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Abstract: The Sentinel missions have been designed to support the operational services of 

the Copernicus program, ensuring long-term availability of data for a wide range of spectral, 

spatial and temporal resolutions. In particular, Sentinel-2 (S-2) data with improved high 

spatial resolution and higher revisit frequency (five days with the pair of satellites in 

operation) will play a fundamental role in recording land cover types and monitoring land 

cover changes at regular intervals. Nevertheless, cloud coverage usually hinders the time 

series availability and consequently the continuous land surface monitoring. In an attempt to 

alleviate this limitation, the synergistic use of instruments with different features is 

investigated, aiming at the future synergy of the S-2 MultiSpectral Instrument (MSI) and 

Sentinel-3 (S-3) Ocean and Land Colour Instrument (OLCI). To that end, an unmixing model 

is proposed with the intention of integrating the benefits of the two Sentinel missions, when 

both in orbit, in one composite image. The main goal is to fill the data gaps in the S-2 record, 

based on the more frequent information of the S-3 time series. The proposed fusion model has 

been applied on MODIS (MOD09GA L2G) and SPOT4 (Take 5) data and the experimental 

results have demonstrated that the approach has high potential. However, the different 

acquisition characteristics of the sensors, i.e. illumination and viewing geometry, should be 
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taken into consideration and bidirectional effects correction has to be performed in order to 

reduce noise in the reflectance time series. 

Keywords: data fusion; spatial-spectral unmixing; multi-sensor; multi-temporal;  

temporal weights  

 

1. Introduction 

The improved observation capabilities of the upcoming Copernicus S-2 and -3 missions are expected 

to fulfill the current operational monitoring requirements for environmental and security purposes. 

Providing long-term data in a wide range of spectral, spatial and temporal resolutions, the Sentinel 

satellites will be essential for future mapping and monitoring applications related to various research 

fields, such as agriculture, forestry, inland and coastal water quality, wetlands, land degradation, etc. [1]. 

The need for developing new processing methods and tools related to time series of high resolution has 

been recently pointed out by the scientific community, towards the full exploitation of the significant 

scientific, operational and commercial potential of the Sentinel data. In particular, one of the 

recommendations in the recent S-2 workshops was the synergy between S-2 with other Sentinels and/or 

other satellite missions, in order to increase the observation capabilities, especially during cloudy periods 

and regions. Considering this, the synergistic use of multi-sensor data is investigated in this research 

with the aim of increasing image availability in the cases of cloud coverage. Image fusion methods have 

been investigated thoroughly in the last few years, combining in one composite image the improved 

spectral, spatial and temporal features of multiple datasets acquired by different sensors and on different 

dates. The developed methodology in this research is based on the one introduced by Zhukov et al. [2] 

in order to fuse the thermal band with the corresponding reflective bands of Landsat Thematic Mapper 

(TM). The unmixing process is accomplished in the following steps: (1) the classification of the higher 

spatial resolution image (HSpaR); (2) the estimation of each class contribution to the signal of the lower 

spatial resolution image (LSpaR); (3) the calculation of the pure spectra (endmember) for every class; 

and (4) the restoration of the unmixed image pixel. The procedure is window-based, meaning that the 

LSpaR pixel to be unmixed is the central pixel of a window and the unmixing process is performed based 

on the contextual information of all the pixels in the window. The proposed unmixing methodology 

demonstrated a significant enhancement in sharpness and radiometric accuracy of the fusion output in 

comparison to the input data.  

The fusion approach of Zhukov et al. [2] in its original and alternate forms has found many 

applications on a variety of imagery. Minghelli-Roman et al. [3] combined the bands of simulated 

Envisat/MERIS and Landsat/TM data to generate an image that combines the best characteristics of each 

sensor. The experimental results indicated that the approach is advantageous over other unmixing 

methods that require a-priori knowledge of endmembers and their spectral profiles. Nevertheless, its 

main drawback is the lack of spectral variability among the pixels belonging to the same class, as they 

all take the same pixel value in the fused image. Zurita-Milla et al. [4,5] have also presented a 

sophisticated implementation of a linear spectral mixture model to downscale a time series of 

Envisat/MERIS based on the high spatial-resolution information of a land-cover database. The accuracy 
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assessment of the resulting images indicated the potential of the proposed image fusion analysis. 

However, the problem of such applications is that updated land-cover databases are not always available.  

In order to overcome the aforementioned shortcomings of unmixing approaches,an alternative 

approach was proposed by Amorós-López et al. [6]. More specifically, the suggested methodology 

employed a soft clustering approach for the classification of the HSpaR image, with the goal of 

preserving the spectral variability among pixels belonging to the same class within the analyzed window. 

