of brightness 

temperatures of the two footprints. 

 

Figure 3. Flowchart of the modeling chain followed to simulate brightness temperatures. 

Hexagons indicate model in- and outputs. Boxes show the different model components, 

which are explained in the sections indicated by the numbers in parentheses. 
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3.2. Soil-Water Content and Soil-Temperature Profiles 

The volumetric soil-water content wc(d) and soil-temperature Ts(d) (d = depth below surface) 

profiles were simulated at one-hour time intervals using the one-dimensional numerical soil-water and 

heat-transfer model COUP [14,41]. The model calculates the water and heat fluxes from the soil 

surface to a depth of 3 m for a layered vertical soil profile with predefined thermal and hydrological 

properties. The upper boundary conditions of the profile are governed by the soil-surface energy 

balance, which takes into account the evaporation fluxes and a potentially present snow cover. To this 

end, hourly measurements of precipitation, air temperature, relative humidity, shortwave radiation, and 

wind speed were used as the driving model variables. Furthermore, the monthly groundwater-level 

measurements were averaged across the investigated area, interpolated in time, and then used as the 

lower hydraulic boundary condition for the simulations. The vertical water flow in the unsaturated 

zone was calculated with the Richards equation [42], using water-retention curves (i.e., the relationship 

between soil suction and water content) parameterized according to Brooks and Corey [43] and the 

Mualem function [44] for unsaturated hydraulic conductivity. The applied parameter values (Table 1) 

were based on site-specific information on soil texture and in situ hydraulic conductivity 

measurements [27], and further tuned to give a best match with the in situ wc and Ts measurements at a 

depth of 10–15 cm. 

Table 1. Soil parameter values used in the soil-water and heat-transfer model (COUP) for the 

simulation of the soil-water content and soil-temperature profiles (wcsat = saturation water 

content, Ψa = air entry pressure, λp = pore size distribution index, wcres = residual water 

content, ksat
a and ksat

b = saturated hydraulic conductivity including and excluding macropores). 

Soil Depth (m) wcsat(m
3∙m−3) Ψa (cm) λp (−) wcres (m

3∙m−3) ksat
a (mm∙d−1) ksat

b (mm∙d−1) 

0–0.06 0.27 15 0.60 0.055 200 50 

0.06–0.30 0.31 15 0.60 0.055 2500 250 

0.30–0.70 0.28 10 0.15 0.080 4000 400 

0.70–3.00 0.26 10 0.15 0.082 3000 300 

The COUP model was first run to derive wc(d) and Ts(d) profiles for a typical location outside the 

erosion gullies. In a second model run, corresponding profiles for a typical gully were simulated by 

considering a ≈50 cm shorter distance to the groundwater table (as opposed to the first model run 

applied to locations outside erosion gullies), and thus a higher and more uniform water content close to 

the soil surface. The physical soil properties were assumed to be the same inside and outside gullies. 

The simulated wc(d) and Ts(d) profiles were subsequently used as inputs to the radiative transfer model 

applied to compute the facet reflectivities R
p 

F  at local incidence angles θF as well as for the 

determination of the effective soil temperature Teff (Section 3.3). 

3.3. Facet Reflectivities with Respect to the F-POI and Effective Soil Temperatures 

The facet reflectivities R
p 

F (θF) at polarization p = H, V with respect to the F-POI and at the elevation 

angle θF were computed with a coherent radiative transfer model for layered dielectric media [45]. The 

model is based on a matrix formulation of the boundary conditions at the layer interfaces derived from 
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Maxwell’s Equations. Inputs to the model are the soil-permittivity profile ε(d), observation wavelength 

λ, polarization p, and the facet elevation angle θF. The model was evaluated for dielectric layers with a 

thickness of 2 mm << λ = 21 cm, and the total thickness of the dielectric stack corresponded with the 

profile depth of 3 m available from the COUP simulations. 

The complex permittivity profiles ε(d) = ε′(d) + iε″(d) were generated from the wc(d) profiles 

calculated by the COUP model (Section 3.2) as follows. First, simulated wc were linearly interpolated 

to the depths of the layers considered in the radiative transfer model (the soil depths indicated in  

Table 1 interpolated to 2 mm). Then, real parts ε′(d) were derived from wc(d) using the empirical 

mixing model [46], applicable to mineral soils with 0 m3∙m−3 ≤ wc ≤ 0.55 m3∙m−3: 

       2 33.03 9.3 146.0 76.7    d wc d wc d wc d
 (3) 

This purely empirical mixing model, doing without any additional soil-specific information, was 

chosen, as the soil material in the investigation area is a sandy substrate [27] rather than a naturally 

developed, undisturbed soil (Section 2.1). Imaginary parts ε″(d) were estimated as: 

   wd wc d     (4) 

where εw″ is the imaginary part of the permittivity of water. To simulate εw″ at λ = 21 cm and soil 

temperature Ts, we used the model [47] and considered the soil’s salinity to be S = 5 ppt (parts per 

thousand by weight), which is a reasonable value for soil water [48]. 

The radiative transfer model [45] was evaluated for all dielectric profiles ε(d) derived from the 

simulated wc(d) profiles, yielding time series of facet reflectivities R
p 

F (θF) for locations inside and 

outside the erosion gullies at hourly intervals. Since the radiometer measurements were carried out at 

shorter intervals (≈5 min), we subsequently interpolated these values to the times of the radiometer 

measurements to derive the R
p 

F (θF) for all times when radiometer measurements were available. 

Effective soil temperatures Teff(θF), determining upwelling brightness temperatures emitted from the 

soil, were subsequently computed from the soil profiles ε(d) and Ts(d) using the approach described in, 

e.g., [49]: 
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where γ(d) is the depth profile of power absorption coefficients that result from dielectric losses in the 

soil, τ(d) is the associated optical-thickness profile, and θ(d) are the propagation angles in the soil at 

depth d. Using Equation (5), effective temperatures Teff(θF) were computed for locations inside and 

outside erosion gullies, and subsequently also interpolated to the times of the radiometer measurements. 

