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Abstract: There is a growing need for developing high-throughput tools for crop 

phenotyping that would increase the rate of genetic improvement. In most cases, the 

indicators used for this purpose are related with canopy structure (often acquired with RGB 

cameras and multispectral sensors allowing the calculation of NDVI), but using approaches 

related with the crop physiology are rare. High-resolution hyperspectral remote sensing 

imagery provides optical indices related to physiological condition through the 

quantification of photosynthetic pigment and chlorophyll fluorescence emission. This 

study demonstrates the use of narrow-band indicators of stress as a potential tool for 

phenotyping under rainfed conditions using two airborne datasets acquired over a wheat 

experiment with 150 plots comprising two species and 50 varieties (bread and durum 

wheat). The flights were performed at the early stem elongation stage and during the 

milking stage. Physiological measurements made at the time of flights demonstrated that 

the second flight was made during the terminal stress, known to largely determine final 

yield under rainfed conditions. The hyperspectral imagery enabled the extraction of 

thermal, radiance, and reflectance spectra from 260 spectral bands from each plot for the 

calculation of indices related to photosynthetic pigment absorption in the visible and red-edge 

regions, the quantification of chlorophyll fluorescence emission, as well as structural 

indices related to canopy structure. Under the conditions of this study, the structural indices 
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(i.e., NDVI) did not show a good performance at predicting yield, probably because of the 

large effects of terminal water stress. Thermal indices, indices related to chlorophyll 

fluorescence (calculated using the FLD method), and carotenoids pigment indices (PRI and 

CAR) demonstrated to be better suited for screening complex traits such as crop yield. The 

study concludes that the indicators derived from high-resolution thermal and hyperspectral 

airborne imagery are efficient tools for field-based phenotyping providing additional 

information to standard NDVI imagery currently used. 

Keywords: hyperspectral; water stress; field-based phenotyping; chlorophyll fluorescence; 

thermal imaging 

 

1. Introduction 

Wheat provides 20% of the global population’s calorie intake and a similar percentage of its daily 

protein [1]. The global average rate of yield increase for wheat is 0.9% per year, while predictions of 

increase in demand reach 2.4% [2]. This means that the rate of genetic improvement required in the 

near future is greater than those currently being achieved [3]. Well-focused high-throughput 

phenotyping will be crucially important in developing new avenues for genetic improvement [4]. 

When the number of lines is limited or the studies are conducted under controlled environments, this 

task should be afforded by technologies such as high-throughput phenotyping platforms [5]. However, 

the performance of breeding programs on crop yield and productivity must be assessed under natural 

conditions [6,7]. Field-based phenotyping (FBP) is recognized as the only approach capable of 

delivering the required throughput and an accurate description of trait expression in real-world 

cropping systems [6,8]. A review of the approaches available for FBP and sensors commonly used can 

be found in Deery et al. [7]. Nevertheless, and in spite of recent progress, FBP remains a bottleneck for 

future advance in breeding [9]. 

The development of improved varieties relies on the ability to identify the best genetic variations for 

advancement, but the spatial variability that is generally observed in fields and the interaction with the 

environment (G × E) add more complexity to the analysis of crop performance [8]. Several features, 

related to crop physiology and agronomy, are involved, making difficult the identification of simple 

traits for phenotyping purposes [4]. Spatial variability must be taken into account when the results of 

phenotyping experiments are being evaluated. For this reason, plant breeders have been displaying a 

growing interest in high-resolution remote sensing for phenotyping purposes [5,6,9,10]. Remote 

sensing has proven useful for monitoring vegetation in the context of plant phenotyping [9]. Most 

efforts in this field employ RGB (visible) or CIR (color infrared) cameras to produce high-resolution 

maps of the Normalized Difference Vegetation Index (NDVI) or pseudo-NDVI as an indicator of plant 

vigor and structure both from near-field and airborne scales [11–13]. The development of techniques 

and methodologies to assess crop performance by such structural indices has been favored by its direct 

link with the interception of solar radiation and thus with potential yield [14] along with the relatively 

simple and inexpensive sensors required to acquire the imagery. Nevertheless, under rainfed growing 

conditions in arid environments such as the Mediterranean area, the combination of limited availability 
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of water and high temperatures, especially during grain filling, tends to seriously limit yields below 

their potential. In such environments, the unpredictable and variable rainfall season is largely 

responsible for the variation in yield [15]. Under these conditions, interactions between genotype, year, 

and location tend to mask the genetic variations affecting yield. This is the reason why the genetic 

advances in wheat yield in dry areas have not been as successful as in high-yielding environments [15]. 

In this context, hyperspectral remote sensing has the potential to provide much richer datasets by 

the collection of several narrow spectral bands that are sensitive to the absorption of specific 

photosynthetic pigments [16], which are also capable of quantifying the chlorophyll fluorescence 

naturally emitted by vegetation [17]. Evidence exists of the usefulness of hyperspectral data for 

phenotyping crops using hand-held spectroradiometers for near-field data acquisition [18–21]. 