The clustering algorithm of Self-Organizing Map (SOM) was selected to estimate the membership pixel 

value to each of the clusters. The fusion procedure followed the processing steps of Zhukov et al. [2], but 

instead of using the “hard” value of a pixel correspondence on only one class, it employs the fuzzy 

membership values on all possible classes. The proposed fusion process was implemented on 

Envisat/MERIS Full Resolution and Landsat/TM images, with the qualitative and quantitative assessment 

to evaluate its performance in data fusion. A similar approach was also followed to obtain a time series of 

Landsat-like images with high-frequency and the image products were evaluated through a crop 

monitoring analysis, indicating the accuracy and significance of this methodology in such applications [7].  

Furthermore, in order to estimate the daily surface reflectance at Landsat spatial resolution,  

Gao et al. [8] proposed a spatial and temporal adaptive reflectance fusion model (STARFM) to 

composite Landsat and MODIS surface reflectance. Taking into consideration the spectral, temporal and 

spatial similarities between the central pixel of a window and those of each of the neighboring pixels, a 

weight function was determined to define their similarity and contribution to the unmixing procedure. 

Implementations of this approach showed accurate results, preserving the improved features of the 

blending data, (i.e. Landsat high spatial resolution and MODIS high temporal resolution) [8–11]. 

However, the algorithm did not succeed in predicting the surface reflectance in two cases: (1) when there 

were transitory changes between the acquisition dates of Landsat images and thus they were not 

captured; and (2) when complex land cover areas were involved, and it was difficult to identify “pure” 

MODIS pixels in the sliding window [8,12]. In order to detect the spatial changes and manage the 

STARFM limitation concerning the transient changes, the Spatial Temporal Adaptive Algorithm for 

mapping Reflectance Change (STAARCH) model was introduced by Hilker et al. [13]. Based on 

Tasseled Cap transformations of both Landsat and MODIS reflectance data, the algorithm detects 

vegetation changes and employs each optimal Landsat-MODIS image pair in the fusion process. In order 

to address the issue of accurate surface reflectance in the heterogeneous areas, another enhanced version 

of STARFM, the ESTARFM model, was presented by Zhu et al. [12]. Under the assumption of a linear 

relationship among the endmembers’ reflectances (“pure” pixels) of multi-temporal observations of a 

short time period and based on the ratio of the reflectance change of the fine resolution pixels (considered 

as endmembers) to the corresponding mixed coarse pixel, they defined a conversion coefficient. The 

ESTARFM model was effective in estimating even small object reflectance and, thus, in handling 

changing and heterogeneous landscapes. 

Zhang et al. [14] estimated the surface reflectance on the prediction date based on the temporally 

weighted blending result of the base dates. In their approach, the classification outcome of the stacked 

HSpaR datasets (two base dates) served for the unmixing of the LSpaR datasets of three dates (the base 

dates and the prediction date). The temporal weights were employed to handle the resulting unmixed 

images that generated to the final predicted fused image. In this case, the patch-based classification of 

the HSpaR data was proposed, which is mainly an object-based unsupervised classification method, 
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aiming to cope with the “salt-and-pepper” noise effect in the classification output. However, the 

suggested classification algorithm did not manage to handle the spectral variability of the pixels in the 

LSpaR analyzed pixel, and the methodology was affected by the aforementioned issue of unmixing 

approaches based on “hard” clustering algorithms. The other significant drawback of the proposed 

method is that the window-based unmixing process, which is in general time-demanding, must be 

implemented three times for each case study. Moreover, if the required test implementations for the 

window size and clusters’ number definition (trial-and-error processes) are taken into consideration, the 

computation time increases significantly.  

The algorithm developed in the present study is an enhanced version of those proposed in [2,7,14]. 

The improvements target the clustering approach and the efficient management of the time series. In 

particular, the definition of the optimal number of clusters in each case study is embedded in the 

algorithm, with the goal of eliminating user’s involvement in the procedure. Clustering validation 

measures are engaged to assess the clustering algorithm performance and determine the cluster number 

that best fits the data. As such, the clustering and unmixing results are enhanced, and the processing time 

is reduced. In all previous studies such a task required a trial-and-error process, meaning many 

executions of the entire procedure and definition of the optimal cluster number based on the fusion 

product quality. Additionally, we propose to classify separately each of the available HSpaR imagery 

and include them in the unmixing process by assigning temporal weights to them. Thus, the similarity 

between the LSpaR image pixels of the prediction date and the base dates defines the corresponding 

contribution of the HSpaR pixel to the unmixing process. All the transition changes throughout the study 

period are therefore taken into account and not only the ones between the base dates, as in the case of 

classification of the stacked multitemporal HSpaR dataset, suggested by previous studies [7,14]. The 

proposed image fusion methodology is described in Section 2, including the clustering process, the 

automatic definition of the optimal number of clusters and the window-based spatial unmixing. The 

experimental results on the imagery and their quantitative and qualitative evaluation are analyzed in 

Section 3. Section 4 summarizes the experimental results and improvements introduced by this study’s 

fusion methodology.  