3.4. Facet Reflectivities with Respect to the RM-POI 

The facet reflectivities R
p 

RM at polarization p = H, V and at the local incidence angle with respect to 

the RM-POI (Figure 2) were derived from the previously calculated R
p 

F (θF). To this end and in 
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accordance with Kirchhoff’s law (e.g., [50]), we reversed the field propagation directions and 

considered the radiometer to be a “transmitter” of p-polarized radiation with the unit field vector RM
ˆ p
E  

with RM
ˆ 1p E . Of course, the reciprocity of Maxwell’s equations is the fundamental physical 

justification permitting the reversal of the field propagation directions. Furthermore, the sky was 

regarded as a “receiver” absorbing the total energy carried by the field Eref reflected along the forward 

direction on the facet. This implies that R
p 

RM is the ratio between the reflected energy carried by Eref and 

the incident energy transmitted by the radiometer. As the energy carried by an electric field is 

proportional to its squared field amplitude, the reflectivity R
p 

RM is defined as:  

2

ref

RM 2

RM
ˆ

p

p

R
E

E

 (6) 

To determine Eref = Eref, the transmitted field RM
ˆ p
E  was first decomposed into its horizontal and 

vertical components E
H 

F  and E
V 

F  with respect to the F-POI, which are reflected on the facet with the 

reflectivities R
H 

F (θF) and R
V 

F (θF), respectively. This means, once the fields E
p 

F  incident on the facet are 

known, the reflectivities R
p 

F (θF) computed beforehand (Section 3.3) can be used to calculate Eref and, in 

turn, R
p 

RM using Equation (6). Determining E
p 

F  from RM
ˆ p
E  requires the following steps: (1) Calculation of 

the field RM
ˆ p
E  transmitted by the radiometer at the location of each individual facet within the 

footprints, as the antenna main axis RM
ˆk  deviates from the antenna’s view direction F

ˆk toward the 

facet (Figure 2); and (2) determining the components E
H 

F  and E
V 

F  from RM
ˆ p
E , which are p-polarized with 

respect to the F-POI. 

3.4.1. Transformation I: RM-POI to VD-POI 

To determine the polarization unit vectors RM
ˆ p
E  (p = H, V) for each individual facet, we use the 

Ludwig-2 definition [51], stating that the two cross polarization directions are tangent to a spherical 

surface. Figuratively speaking, this corresponds to considering the radiometer to be the sum of many 

infinitesimal radiometers looking towards each individual facet along F
ˆk . The direction of  

H-polarization for each infinitesimal radiometer is normal to both Fk̂  and the vertical ẑ , and thus 

parallel to F
ˆˆ z k . Consequently, H

RMÊ  is given by: 

H F
RM

F

ˆˆˆ
ˆˆ






z k
E

z k
 (7) 

Similarly, V

RMÊ  is determined from H

RMÊ  and Fk̂  as: 

H
V RM F
RM H

RM F

ˆ ˆ
ˆ

ˆ ˆ






E k
E

E k
 (8) 
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3.4.2. Transformation II: VD-POI to F-POI 

The electric field RM
ˆ p
E  incident on a tilted facet is p-polarized with respect to the VD-POI, but not 

with respect to the facet’s surface (Figure 2). It is rotated by an angle φ with respect to the facet surface 

in a plane perpendicular to the incidence direction, because the facet’s surface normal n̂  deviates from 

the vertical ẑ . To derive the locally, i.e., with respect to the F-POI p’-polarized components E
pp’ 

F  from 

RM
ˆ p
E , we projected RM

ˆ p
E  onto the polarization directions p’ = H, V with respect to the F-POI, given by 

the two unit vectors: 

H F
F

F

H
V F F
F H

F F

ˆˆˆ for H, and
ˆˆ

ˆ ˆ
ˆ for V

ˆ ˆ

p

p


 




 



n k
E

n k

E k
E

E k

 (9) 

Projecting H

RMÊ  onto the two directions given by Equation (9) yields the two field vectors: 

 

 

HH H H H

F RM F F

HV H V V

F RM F F

ˆ ˆ ˆ

ˆ ˆ ˆ

 

 

E E E E

E E E E
 (10) 

and proceeding equally for V

RMÊ  yields: 

 

 

VH V H H

F RM F F

VV V V V

F RM F F

ˆ ˆ ˆ

ˆ ˆ ˆ

 

 

E E E E

E E E E
 (11) 

The angle φ of polarization rotation is the angle between H

RMÊ  and H

FÊ , and is determined from their 

scalar product: 

H H

RM F
ˆ ˆcos  E E  (12) 

3.4.3. Derivation of R
p 

RM 

Using the calculations described above, we now determine R
p 

RM in the RM-POI as follows: The 

electric field H

RMÊ  transmitted by the radiometer and incident on a facet is expressed by means of the 

two orthogonal fields E
HH 

F  and E
HV 

F  (Equation (10)), which are H- and V-polarized, respectively, with 

respect to the F-POI: 

H HH HV

RM F F
ˆ  E E E  (13) 

The energies propagated by these fields are reflected on the facet with R
H 

F  and R
V 

F , respectively, 

yielding the following expression for the magnitudes of the reflected fields: 

2 2

F, ref F F

pp p ppR
  

E E  (14) 

The total field Eref reflected on the facet (as used in Equation (6)) is the linear combination of all the 

reflected fields E
pp’ 

F,ref. Thus using Equation (14), we can write for the magnitude Eref = Eref: 
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 
2 222 H HH V HV

ref ref F F F FE R R  E E E  (15) 

Inserting Equation (15) into Equation (6) and substituting H

RM
ˆ 1E , we eventually get: 

2 2
H H HH V HV

RM F F F FR R R E E  (16) 

for the facet reflectivity R
H 

RM at horizontal polarization with respect to the RM-POI. 

Following the corresponding procedure for a transmitted field V

RMÊ  and thereby using Equation (11) 

to derive the field components E
pp’ 

F  yields: 

2 2
V H VH V VV

RM F F F FR R R E E  (17) 

for the facet reflectivity R
V 

RM at vertical polarization with respect to the RM-POI. 

3.5. Antenna Brightness Temperature 

Knowing the facet reflectivities R
p 

RM at polarization p = H, V and at the local incidence angle with 

respect to the RM-POI, the brightness temperature radiated by each individual facet in direction Fk̂  

toward the radiometer was calculated with: 

 B, RM eff RM in1  p p p

fT R T R T  (18) 

This simple radiative transfer model fulfills Kirchhoff’s law, and describes the p-polarized 

brightness temperature T
p 

B,f  radiated from a facet with reflectivity R
p 

RM  and effective physical 

temperature Teff as the sum of the radiation emitted from the facet and the fraction of radiation Tin 

incident on the facet that is reflected toward the radiometer. For facets illuminated by the sky, the 

radiation Tin is the sky radiation Tsky, which is computed as the sum of downwelling atmosphere 

emission and cosmic background attenuated by the atmosphere, which depend on air temperature 

profile, elevation above sea level and angle of incidence according to the statistical parameterization 

given in the Appendix of [52]. For facets, which are obscured from the sky by their surroundings, Tin is 

set to Tin = Teff, implying that the surroundings are considered as black-body radiator at effective 

physical temperature Teff. 