2. Methodology 

The overall developed methodology for the unmixing fusion is implemented on a sliding window 

(Figure 1). A LSpaR image acquired on the date t0 is unmixed based on the information of the two HSpaR 

images with the closest acquisition dates before and after t0, i.e. t1 and t2. The unmixing process is 

accomplished within the following steps. (a) Spectral resemblance estimation: An unsupervised fuzzy 

classification (clustering) is applied on HSpaR images, in order to acquire the land cover types C1 and 

C2 at the two base dates t1 and t2. Those classes’ contribution to LSpaR image pixel of t0 will define the 

spectral resemblance between the consequent study dates; (b) Temporal resemblance estimation: The 

calculation of temporal weights based on the normalized differences of the LSpaR images between the 

consequent study dates; (c) Endmembers determination: The assessment of classes’ endmembers 

through a system of a linear mixture equations; (d) Spectral Assignment at HSpaR: A HSpaR image 

pixel at t0 is generated based on the linear combination of the resulting classes’ endmembers, the classes’ 

contribution and their respective temporal weights.  
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Figure 1. The overall developed unmixing fusion methodology. The processes with the dash 

type outline are the ones embedded in the new algorithm in order to improve the time and 

quality performance.  

2.1. Unsupervised Fuzzy Classification 

The essential land cover information for the unmixing process resulted from the unsupervised fuzzy 

classification (fuzzy clustering) of the HSpaR images. According to the concept of the fuzzy theory, 

every image pixel can have a membership value, ranging from 0 to 1, to all the clusters indicating this 

way its similarity to the corresponding cluster. Such flexibility makes fuzzy clustering more suitable to 

handle indistinct boundaries, which are typically met in the natural environment [15,16]. In order to 

derive the land cover information of the study area, this paper employs the Fuzzy Maximum Likelihood 

Estimation (FMLE) clustering. When using the FMLE approach, the estimation of membership values 

depends on an exponential function that employs the covariance matrix ܨ௜	and the prior probability ܽ௜ 
of selecting ith cluster. ݀୧୨ଶ( ௝ܺ, ௜ܸ) = 	ඥdet(F୧)ܽ௜ exp ቂ൫ ௝ܺ − ௜ܸ൯୘Fିଵ( ௝ܺ − ௜ܸ)/2ቃ (1)

where ௝ܺ is the j-bands image vector and V = (v1, v2, …, vk) is the vector of cluster centers (i.e. the means 

of the clusters). The FMLE is able to deal with the problem of large variability in cluster shapes, sizes 

and densities, but it requires a good initialization. Therefore, it is recommended to initially estimate the 

cluster centroids with the fuzzy c-means clustering algorithm, in order to obtain an optimal fuzzy 

partition with the FMLE in the next phase [15].  
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However, regardless of the algorithm used, the critical issue in clustering is that the land cover types 

are not known a priori (no available ground reference information) and in each case study, the number 

of clusters must be assumed by the user [15]. A good way to deal with this issue is to apply certain 

validation criteria with the aim of evaluating the clustering performance within a range of cluster 

numbers. The optimal data clustering is achieved when the clusters are well-separated and have minimal 

volume, and the data points are close to the cluster centroids (high membership values) [15,17–19]. A 

variety of validation indices in the literature measure the separation, partition and compactness of the 

clusters [17,18,20]. It is noted that none of the indices can be separate or effective to all the data sets, as 

each of them has different measure context (e.g., compactness, separability, fuzziness), therefore their 

combination is proposed for defining the optimal cluster number [20]. Hence, in this study certain 

validity measures are embedded in the clustering procedure determining the ideal number of clusters. 

More specifically, the following indices were calculated: the Fuzzy Hypervolume Validity (FHV) and 

the Partition Density (PD), involving the fuzzy covariance matrix of the cluster and the membership; the 

Partition Index (SC), the ratio of the sum of compactness and separation of the clusters; the Separation 

Index (S), similar to SC but divided by minimum-distance separation; and Xie and Beni’s Index (XB), 

the ratio of the total variation within clusters and the separation of clusters [19,20]. Generally, it is 

recommended that when the difference between the validity indices is insignificant, fewer clusters are 

better [19].  