To assign Tin, we first determined the direction  F F F
ˆ ˆˆ2cos   k n k  toward Tin, which follows 

from the relationship F F F F F F
ˆ ˆ ˆ ˆˆ ˆcos cos    k k k n k n  between Fk̂ , F

ˆ k  and n̂  (Figure 2b).  

Then, we computed the polar angle VD   between the vertical ẑ  and F
ˆ k  from the scalar product: 

VD F
ˆ ˆcos  k z  (19) 

and assuming a flat horizon (i.e., facets with VD 90    are illuminated by the sky, whereas facets 

with VD 90    are obscured from the sky by their surroundings) we assigned: 

sky VD

in

eff VD

for facets with 90

for facets with 90

T
T

T





  
 

  
 (20) 
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On the one hand, this simple criterion is, in the vast majority, valid to distinguish between facets 

illuminated by the sky or by surrounding facets. On the other hand it is simple enough to avoid 

excessive computational demand, which would result when applying e.g., a ray-tracing approach. 

With R
p 

RM, Teff, and Tin known for each individual facet, we calculated the contributions T
p 

B,f of all 

visible facets within a footprint (f = 1,…,n, where n denotes the total number of all facets visible from 

the radiometer) to the total radiance received by the radiometer by Equation (18). Subsequently, these 

contributions T
p 

B,f were summed up to the total radiance T
p 

B received by the radiometer antenna, taking 

into account the antenna’s directivity D(ω) as well as the fact that the facets appear enlarged or 

reduced in size, depending on their elevation angle θF and slope α (projection effect). The directivity 

D(ω) of ELBARA’s horn antenna can be approximated by D(ω) = exp(−0.01781 ω2) [33], where ω is 

the polar angle (in units of degrees) between the antenna main axis kRM and the view direction of a 

facet kF. The projection effect is taken into account by means of the solid angle Ω at which a facet 

appears as seen from the antenna position XRM: 

h

F F

2 2

cos cos

cos

A
A

r r

 


      (21) 

where A is the true area of the facet, Ah = (5 × 5) cm2 is the projection of A onto a horizontal plane, and 

r is the distance between the facet and the antenna. The slope α of the facet is the same as the tilt angle 

between its surface normal n̂  and the vertical ẑ  and is calculated from the scalar product as 

ˆˆcos  z n . Finally, the total radiance T
p 

B  received by the radiometer antenna was calculated as the 

beam-weighted sum of the radiances T
p 

B,f
 
 from all visible facets f = 1,…,n within the footprint area: 

B,

1

B

1

n
p

f f f

fp

n

f f

f

D T

T

D


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
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




 

(22) 

4. Results 

4.1. Meteorological Conditions 

During the measurement campaign from October 2008 to December 2009, the meteorological 

station in the research catchment recorded 778 mm of precipitation, which is close to the long-term 

average [27]. Several intense rainfall events occurred in autumn 2008, with the most intense rainfall on 

29 and 30 October (40 mm in two days), while spring 2009 was very dry. During April and the first 

half of May, hardly any precipitation at all was recorded. The most intense rainfall events in summer 

2009 were 20 mm on 1 July and 17 mm on 4 July, both lasting less than one hour. Early autumn 2009 

was again drier than in typical years. 

Both winters (2008/2009 and 2009/2010) were colder than average. The soil was snow-covered for 

approximately half of the time from mid-November 2008 to the end of February 2009. On some days, 

however, only the gullies were filled with snow, while the other areas were mostly snow-free.  

During the first half of January and the second half of February 2009, when most snow (5–10 cm) was 
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observed, the footprint areas were entirely snow-covered, with large spatial differences in snow depth 

due to wind drift. In winter 2009/2010, an intermittent snow cover was observed after 12 December. 

4.2. Measured and Simulated Soil-Water Content and Soil-Temperature Dynamics 

The in situ measurements of the liquid soil-water content wc were distinctly different for locations 

inside and outside the erosion gullies (Figure 4). Inside the gullies (grey line), wc was generally higher, 

with little temporal change except for January and February 2009 when the soil was freezing.  

Outside the gullies (black line), wc showed much more short-term dynamics, clearly responding to 

individual events, such as rainfall and snowmelt as well as the freezing/thawing and drying of the soil. 

 

Figure 4. Liquid soil-water content wc measured at a depth of 10–15 cm. The grey line 

represents the mean wc of the five sensors distributed inside of erosion gullies within the 

footprint area A1 shown in Figure 1. The black line shows the mean wc of the 15 sensors 

installed outside of erosion gullies within the areas A1 and A2. Light blue and dark blue 

areas indicate the mean wc ± standard deviation of the five measurements each, carried out 

specifically within footprint A1 (representing areas both inside and outside gullies) and 

within footprint A2 (no gullies present), respectively. The very low values in January, 

February and December 2009 are due to soil freezing. 

The wc measurements within the leveled footprint A2 (dark blue area) showed a rather narrow 

range of spatial variation and were similar to the measurements outside the erosion gullies elsewhere in 

the catchment. In contrast, the five sensors in the footprint A1 with the gullies detected much more 

spatial variation since they represent areas both inside and outside the gullies (light blue area).  

The presence of gullies in A1 led also to a higher mean wc in A1 than in A2. 

After the calibration of the COUP model (Section 3.2), wc simulated for areas outside the gullies 

correlated well with the corresponding measurements (Figure 5a, black lines). Overall, an R2-value of 

0.65 and a root-mean-square error (RMSE) of 0.03 m3∙m–3 attest a good model performance for these 

areas. The temporal variation of wc inside the gullies was somewhat overestimated by the model, 

whereas the absolute values were underestimated by approximately 0.1 m3∙m–3 for almost the entire 

measurement campaign (blue lines). Soil temperatures Ts at the depth 10–15 cm were reproduced very 
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well by the COUP simulations (Figure 5b), suggesting that the surface energy balance and the vertical 

heat flux in the soil (which depends on wc, amongst other things) are appropriately simulated.  

The difference in Ts for areas inside and outside the gullies was very small and the correspondence 

between the simulations and the measurements was similar for both (R2 = 0.98, RMSE = 1.14 K). 

The satisfactory agreement of simulations and in situ measurements for the 10–15 cm soil layer 

suggests that these model results are a reasonable choice as input to the reflectivity and local radiative 

transfer model applied (Sections 3.3 and 3.5) to simulate brightness temperatures in a forward 

approach for comparison with the radiometer measurements. 

 

Figure 5. (a) Measured and simulated time series of liquid soil-water content wc at a depth 

of 10–15 cm. For the measurements, the mean wc of 15 sensors located outside the gullies 

(solid black line) and the mean wc of five sensors representing typical gully locations 

(solid blue line) are displayed. (b) Corresponding time series of soil temperatures Ts for 

areas outside the gullies. Soil temperatures Ts inside the gullies were very similar and are 

not shown for the sake of clarity. 

4.3. Footprint Topographies and Exemplary Brightness-Temperature Simulation 

Table 2 gives a summary of the geometrical parameters (defined in Figure 2) relevant for the 

emission of the observed footprints. These parameters were derived from the DTMs of the footprints 

A1 (with gullies) and A2 (smooth surface) and the viewing configuration of the radiometer. The angles 

ϕ, ω, and θVD represent the deviation of the VD-POI from the RM-POI of the different facets within 

A1 and A2. Since the DTMs cover about the same fraction of both footprint areas, the ranges of ϕ, ω, 

and θVD are approximately the same for both. The angles α, θF, and φ, on the other hand, illustrate 

above all the different surface characteristics (relief) of both footprints. Due to the steep slopes of the 

gullies in A1 the ranges of tilt angles α and, consequently, also of facet elevation angles θF are much 

wider in A1 than in A2. Low values of θF in A1 are mostly associated with facets in gully slopes facing 

the radiometer, whereas facets in slopes facing away from the radiometer usually exhibit values  

θF > 90°. The range of θF encountered in the smooth footprint A2, however, mainly resembles 

differences caused by the different locations of the facets within the footprint area. This is in 

accordance with the fact that, in A2, the range of θF is not much wider than the range of θVD, whereas 
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in A1 the difference between both is substantial. Correspondingly, the angle of polarization rotation φ 

spans the whole range between 0° and 90° in A1, but is always smaller than 40° in A2. 

Due to the gullies in A1, about 6% of the facets (mainly situated in gully slopes facing away from 

the radiometer) were invisible for ELBARA, whereas in A2 almost all facets were visible. 

Furthermore, the range of elevation angles θ′VD of the radiation incident on the facets is much wider in 

A1 than in A2, and much more facets are obscured from the sky and illuminated by the surrounding 

landscape in A1 (≈7%) than in A2 (<1%). 

Table 2. Geometrical parameters (symbols are defined in Figure 2) determining the  

relief-dependent emission behavior of the footprints A1 and A2. Numbers in parentheses 

show the respective values just for the facets visible for ELBARA. 

Parameter Footprint A1 Footprint A2 

total number n of facets/area of footprint 48,529/121 m2 60,089/150 m2 

number of invisible facets 3077 99 

number of facets in gullies 3666 (2546) 0 

number of facets receiving radiation from the surrounding landscape 3466 (1619) 445 (380) 

distance r between radiometer and facets 13.18 m  r  25.26 m 14.22 m  r  29.64 m 

azimuth angle  between RMk̂  and Fk̂  0°    23°  0°    21°
 

polar angle  between RMk̂  and 
Fk̂  0°    19°

 
0°    18°

 

view-direction elevation angle VD 36°  VD  66°
 

39°  VD  66°
 

slope (tilt angle)  0°    75°
 

0°    43°
 

facet elevation angle F 1°  F  127°
 

35°  F  97°
 

angle  of polarization rotation 0°    90°
 

0°    40°
 

elevation angle ’VD of radiation incident on the facets 1°  ’VD  179°
 

14°  ’VD  129°
 

To show the influence of surface relief on L-band emission, on the one hand, and to illustrate the 

modeling chain described in Section 3, on the other, we show the detailed results of a  

brightness-temperature simulation for one single time step in Figures 6 and 7. The effective soil 

temperature Teff = 11.4 °C was approximately the same everywhere in A1 and A2 at that time, whereas 

the soil-moisture difference for areas inside (wc = 0.27 m3∙m−3) and outside the gullies  

(wc = 0.14 m3∙m−3) was at a maximum. The simulated brightness temperatures were T
H 

B  = 224.8 K and 

T
V 

B  = 274.6 K for footprint A1 and T
H 

B  = 210.0 K and T
V 

B  = 281.9 K for footprint A2. 

Figure 6 shows the facet brightness temperatures T
p 

B,f at p = H, V of all facets f = 1, …, n in A1 and 

A2 computed with Equation (18). To this end, the wc(d) profiles simulated with the COUP model 

(Section 3.2) and the facet elevation angles θF derived from the DTMs of the footprint surfaces 

(Section 2.4) were used in the coherent radiative transfer model (Section 3.3) to compute the facet 

reflectivities R
p 

F (θF) with respect to the F-POI. Subsequently, the facet reflectivities R
p 

RM with respect to 

the RM-POI needed in Equation (18) were derived from R
p 

F  by considering the rotation of the direction 

of linear polarization for the tilted facets (Sections 3.4.1 and 3.4.2). Furthermore, the criterion 

Equation (20) was used to determine the radiation Tin that is incident on the facets and reflected 

towards the radiometer. Blue and red dots show the resulting T
p 

B,f of facets illuminated by the sky. They 

are in the range 66.5 K  T
H 

B,f  277.6 K and 147.3 K  T
V 

B,f  284.2 K for A1, and 125.8 K  T
H 

B,f  251.5 K 



Remote Sens. 2015, 7 14345 

 

 

and 231.5 K  T
V 

B,f  284.2 K for A2. The magenta dots denote the T
p 

B,f of facets obscured from the sky 

and receiving radiation from the surrounding landscape at the effective temperature Teff = 284.5 K. 

 

Figure 6. Brightness temperatures T
p 

B,f (p = H, V) of all facets in footprint (a) A1 and  

(b) A2 calculated with the facet model for 23 April 2009, 9:12 a.m. Blue and red dots are  

T
p 

B,f at horizontal and vertical polarization, respectively, of facets illuminated by the sky. 

Magenta dots show T
p 

B,f at both polarizations of facets obscured from sky radiance, and thus 

receiving radiation from the surrounding landscape. To demonstrate the impact of 

polarization mixing and shadowing on facet emission, additionally facet T
p 

B,f are shown, 

which were calculated neglecting these effects (black dots). 