2.2. Spectral Unmixing Concept 

The unmixing procedure is based on a moving window, in which the spectral reflectances of the pure 

HSpaR pixels (endmembers) of the central LSpaR pixel are estimated by taking into account all the 

pixels in the window. Namely, a number of linear equations (Equation (2)), as many as the LSpaR pixels 
in the window, is defined, where ܵ௅ௌ௣௔ோ is the LSpaR pixel value, ܥ௞௅ௌ௣௔ோ	is the contribution of the land 

cover types k of HSpaR in the LSpaR pixel, E is the pure pixel signal (endmembers) of the land cover 

types k, and e is the residuals of the linear model.  ܵ௅ௌ௣௔ோ = ௞௅ௌ௣௔ோܥ ∙ ܧ + ݁	  (2) 

The solution of the linear system is given by the least squares method accounting for the following:  

1. The class contribution to the LSpaR image pixel, ܥ௞௅ௌ௣௔ோ, which is the proportion of each class in 

the LSpaR image pixel and is estimated using membership values ܷ௞ுௌ௣௔ோ to the corresponding 

class k. Explicitly, ܥ௞௅ௌ௣௔ோ  is the average of all the class contributions ܷ௞ுௌ௣௔ோ  to LSpaR pixel 

footprint N, according to Equation (3). The critical issue in this case pertains to ensuring accurate 

co-registration between the images. In this study, the LSpaR image pixel footprint is resampled on 

HSpaR image pixel size, considering that the point spread function (PSF) is rectangular. Therefore, 

N is the total number of HSpaR image pixels i within the LSpaR image pixel footprint. 

௞௅ௌ௣௔ோܥ = 1ܰ ෍ ௜ܷ௞ுௌ௣௔ோ୧∈୒  (3) 

2. The spectral difference between the LSpaR image of the predicted date t0 and that of each of the 

base dates t1 and t2, in order to handle changes between multitemporal observations efficiently. 
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Based on these differences, the normalized temporal weights ଵܶ and ଶܶ	are calculated for every 

pixel in the window (Equation (4)) and being later involved in the unmixing process. 

௧ܶୀଵ,ଶ = ଵ (∑ ൫หௌಽೄ೛ೌೃ೟ିௌಽೄ೛ೌೃ೟బห൯೔∈ೢ೟൘
∑ ൭	భ (∑ ቀቚೄಽೄ೛ೌೃ೟షೄಽೄ೛ೌೃ೟బቚቁ೟ೢ൘ ൱೔∈ೢ೟సభ,మ   (4) 

The temporal weights ଵܶ and ଶܶ	are estimated per window, the weights being assigned to the central 

pixel of the sliding window with size w. The least changes occurred between the two dates, the 

greater the similarity between the corresponding image pixels and thus the higher the value of the 

temporal weight T for the selected pixel. 

In essence, taking into consideration the available HSpaR and LSpaR images, the classes’ 

contributions ܥ௅ௌ௣௔ோ to the LSpaR image pixel together with the temporal weights ଵܶ and ଶܶ allow the 

multitemporal analysis of the spectral resemblance within the imagery. Therefore, the initial  

Equation (2) becomes: ܵ௅ௌ௣௔ோ = ( ଵܶ ∙ ଵܧ௧ଵ௅ௌ௣௔ோܥ + ଶܶ ∙ (ଶܧ௧ଶ௅ௌ௣௔ோܥ + ݁ (5) 

In order to avoid the propagation of possible classification or co-registration errors to the endmembers 
calculation, any class with a contribution less than 5% (ܥ௧௅ௌ௣௔ோ<0.05) is discarded. The inversion of the 

equation system (Equation (5)) and the retrieval of the endmembers E is achieved by implementing the 

least-squares method on each band separately.  

In the final step, the values of the fused image pixels S୊  are derived by assigning the estimated 

endmembers E to every HSpaR pixel according to the corresponding class. The class membership values ௧ܷ௞ுௌ௣௔ோ and the temporal weights T are accounted for, and thus preserving the spectral and temporal 

variability inside the analyzed window.  S୊ = ( ଵܶ ∙ ௧ܷభ௞ுௌ௣௔ோܧଵ + ଶܶ ∙ ௧ܷమ௞ுௌ௣௔ோܧଶ )	 (6) 

3. Experimental Results and Evaluation  

3.1. Dataset and Study Area 

The HSpaR imagery in our case study is a time series with a five-day revisit derived from SPOT-4 

(Take5). The data were provided by European Space Agency (ESA) in collaboration with French Space 

Agency (CNES) in the framework of an experiment concerning applications and methods, before the 

launch of S-2. The SPOT Level2A (ORTHO_SURF_CORR_PENTE) dataset provides surface 

reflectances corrected from atmospheric and terrain effects. The acquisition dates of the imagery are from 

January to June of 2013. However, due to cloud cover, images are not available every five days throughout 

the entire period; this limitation is observed to a different extent for all the available sites [21]. 

The study area (20 × 25 km) is in Tienen (Belgium), a mainly agricultural area and one of the study 

sites of Joint Experiment for Crop Assessment and Monitoring (JECAM). According to JECAM’s 

requirements for Earth Observation optical data, the spatial resolution should be from 20 m to 5 m. 