 

Figure 7. Facet brightness temperatures T
p 

B,f  from Figure 6 overlain on the DTMs of 

footprint (a) A1 and (b) A2 at p = H (top) and p = V (bottom). The DTMs are shown so 

that the view direction toward ELBARA (situated to the left and above) is approximately 

the same for both. The isolines show the directivity D(ω) of the ELBARA antenna in dB 

projected onto the DTMs. 
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To demonstrate the impact of polarization mixing and shadowing on facet emission, additionally T
p 

B,f 

are shown, where only the different observation angles θF of the facets were considered in the 

calculations (black dots). To this end, the reflectivity term R
p 

RM in Equation (18) was replaced with the 

facet reflectivities R
p 

F (θF) and all facets were assigned Tin = Tsky regardless of whether they are 

illuminated by the sky or not. The comparison with the previously calculated values illustrates the 

distinct influence of polarization mixing (resulting from the rotation of the direction of linear 

polarization) on facet emission. Values, obtained with polarization mixing included in the calculations, 

are significantly increased at p = H (blue dots) and decreased at p = V (red dots) compared to the 

values calculated neglecting this effect (black dots). Moreover, it can be seen that the impact of 

polarization mixing is more pronounced in footprint A1 with the distinct relief. Furthermore, 

considerably more facets in A1 receive radiation from the surrounding landscape than in footprint A2, 

where the surface is smooth. 

In Figure 7, the facet radiances T
p 

B,f shown in Figure 6 are overlain on the DTMs of A1 and A2 to 

give an impression of the dependence of the T
p 

B,f on the facets’ locations within the footprint, on the one 

hand, and the tilt of the facets, on the other. In both footprints, we see a decrease (p = H) or increase 

(p = V) in T
p 

B,f in the direction away from ELBARA (toward the right) for facets situated outside the 

erosion gullies. This change in the T
p 

B,f corresponds to the differing elevation angles θF of these facets, 

which range roughly from 40° (left) to 70° (right). At vertical polarization, T
V 

B,f  actually start to 

decrease again for large θF exceeding the Brewster angle at approximately 65°, which can be observed 

to some extent in the illustration for p = V (bottom). 

At the bottom of the gullies in A1, T
p 

B,f are colder than in the surroundings at both polarizations, as a 

result of the generally higher wc within the gullies. The elevation angles θF of the gully slopes facing 

the radiometer (toward left) are approximately in the range 10° ≤ θF ≤ 30°, resulting in rather high  

(p = H) and low (p = V) values, respectively, for the T
p 

B,f of these slopes. For most of the slopes facing 

away from the radiometer (toward the right), θF is larger than 60°. This leads to significantly colder T
H 

B,f 

and slightly warmer T
V 

B,f than in the surroundings. Due to their steepness, however, most of these slopes 

receive radiation from the surrounding landscape and display therefore the highest T
p 

B,f  within 

both areas. 

4.4. Brightness-Temperature Time Series 

Figure 8 shows the measurement and simulation results for the time period from 23 March to  

1 May 2009. Several distinctive weather conditions occurred in this representative period, making it 

well suited to investigate process-driven brightness-temperature variations and their dependence on the 

footprints’ surface characteristics for a wide range of environmental conditions. The first two days of 

the selected time period were rainy and cold, and were then followed by a brief frost event with soil 

freezing. Afterwards, there was no significant precipitation for four weeks and it gradually became 

warmer, resulting in an extended drying period for the soil. This dry spell was interrupted by two 

rainfall events, which differed in duration as well as in the amount of precipitation. At the end of the 

period shown, dry and warm conditions prevailed again (the complete time series of measurement and 

simulation results from October 2008 until the end of 2009 are provided as Supplementary Material, 

pp. 2–9) 
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4.4.1. Measurements 

In general, brightness temperature T
p 

B (p = H, V) measured (Figure 8a) clearly reflect the weather 

and soil conditions prevailing at the time. First of all, T
p 

B  follow the dynamics of the effective soil 

temperature Teff, which in turn is correlated with the air temperature Tair (Figure 8c). This is most 

obvious in the diurnal T
p 

B  variations, corresponding to the diurnal cycle of temperature and solar 

irradiation. Superimposed on this underlying trend are more rapid changes in T
p 

B  due to short-term 

changes in ambient conditions (e.g., the onset of precipitation or soil frost) and rather long-term trends 

in T
p 

B due to more gradual changes, such as soil drying. 

Precipitation leads to an increase in soil-water content wc shortly after the onset of precipitation 

(Figure 8d), which, in turn, results in decreasing T
p 

B . This can be observed, e.g., on 23/24 March.  

The moderate but steady rainfall (11 mm in two days), accompanied by low air and soil temperatures, 

resulted in an increase in measured wc and a decrease in T
p 

B. At both polarizations, this T
p 

B decrease was 

more pronounced in footprint A1, featuring the distinct relief in the form of erosion gullies, than in the 

smooth footprint A2. 

After precipitation stops, T
p 

B  usually start to increase again with decreasing wc. In the example 

period shown, this effect was even further enhanced by soil freezing. Soil freezing leads to a  

sudden loss of liquid wc, as most water in the soil-pore spaces freezes, which, in turn, lowers soil 

permittivity significantly and hence increases the microwave emission [14,53,54]. During the brief 

soil-frost event shown in Figure 8, Tair dropped below 0 °C and Teff reached the freezing point in the 

night of 24 to 25 March. This resulted in a pronounced decrease in the wc measured as well as an 

abrupt increase in T
p 

B. 

Shortly after, the soil thawed again leading to a renewed wc increase and a sudden drop in T
p 

B . 

Corresponding sharp spikes are visible in the T
p 

B of both footprints. At p = V, these changes were more 

pronounced in A1, whereas at p = H the changes in T
H 

B  associated with soil freezing and thawing were 

somewhat more pronounced in A2. 

In prolonged periods of prevailing warm and dry conditions T
p 

B  gradually increase as the soil’s 

temperature rises and the soil dries out, whereas the rate of this T
p 

B  increase often differs for both 

footprints. For example, during the almost three-week long dry spell starting on 29 March, the initial 

increase in T
V 

B  at p = V was somewhat greater in A1 than in A2, so that the T
V 

B  of both areas 

approached each other and were then almost identical for several weeks. At p = H, the initial increase 

in T
H 

B  was more pronounced in A1 as well. After 8 April, however, the T
H 

B  of A1 remained 

approximately stationary, whereas the T
H 

B  of A2 was still increasing. 

In addition, the following decrease in T
p 

B associated with the small rainfall event on 17 April was 

more pronounced in A1 than in A2 at both polarizations, and the same general behavior was observed 

after the more intense rainfall on 23 April, whereas the associated T
p 

B  decrease was much larger.  

Quite peculiar to note in this context is that neither the very small rainfall on 17 April (0.4 mm in 1 h) 

nor the larger rainfall on 23 April (3 mm in 2 h) are visible in the wc measured, but nevertheless led to 

noticeable drops in T
p 

B (except for T
V 

B  in A2 on 17 April). 
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Figure 8. Measured and simulated T
p 

B for the observation angle θRM = 55° for 23 March to 

1 May 2009. (a) Measured T
p 

B (p = H, V) of footprints A1 (with gullies) and A2 (smooth); 

(b) corresponding T
p 

B simulated for A1 and A2; (c) air temperature Tair and effective soil 

temperature Teff; and (d) lines indicate liquid soil-water content wc simulated for areas 

inside and outside erosion gullies for the 0–3 cm (dotted lines) and 10–15 cm (solid lines) 

soil layer. The grey-shaded area is the range mean ± standard deviation of the ten in situ wc 

sensors at depth 10–15 cm in A1 and A2. Blue bars are precipitation P. 
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Immediately after the rainfall on 23 April, T
p 

B increased very fast in both footprints, but again more 

strongly in A1 than in A2, and after four days they had reached approximately the same values as 

before the rainfall. This initial strong increase was then followed by a more gradual increase in T
p 

B  

during the last days of April. Such behavior is typical for situations with precipitation after long 

rainless periods when the soil is dry prior to the onset of precipitation. After precipitation stops, T
p 

B  

increase very fast initially as the surface runoff stops and the uppermost soil layers dry out quickly, 

which is then usually followed by a more gradual increase related to the subsequent drying of the 

deeper soil. However, again the wc measurements do not show much change except for a slight decline 

at an approximately constant rate. 

Hardest to interpret are times with precipitation falling at air and soil temperatures close to the 

freezing point. This leads to highly transient changes in wc conditions, as precipitation sometimes falls 

as snow and sometimes as water, snow melt leads to infiltration and increasing wc, whereas soil 

freezing decreases the liquid wc again. This, in turn, results in very heterogeneous soil (surface) 

properties and highly complex temporal changes in the T
p 

B, which were observed, e.g., in January and 

February 2009 (cf. Supplementary Material). 

Comparing the T
p 

B measurements over the footprints A1 (with gullies) and A2 (smooth) with each 

other, distinct differences are observed. At vertical polarization, T
V 

B  is generally lower in A1 than in 

A2, with a mean difference of V

B 4.4 KT    (Table 3). Moreover, T
V 

B  measured in A1 is usually more 

sensitive to changes in wc and Teff than it is in A2. That means, on the one hand, that the decrease in T
V 

B  

with increasing wc is often more pronounced in A1 than in A2, resulting in larger ΔT
V 

B  after 

precipitation and snow/soil melt. On the other hand, with decreasing wc due to soil drying or freezing, 

T
V 

B  increases more strongly in A1 than in A2, and ΔT
V 

B  becomes smaller. When the soil is very dry, 

both areas show almost identical T
V 

B  at times. At horizontal polarization, T
H 

B  is almost always distinctly 

higher in A1 than in A2 with a mean difference of H

B 25.8 KT   (Table 3). Also at p = H, the 

response of T
H 

B  to changes in environmental conditions seems to be faster and slightly more distinct in 

A1 than in A2, whereas the difference in the behavior of both areas is not as pronounced and apparent 

as at p = V. 

Table 3. Mean brightness temperatures B,A1

pT  and B,A2

pT  of footprints A1 (with gullies) and 

A2 (smooth) and mean difference B B,A1 B,A2

p p pT T T    between both footprints for 

measurements and simulations for the time period between October 2008 and mid-August 

2009 when both footprints were measured quasi-simultaneously. 

 Measurements Simulations 

Polarization B,A1

pT  (K) B,A2

pT  (K) B

pT  (K) B,A1

pT  (K) B,A2

pT  (K) B

pT  (K) 

p = H 200.6 174.8 25.8 195.9 178.5 17.4 

p = V 260.0 264.4 −4.4 259.4 270.5 −11.1 

4.4.2. Simulations 

The general behavior of the T
p 

B  in response to changing ambient conditions was reproduced well 

with the simulations. As was the case for the measured microwave radiances (Figure 8a), the diurnal 

changes of Teff and Tair are reflected in the corresponding daily fluctuations of the simulated T
p 

B  
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(Figure 8b). Likewise, the more rapid changes in T
p 

B  due to precipitation and soil-freezing/thawing 

events, as well as the more gradual changes in T
p 

B  associated with, e.g., soil drying or the seasonal 

temperature cycle, clearly emerge from the simulations. (For an easier visual comparison of simulated 

and measured T
p 

B, cf. Supplementary Material, p. 10.) 

The observed T
p 

B  decrease due to the rainfall and ensuing increase in wc on 23–24 March was 

reproduced in the simulations, but was partly overestimated, especially for footprint A1.  

The subsequent frost event on 24–25 March led to a distinct drop in the wc simulated for the 

uppermost soil layers inside and outside of gullies, but does not show in the wc simulated for the  

10–15 cm soil layer. Nevertheless, the sudden increase in T
p 

B  associated with soil freezing is 

represented well in the simulations of both areas. The subsequent decrease in T
p 

B associated with the 

thawing of the soil and the renewed wc increase was also simulated, but is underestimated in all cases. 

As a result, the simulated T
p 

B were somewhat larger than the measured T
p 

B of A1 and A2 at the beginning 

of the dry spell. 

During the long rainless period, the simulated and measured T
p 

B in A1 correspond remarkably well. 

Especially at p = V, simulated T
V 

B  matches the measurements very well. At p = H, the increase in the 

simulated T
H 

B  slightly lags behind the measurements initially (30–31 March), and is overestimated 

compared to the later measurements (1–6 April). This change from under- to overestimation coincides 

with the abrupt drop in the wc simulated for the uppermost soil layer outside the gullies, which is not 

visible in the measured wc. This implies that the initial decline in wc is underestimated in the COUP 

simulations, whereas the following drying of the uppermost soil happens too fast. This is further 

corroborated by the fact that after 6 April, the simulated T
H 

B  remained approximately stationary, 

whereas measured T
H 

B  was still rising, indicating a more gradual drying of the uppermost soil than was 

simulated. After 3 April, the simulated wc remained constantly very low, whereas measured wc was 

still slowly decreasing. 

In A2, the overall behavior of the simulated T
p 

B during the dry spell is the same, but the differences 

between measurements and simulations are more distinct than in A1. The simulated T
p 

B  already 

exceeded the measured T
p 

B at the beginning of the dry spell, mainly still because of the underestimation 

of the T
p 

B  decrease after the frost event. Furthermore, the overestimation of the T
H 

B  increase after 31 

March is very pronounced in A2, leading to a large deviation between measured and simulated T
H 

B . 

After 6 April, simulated and measured T
p 

B started to converge again as a result of the same behavior 

already observed for A1. Measured T
p 

B  still increased, whereas simulations remained approximately 

stationary or even started to decrease again after 13 April. 