Additionally, during the study period (from February/March to August), the temporal frequency should 

be every 15 days, although weekly acquisitions would be preferred. The available dates and the 
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corresponding cloud-free pixels of the entire SPOT4 scene are presented in Figure 2. A partial cloud 

cover is present in most of the images, there hardly being one clear observation per month throughout 

the entire period.  

  

Figure 2. The image pixels are presented per day in a bar chart of cloud-free and cloudy 

pixels (left). The study area is displayed in pixel coordinate system and in colors according 

to the availability of cloud free observations per day (right).  

The LSpaR imagery is a time series of MODIS surface reflectance product (MOD09GA), which was 

re-projected from the native Sinusoidal projection to the UTM_WGS84 through the Google Earth 

Engine re-projection tool. Although the MOD09GA dataset is available on a daily basis, the cloud 

coverage hinders daily image availability in this particular instance. The two datasets have corresponding 

bandwidths with the MODIS land bands being narrower than the SPOT-4 ones (Table 1). 

Table 1. The bandwidths of MODIS and SPOT-4 bands. 

MODIS Bands 

MOD09GA L2G  

MODIS 

Bandwidth (nm) 

SPOT4 Bands 

Level 2A 

SPOT Bandwidth 

(nm) 

Band 3/Blue 459–479   

Band 4/Green 545–565 XS1/Green 500–590 

Band 1/Red 620–670 XS2/Red 610–680 

Band 2/NIR 841–876 XS3/NIR  790–890 

Band 6/SWIR1 1628–1652 SWIR 1530–1750 

Band 7/SWIR2 2105–2155  

The time period selected for applying the developed unmixing procedure is from April to May and 

the corresponding dates of the available cloud free images are presented in Table 2. Assuming that a 

HSpaR cloud free image is not available on 22 April 2013, the MODIS pixel of the corresponding date 

is unmixed based on the classification of the available SPOT images before (2 April 2013) and after  

(27 May 2013) the missing acquisition date. The MODIS images of all study dates are also involved into 

the unmixing process and specifically for the temporal weights estimation. In order to validate the 
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developed methodology, the SPOT-4 image of 22 April 2013 was used as a “reference image” in order 

to assess the accuracy of the unmixing result (Table 2, Figure 3).  

Figure 3. The study area as depicted on 2 April 2013 and 27 May 2013 (base dates) and on 

22 April 2013 (prediction date) on SPOT 4 (upper row) and MODIS (bottom row) images. 

The multitemporal images are illustrated in false-color composites (R: NIR, G: Red, B: Green). 

Table 2. Description of the datasets.  

Imagery Acquisition Dates Usage 
Spatial Resolution  

Radiometric Values 
Geometric Reference 

MODIS 

MOD09GA L2G 

2 April 2013 Unmixing 

500 m 

Surface Reflectance 
Map Projection: UTM 

Ellipsoid Type: WGS84 

22 April 2013 Unmixing 

27 May 2013 Unmixing 

SPOT4 (Take 5) 

Level 2A 

2 April 2013 Classification 

20 m 22 April 2013 Validation 

27 May 2013 Classification 

3.2. Clustering Results and Optimal Cluster Number 

The land cover types of the study area were the output of FMLE clustering, with the number of 

clusters to be defined by applying the validation measures described in Section 2.1. The optimal clusters’ 

number was explored in the range of cluster number k = [5, 40] for both HSpaR images and it was based 

on the best value for each case, i.e. local minimum or maximum of each criterion. For the sake of 

simplicity, in Table 3, only the values of the validation measures for the image of 27 May are presented 

in the range of k = [15, 40]. Concerning the FHV and PD, the corresponding local minimum and 

maximum values were acquired for k = 33, indicating also the optimum value. Moreover, the value  

k = 33 can be confirmed as ideal by SE, S and XB, although the corresponding increasing or decreasing 

trend in these cases is rather monotonic. Similarly, the clustering results analysis of the HSpaR image of 

2 April 2013 indicated the cluster value k = 34 as the optimal one. The automated optimal selection of 
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the clusters’ number does not only improve the classification results, but it also facilitates the unmixing 

procedure through faster processing times and increased accuracy.  

Table 3. The results of clustering validation in the range of 15 to 40 clusters for the HSpaR 

image t2. 

Clusters  

 Criteria

Optimal 

Value 
15 16 17 18 19 20 21 22 23 24 25 26 27 

FHV e-06 min 3.34 3.10 3.90 3.93 3.88 4.81 4.82 4.73 4.80 4.85 5.14 5.19 5.20 

PD e+05 max 14.77 15.21 15.92 16.44 16.87 17.34 18.80 19.28 20.75 21.18 22.54 23.96 24.80

SC max 0.82 0.87 0.82 0.89 0.92 0.92 0.94 0.93 0.95 0.94 0.93 0.90 0.92 

S e-07 min 9.49 10.96 10.59 11.86 11.91 12.30 12.22 12.31 12.41 13.07 13.85 13.35 13.73

XB min 8.24 7.59 6.49 6.51 5.54 5.14 5.43 4.15 4.24 4.24 4.00 3.61 3.36 

Clusters 

Criteria

Optimal 

Value 
28 29 30 31 32 33 34 35 36 37 38 39 40 

Fhv e-06 min 5.25 5.00 4.74 4.54 4.37 3.91 4.03 4.21 4.39 4.32 4.17 4.15 4.16 

PD e+05 max 25.18 26.86 28.51 29.66 31.17 33.72 30.81 30.91 30.94 30.98 30.06 30.13 39.21

SC max 0.94 0.95 0.93 0.95 0.94 0.98 0.95 0.96 0.98 1.00 0.98 0.99 0.99 

S e-07 min 13.59 13.75 13.13 13.67 13.33 12.92 13.48 13.87 14.01 14.15 13.75 13.99 14.00

XB min 3.97 3.60 3.41 3.10 3.04 2.57 2.89 3.01 2.99 3.07 2.39 2.39 2.52 

3.3. Spectral-Unmixing Fusion  

The qualitative and quantitative evaluation of the unmixing output was performed based on selected 

quality measures indicating the similarity between the images. A visual inspection and comparison of 

the output fused image with the reference SPOT image indicated the areas with similarities and 

differences, thus the areas where the algorithm performed well or not. Multispectral images, as well as 

the corresponding Normalized Difference Vegetation Index (NDVI) images were utilized for the visual 

comparison. Concerning the quantitative assessment, the result was compared to the actual SPOT image 

using some of the data fusion quality indicators, i.e. RMSE, Pearson's correlation coefficient, Erreur 

Relative Globale Adimensionnelle de Synthèse (ERGAS) and Q4 index. The standard measure of the 

ERGAS index gives a global indication of the fusion output quality [22] (Equation (7)), ܵܣܩܴܧ = 100 ௛௟ ටଵே∑ ோெௌா೔మெ೔మே௜ୀଵ   (7) 

where, h is the resolution of the high spatial resolution image (20 m herein); l is the resolution of the low 

spatial resolution image (500 m herein); N is the number of spectral bands involved in the fusion (four 

or seven herein); RMSEi is the root mean square error computed between the fused image and the original 

low resolution image (for the band i); and Mi is the mean value of the band i of the reference image. 

Taking into consideration that the resultant fused image should be identical to the original low-resolution 

image, in terms of spectral information, the ERGAS index value should be close to zero.  

Moreover, the Q4 index was employed as it is considered an appropriate quality measure of a fusion 

product, when two multispectral images with four bands are involved. It is based on the modulus of the 
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hypercomplex correlation coefficient, mean bias and contrast variation and it is sensitive to spectral and 

radiometric variation, since it handles all the bands simultaneously. The Q4 index values range between 

[0, 1], with the highest value representing the greatest similarity between the images [23]. If the four 

bands of the two images are expressed and compared as quaternions	ܽ = ܽଵ + iܽଶ + jܽଷ + kܽସ  and 	ܾ = ܾଵ + iܾଶ + jܾଷ + kܾସ, then the Q4 index is defined as ܳ4 = ௔ߪ|௕ߪ௔ߪ| ∙ ௕ߪ ∙ 2 ௔ߪ ∙ ௔ଶߪ௕ߪ + ௕ଶߪ ∙ 2| തܽ|ห തܾห| തܽ|ଶ + ห തܾหଶ  (8) 

All terms of Equation (8) are calculated on N × N image blocks, either 16 × 16 or 32 × 32, and the 

average of all resulting values is the final value of Q4 over the entire image. The Absolute Average 

Difference and the Average Difference were also calculated to define the magnitude of difference 

between the images and their positive or negative deviation.  

As the proposed unmixing approach is a window-based process, one of the user-dependent parameters 

is the window size. In this study the algorithm was tested in a range of window sizes (w) [9, 37] and its 

performance was evaluated by implementing the aforementioned criteria. The assessment in all the cases 

was conducted using the corresponding bands of the input imagery data, namely the four bands of SPOT 

4 and bands 4, 1, 2, and 6 of MODIS imagery (Table 1). The error computation was mainly twofold, at 

low and high spatial resolution, i.e. ERGAS_M and ERGAS_S, in order to estimate the respective 

spectral and spatial distortion. The ERGAS results indicate that the trend of the LSpaR image index is 

opposite to that of HSpaR image, and thus there is not optimal window size for both cases (Figure 4). 

Nevertheless, a close inspection of Figure 4 indicates that ERGAS_M has rather small values without 

great variations, opposite to ERGAS_S that decreases significantly, when the window size increases. 