The slight rainfall on 17 April is neither visible in the simulated wc nor in the T
p 

B  simulations.  

The stronger rainfall on 23 April, however, led to a pronounced increase in wc simulated for the 

uppermost soil layer (0–6 cm) outside gullies and a small increase at both depths inside gullies. This is 

accompanied by a considerable drop in the simulated T
p 

B . In both footprints, however, the T
p 

B  

decrease is underestimated and the subsequent renewed increase is overestimated compared to 

the measurements. This indicates an initial underestimation of the wc increase near the surface 

(and possibly surface runoff) after precipitation, which is then followed again by too fast soil drying in 

the COUP simulations. 
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In the last week of April, simulated T
p 

B  remained approximately stable at p = V, and decreased 

distinctly in both areas at p = H. At the end of the time period shown, simulations and measurements 

agree well for T
V 

B , whereas simulated T
H 

B  underestimate corresponding observations. 

The differences between the T
p 

B of both footprints were reproduced reasonably by the simulations. 

At p = V, simulated T
V 

B  are always lower in footprint A1 (with gullies) than in footprint A2 (smooth), 

and at p = H, simulated T
H 

B  for A1 always exceed those of A2, whereas the mean difference 

B B,A1 B,A2

p p pT T T    between both footprints is more pronounced at p = H. However, the absolute values 

of B

pT  were somewhat overestimated at p = V ( V

B 11.1 KT   ) and underestimated at p = H 

( H

B 17.4 KT  ) compared to the measurements (Table 3). The different response of the T
p 

B  of both 

footprints to changing ambient conditions is not as distinct in the simulations as in the measurements. 

Nevertheless, at p = V, the temporal change in the difference ΔT
V 

B  between both areas observed in the 

measurements was reproduced reasonably well. Above all, T
V 

B  of A1 showed a higher sensitivity to wc 

changes in the simulations as well, and consequently ΔT
V 

B  became smaller with decreasing wc due to 

soil drying or freezing, and increased again after precipitation and soil thawing when wc was rising.  

At p = H, the simulated T
H 

B  of A1 and A2 behave similarly most of the time. Therefore, ΔT
H 

B  does not 

change significantly with time in the simulations, and no evident connection between differences in the 

behavior of T
H 

B  of both footprints and changing ambient conditions can be identified. 

4.4.3. Simulation Performance 

Bias B, root-mean-square error RMSE, and the coefficient of determination R2 for the T
p 

B  

simulations discussed above are given in Table 4, column 2. To test whether the differences in the 

emission behavior of both footprints, observed in the measurements as well as in the simulations, can 

indeed be attributed to relief effects, we performed additional simulations, where simple planes fitted 

through the DTM of the respective area (i.e., flat trend surfaces) were used to approximate the footprint 

surfaces in the facet model. The corresponding values B, RMSE, and R2 are given in column 3. 

Table 4. Bias B, root-mean-square error RMSE and coefficient of determination R2 for 

(column 2) T
p 

B  simulations considering the “real”, i.e., the measured topographies of 

footprints A1 and A2 as derived from the DTMs and for (column 3) T
p 

B simulations with 

the footprint surfaces approximated by simple, tilted planes fitted through the DTMs. 

Footprint, Polarization 
Measured Topography Tilted Planes 

B (K) RMSE (K) R2 B (K) RMSE (K) R2 

A1, H-pol. −4.7 18.8 0.71 −11.2 22.7 0,70 

A1, V-pol. −0.6 7.1 0.82 7.2 9.7 0.82 

A2, H-pol. 3.7 25.0 0.56 2.8 25.0 0.56 

A2, V-pol. 6.1 8.7 0.78 7.1 9.5 0.78 

Approximating the surface of A1 (with gullies) by a plane led to a significant deterioration in the 

simulation results. This is most obvious in the much larger biases B, but also the RMSE increased at 

both polarizations. The R2-values, however, were almost the same as before, indicating that the 

temporal changes in T
p 

B  were simulated with approximately the same quality. Approximating the 

surface of A2 (without gullies) by a simple plane yielded almost identical results as the simulations 
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with the measured topography. This is as expected and confirms our supposition that, due to the lack of 

erosion gullies, this area can be considered to be smooth. 

5. Discussion 

The presented measurement results demonstrate the distinct influence of the relief of a soil surface 

on its thermal emission at L-band frequencies. At horizontal polarization, the brightness temperatures 

T
H 

B  of footprint A1 with the pronounced surface relief generally clearly exceed the emission of the 

almost smooth area A2, whereas, at vertical polarization, the T
V 

B  of A1 are usually smaller than those of 

A2. The difference between the T
p 

B of both areas is much more distinct at horizontal polarization. This 

furthermore implies that the polarization difference T
V 

B  – T
H 

B  is more pronounced for A2 than for A1. 

This general behavior was reproduced well by the simulations and can mostly be explained by 

means of the analysis of the footprint topographies in Section 4.3. Due to the distinct relief in A1, the 

range of facet elevation angles θF is much larger in A1 than in A2 (Table 2). In particular, significantly 

more regions of A1 are observed under very small angles. Emission from these regions is effectively 

lower at vertical polarization and higher at horizontal polarization compared to the emission of regions 

observed under larger angles. This can be seen in Figure 6 when the facet radiances T
p 

B,f of A1 and A2 

are compared to each other. Another effect of relief is polarization mixing due to local surface tilting 

and the ensuing rotation of the plane of linear polarization, resulting in a decrease in T
V 

B,f and increase in 

T
H 

B,f of tilted facets compared to the radiance of a level surface. Also polarization mixing is increased in 

A1, leading to larger deviations of the facet radiances T
p 

B,f (red and blue dots in Figure 6) from the 

corresponding radiances of a level surface (black dots), which, in turn, produces an additional decrease 

in T
V 

B  and increase in T
H 

B  of A1 compared to A2. This effect is additionally enhanced at p = H, but 

partly compensated for at p = V by the enhanced T
p 

B,f  of facets shielded from the cold sky and 

illuminated by their surroundings (magenta dots). 

The prevailing stronger response of the T
p 

B  of A1 to changing ambient conditions, which was 

observed in the measurements as well as in the simulations, can to some extent also be attributed to the 

pronounced polarization mixing in A1. Due to its distinct relief, polarization crosstalk from horizontal 

to vertical polarization is enhanced in A1 compared to the smooth footprint A2. Consequently, T
V 

B  of 

A1 react more sensitive to changes in soil moisture wc because emission at horizontal polarization 

shows more variability with wc than emission at vertical polarization, as is obvious from Figure 8.  

The differing response of the T
p 

B  of both areas furthermore suggests differences in the hydrological 

characteristics of both footprints, which, in turn, lead to different soil-moisture dynamics. It seems 

reasonable to assume that the hydrology of A1 is strongly affected by the presence of the erosion 

gullies. On the one hand, gullies lead to more and faster surface runoff in A1 since they are close to 

saturation most of the time, and also because water from upstream in the catchment area gets funneled 

into the gullies. This results in a faster and more pronounced wc increase in A1 than in A2 after the 

onset of precipitation. On the other hand, surface runoff may stop rather soon after precipitation, and 

the areas outside the erosion gullies will dry quite fast, as the soil water can drain via the gullies. 

Following this argumentation, the overall increase in wc is less pronounced in the footprint A2 without 

gullies, but subsequently the soil dries more gradually. This hypothesis would explain the observations 

that the T
p 

B  measured in A1 react faster and more distinct to changing meteorological conditions, 
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initially increase faster after the end of precipitation, and cease to increase in times of intense soil 

drying when the T
p 

B of A2 are still rising. It furthermore explains why this behavior is not as apparent in 

the simulated T
p 

B. In the simulations, differences in the hydrological properties of the two areas were 

not specifically considered (Table 1), and consequently soil-water content and soil temperature used in 

the T
p 

B simulations were identical everywhere in both footprints except for the erosion gullies. 

The hypothesis of different wc dynamics of both areas cannot be corroborated by the in situ wc 

measurements, however. On the one hand, the in situ measurements allow no clear conclusions about 

the general wc behavior of both areas due to their large spatial variation and, on the other hand, they 

yield only inaccurate information about the wc near the soil surface, which is the soil layer that affects 

T
p 

B  the most. To turn the argument on its head, this shows the advantage of using microwave 

radiometry for the retrieval of near-surface soil moisture. This is also nicely illustrated by the two 

precipitation events of April 2009, which are not visible in the wc measured in situ, but nevertheless 

led to distinct changes in T
p 

B (Section 4.4.1). 

Some of the deviations between the measurements and the model results cannot be explained 

conclusively due to the complexity of the model and the simplifying assumptions that were made. 

Critical assumptions made in the developed emission model (Sections 3.3–3.5) are: 

 The observed scene is approximated by a mosaic of planar facets, which means small-scale 

surface roughness and diffuse scattering are ignored. 

 Facet contributions are added incoherently, even though facet dimensions (5 cm × 5 cm) are 

smaller than the L-band observation wavelength λ ≈ 21 cm (the corresponding justification is 

provided in Section 3). 

 The dielectric mixing model (Equations (3) and (4)) applied to derive soil permittivity from 

soil-water content does not take into account any soil-specific dielectric properties of the 

investigated footprints. 

 When distinguishing facets obscured from the cold sky by their surroundings, we assumed a 

flat horizon and represented such facets as black-body radiators in the radiative transfer model 

Equation (18). 

Crucial points regarding the soil parameterization and the COUP model, used to compute soil-water 

content and soil-temperature profiles (Section 3.2), are: 

 The COUP model uses a one-dimensional approach that does not take into account lateral water 

and heat flow. 

 The thermal and hydrological soil properties were assumed to be identical everywhere  

laterally, and only four different parameterizations were used in vertical direction (Table 1). 

Temporal variations in soil properties caused, e.g., by a redistribution of the different soil 

fractions were neglected. 

 The soil parameterization is based on soil texture and in situ measurements within the research 

catchment. Differences in soil properties arising from the different histories of both footprint 

areas (especially the initial leveling of footprint A2) are not considered. 
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It can be assumed that most errors in the simulations introduced through the assumptions made in 

the emission model affect both footprints rather similarly and result mostly in offsets between 

measured and simulated T
p 

B . Errors arising from the soil parameterization and the hydrological 

modeling (COUP) may affect T
p 

B  of both areas differently and furthermore change with time and 

prevailing meteorological conditions. This is, e.g., corroborated by the fact that the simulation results 

are more accurate for footprint A1 situated within the research catchment, where the soil 

parameterization in the COUP model is expected to perform better. Furthermore, major deviations in 

the overall behavior of the T
p 

B  measured and simulated mostly followed pronounced changes in the 

meteorological conditions and can often be linked to peculiarities in the wc simulations (Section 4.4). 

6. Summary and Conclusions 

The work presented provides a comprehensive data set of brightness temperatures, which allowed 

us to analyze and quantify relief effects on the decimeter to meter scale by directly comparing 

brightness temperatures of an almost flat area with those of an area with a distinct surface relief. 

Brightness temperatures of the two areas were measured by a tower-based L-band radiometer, and 

concurrently simulated by a facet model that explicitly takes into account the topography of the two 

areas. We found that brightness temperatures of the soil surface with a distinct relief are increased at 

horizontal polarization and decreased at vertical polarization with respect to those of the plane surface, 

whereas this effect is more pronounced at horizontal polarization. The brightness-temperature 

differences found in the measurements and the simulations are given in Table 3. 

This was shown in the measurements and well reproduced by the simulations (Tables 3 and 4), 

indicating that our facet model is able to account for the main processes controlling the thermal 

emission at 1.4 GHz. By analyzing the footprint topographies together with the radiances simulated for 

the individual facets, we were able to show that these effects are mainly due to the large range of 

observation angles and to polarization mixing caused by the surface relief. At horizontal polarization, 

these effects are further enhanced, and at vertical polarization, they are partly compensated for by the 

increased emission of areas that are shielded from the cold sky and illuminated by the surrounding 

elevated terrain instead. 

Comparing the measured T
p 

B of both areas showed that the two areas respond differently to changing 

meteorological conditions. Consequently, differences between the T
p 

B of both areas changed with time, 

which was only partly reproduced in the simulations. This might indicate that the different responses 

of the brightness temperatures T
p 

B of both areas are mainly caused by differing soil characteristics and 

infiltration, runoff and soil drying behavior, which are not considered in the simulations. 

Comparing the measurements with the simulation results showed that the developed facet model is 

capable of explaining the prominent relief-related brightness-temperature differences between both 

areas, and that the model performance is not seriously limited by the simplifying assumptions made in 

the emission model. The major deviations between the simulation and measurement results could, to a 

large degree, be attributed to an erroneous representation of the hydrological behavior of both areas in 

the COUP model. A more complex (two-dimensional) hydrological model and a better knowledge of 

the soil characteristics would be necessary to better account for this. Reversing this chain of 

argumentation implies that using a facet model, calibrated to the specific investigation site, in an 
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inversion scheme to retrieve soil moisture from brightness-temperature measurements can result in a 

significant improvement of the retrievals for areas with a distinct surface relief. 
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