Therefore, an acceptable option would be to select a window size that minimizes ERGAS_S and that 

also keeps ERGAS_M relatively low. The Q4 index, which was calculated on 16 × 16 image blocks, has 

similar behavior to ERGAS_S, meaning that the bigger the window size, the better the index value. 

Considering all preliminary conditions, the window size w = 37 was chosen in our study, the 

corresponding unmixing results being presented in Figure 4. 

Figure 4. The trend curves of ERGAS (for the LSpaR and HSpaR image) and the Q4 index 

(only applicable on HSpaR) as a function of different window sizes. 

In Figure 5, different regions of the study area are presented as subsets of the available SPOT imagery 

and the fusion product. A visual inspection of the images indicates that the algorithm succeeded in 
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capturing most temporal changes of the croplands’ in the study area (yellow rectangles). Areas with land 

cover changes from 2 April 2013 to 27 May 2013 are shown as purple rectangles; these are areas that 

remain unchanged from 2 April 2013 to 22 April 2013, fact that demonstrates that temporal weights are 

necessary to handle the transition changes throughout the study period. In the case of the stack classified 

image, proposed in previous studies [7,14], such changes between the base dates are classified as one 

cluster, either these changes occurred between the first base date and the prediction date or not, and vice 

versa. For this reason, the separate classification of each image is proposed, in order to consider all the 

land cover types and use them based on the temporal weights. Nevertheless, the algorithm was not able 

to accurately estimate the radiometric values of the areas with transition changes among the dates, but 

with similar land cover types in the base dates (blue rectangles). It should also be noted that the fusion 

outcome diverges from the original image mainly in the areas with high heterogeneity, where the “salt-

and-pepper” effect is noticeable. Such noise is common, when pixel-based classification methodologies 

are applied on high spatial resolution images. A possible solution to this issue would be an object-based 

clustering, but in the case of unmixing there would not be any spectral variability inside the objects of 

the fusion output, and thus it is not recommended in our study. Alternatively, an edge preserving filtering 

of the images would be suitable for handling spectral variability and reducing the noise present in 

classification and fusion results [24].  

The quantitative results of the fusion quality assessment between the fusion output and the reference 

SPOT image of 22 April 2013 are shown in Table 4. In all metrics, the prediction errors are higher for the 

NIR and SWIR bands. A partial explanation is the heterogeneity of the vegetation land cover type and 

phenological changes that prevent an accurate prediction typically for these bandwidths. Moreover, the 

relatively low correlation between the surface reflectances of the input data (Figure 6) has an impact on the 

correlation between the actual and the output pixel values. This high variance can be attributed to the different 

acquisitions dates and sensors characteristics; as such, in order to perform the data inter-comparison, a 

directional effect correction is recommended [21,25]. 

Table 4. The quantitative results of the comparison between the unmixing output image and 

the corresponding SPOT image on 22 April 2013 (for the optimal window size,  

w = 37). 

Bands RMSE ERGAS_S CORR Q4 AvAbsDiff AvDiff 

Green 0.0281 

0.612 

0.7808 

0.686 

0.0229 −0.0131 

 Red 0.0296 0.7961 0.0241 −0.0009 

NIR 0.0458 0.7443 0.0413 0.0201 

SWIR 0.0496 0.7477 0.0409 −0.0142 

The average RMSE of the current methodology is 0.038, while that of similar studies was 0.035 [26], 

0.039 [7] and around 0.04 for the different parameters’ combination in the approach of Amorós-López 

et al. [6]. Additionally, the Q4 index is 0.68 in our study, whereas a higher value (0.86) was computed 

by a similar study [7]. The AvAbsDiff for Green, Red, and NIR are 0.023, 0.024 and 0.041 in the current 

study, compared to 0.0073, 0.009 and 0.017 respectively as derived from the image fusion of Landsat 

ETM+ and MODIS land data [14]. We should mention that this results’ comparison is indicative. The 
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imagery and the study area are different among the methodologies and thus the inter-comparison of the 

results would not produce reliable conclusions. 

SPOT XS 
2 April 2013 

SPOT XS 
22 April 2013 

Fused 
22 April 2013 

SPOT XS 
27 May 2013 

 

Figure 5. The available SPOT imagery on the three acquisition dates and the fusion product 

on 22 April 2013. Comparison of the images indicates that different types of transition 

changes are evident during the study period with most phenology changes (yellow 

rectangles) to be estimated correctly by the proposed algorithm. Accurate results were also 

produced in the case of a change only between two dates (purple rectangles), while the 

algorithm failed in estimating the radiometric values on the prediction date, when change 

was not evident in imagery of the base dates (blue rectangles).  

It is also important to be noted that during the study period, significant changes occurred in the area, 

mainly due to the phenological cycle. Hence, this explains the low correlation between the corresponding 
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NIR bands of the study dates (Figure 7). Nevertheless, the algorithm was able to handle these changes 

through implementation of temporal weights, as well as to estimate the reflectance values on the 

prediction date relatively accurate. 

The NDVI results of the input observations and the fusion output are presented in Figure 8. 

Comparing visually the corresponding image areas, the resulting image has a high resemblance to both 

images on base dates. The cropland pattern is successfully captured by the predicted NDVI values, 

although there is a difference in the actual pixel values in certain areas, fact explained by the observed 

differences in the Red and NIR bands. 

 

 MODIS Red Band 22 April 2013 
 

 MODIS NIR Band 22 April 2013 

Figure 6. The scatter plots of the surface reflectance and the corresponding correlation of 

Red (0.72) and NIR (0.60) bands of the MODIS and SPOT images of the prediction date  

(22 April 2013). The SPOT pixel values were aggregated to the MODIS pixel size. 

 
SPOT XS-3 22 April 2013  

 
SPOT XS-3 22 April 2013  

Figure 7. The scatter plots of SPOT XS-3 bands of the consequent study dates. The low 

correlation between the bands indicates that important phenology changes occurred in the 

area mainly during the 22 April 2013 to 27 May 2013 period. 
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MODIS 
22 April 2013 

Fused 
22 April 2013  

SPOT XS 
22 April 2013 

  

 

  

 

 

 

 

  

Figure 8. The input imagery and the fusion product of the prediction date 22 April 2013 

(first row), the corresponding NDVI images (second row) and some NDVI image subsets 

at large scale (third and fourth rows). 
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3.4. Implementation on the Upcoming Data of Sentinel-2 MSI and Sentinel-3 OLCI  

The multispectral/multisensor data integration was tested and evaluated on SPOT and MODIS 

imagery with the intention of applying to the advanced features of S-2 MSI and S-3 OLCI instruments. 

Following the corresponding process applied to SPOT data, the S-2 VNIR bands with a spatial resolution 

of 10 m will be the input data for land cover classification. Improved results are anticipated when 

vegetated areas are involved, as the red-edge bands with 20 m spatial resolution will be also considered 

in the clustering process. The land cover information in this case will support the unmixing of the 21 

bands of S-3 OLCI with a spatial resolution of 300 m. As the pair of S-3 satellites will enable a short 

revisit time of less than two days for OLCI, more cloud-free observations are expected to be acquired 

than with MSI (five days revisit). Therefore, the suggested unmixing fusion would provide data with 

high spatial, spectral and temporal resolution, which will significantly benefit land services and allow 

the monitoring of land-cover dynamics, forest cover, photosynthetic activity and soil quality. 

Nevertheless, the directional effect needs to be corrected, in order to reduce the time series noise 

considering that the two instruments will have different viewing geometry. 

4. Conclusions  

The unmixing data fusion approach developed in this study aims at filling in the gaps of a time series, 

when cloud free images are not available. The main improvements introduced by the suggested  

approach are:  

1. The automatic definition of the optimal cluster number with the help of various evaluation criteria, 

establishing a faster and more robust methodology. The previous approaches required a trial-and-

error process in this methodology step, meaning that the unmixing algorithm had to be tested in a range 

of cluster numbers. By evaluating the unmixing result for each of the different clustering output in 

those cases, the corresponding cluster number was defined. Estimating the optimal cluster number, 

without the need to implement the unmixing algorithm in this study, reduces the execution time of the 

entire process. 

2. The temporal weights embedded in the algorithm, enabling the efficient handling of the changes 

occurred between the study dates. The available HSpaR images are classified separately and the 

temporal weights define the contribution of every land cover type to the pixel of the LSpaR image to 

be unmixed. The advantage in this case is twofold; firstly the unmixing algorithm is able to determine 

the state of the land cover type on the prediction date and secondly this is feasible with only one 

implementation. In previous approaches, the temporal weights are implemented in the unmixing 

outputs of the two base dates and subsequent estimations of reflectances are required on the prediction 

date [14]. 

The main challenge in the unmixing fusion process is the efficient handling of the available HSpaR 

images in order to estimate the radiometric values of the prediction date. By implementing the suggested 

approach, the majority of the changes within the study period, caused mainly by the differences in crop 

phenology, were estimated effectively. Time efficiency is another advantage of the proposed 

methodology, as a trial-and-error process is not required for producing a more accurate clustering result, 

and the fusion output does not need multiple algorithm implementations. However, the approach is 
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hindered by the salt-and-pepper effect of the classified images, which adds noise in the fusion output. 

Moreover, handling of the directional dependence of reflectance as a function of satellite viewing and 

solar geometry is also important in order to reduce noise in the time series generation. 
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