Nevertheless, the potential of hyperspectral cameras installed on manned or unmanned vehicles for 

plant phenotyping purposes remains uncertain. 

In another spectral domain, thermal remote sensing has been shown to detect small changes in stress 

levels caused by reduced transpiration under water-stress conditions, and it has also displayed potential 

for yield screening [22]. Therefore, high-resolution (i.e. below 50 cm pixels) thermal and hyperspectral 

imagery (mainly deployed on-board aircraft or unmanned vehicles) is capable of providing information 

over small plots typically used by crop breeders to calculate several vegetation and spectral indices at 

the canopy level. Such indices derived from both thermal and hyperspectral imagery are related to 

specific leaf biochemical and canopy biophysical parameters related to crop growth and function. The 

application of chlorophyll fluorescence in this context is still at a very early stage but recent results indicate 

that fluorescence quantification from hyperspectral imagers were able to detect stress levels [17,23]. Some 

authors have suggested the application of one or more imaging technique in a multi-sensor approach 

where thermal sensing in combined with reflectance, fluorescence, and other sensing technique [24,25]. 

The aim of this study was to determine whether the airborne hyperspectral and thermal-derived 

indicators acquired from an aircraft can be used to assess physiologically-based plot variability in the 

context of plant phenotyping, evaluating the effects on wheat yield under rainfed conditions in the 

Mediterranean area. Specifically, the study evaluated narrow-band hyperspectral indices and the quantification 

of chlorophyll fluorescence emission as indicators of yield variations under water-stress conditions. 

2. Materials and Methods 

2.1. Study Area 

A field trial site for wheat selection was established by Agrovegetal S.A. in Ecija, Seville, Spain 

(37°32ʹ29ʺN, 5°05ʹ29ʺW) under rainfed conditions. The trial site comprised 300 individual plots of  

6 m2 each (1.2 m × 5 m) (Figures 1 and 2). The field was sown on 4 December 2013 at a density of  

360 seed/m2. This study concentrated on the 150 central plots in order to avoid the edges of the images. 

These 150 plots comprised 25 varieties of durum wheat (Triticum turgidum L. var. durum) and 25 of 

bread wheat (Triticum aestivum L.), each replicated three times on a balanced square lattice design. 

Regarding fertilization, pest and disease management, all plots received the same treatment. 
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2.2. Water Relations Measurements 

Water relations in selected cultivars were measured on DOY 76 and DOY 126, 2014 at noon. The 

first date corresponded to the early stem elongation stage (Z31); and the second date to grain filling 

(milk stage Z77). Leaf water potential (LWP; MPa) was measured using a pressure chamber (Model 

3000, Soil Moisture Equipment Corp., Santa Barbara, USA) on two sunlit leaves per plot. Assimilation 

rate and stomatal conductance were measured with a portable photosynthesis measurement system 

(LCpro-SD, ADC Bioscientific Ltd., Herts, UK) on two sunlit leaves per plot. 

2.3. Assessment of Yield 

Every plot was individually harvested using a Wintersteiger “Classic” plot combine and yield per 

plot was determined on 7 June 2014. 

2.4. Airborne Campaigns 

A thermal camera (FLIR SC655, FLIR Systems, Wilsonville, OR, USA) and a micro-hyperspectral 

imager (Micro-Hyperspec VNIR model, Headwall Photonics, Fitchburg, MA, USA) were installed on 

a Cessna aircraft operated by the Laboratory for Research Methods in Quantitative Remote Sensing (IAS, 

CSIC, Spain). The thermal camera has a 640 × 480 pixel resolution with a 24.5 mm f1.0 lens, with 

radiometric performance assessed in the laboratory using a black body (model P80P, Land Instruments, 

Dronfield, UK) and through vicarious calibrations using surface temperature measurements (Figure 1). 

 
(a) 

 
(b) 

Figure 1. (a) Thermal imagery acquired from the study area; (b) Detail of a single plot. 

The hyperspectral sensor used in this experiment is the micro-hyperspectral instrument operating in 

the spectral mode of 260 bands at 1.85 nm/pixel and 12-bit radiometric resolution, yielding 6.4 nm 

FWHM with a 25-micron slit in the 400–885 nm region (Figures 2 and 3). No spectral binning was 

performed during the acquisition of the imagery. The frame storage rate on board the aircraft was set to 

50 fps with an integration time of 18 ms. The 8-mm focal length lens yielded an IFOV of 0.93 mrad 

and an angular FOV of 50°. The hyperspectral sensor was radiometrically calibrated in the laboratory 
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using coefficients derived from a calibrated uniform light source and an integrating sphere 

(CSTMUSS2000C Uniform Source System, LabSphere, North Sutton, NH, USA) using four levels of 

illumination and six integration times. Ortho-rectification of the hyperspectral imagery was performed 

using PARGE (ReSe Applications Schläpfer, Wil, Switzerland). Inputs were obtained from an inertial 

measuring unit (IMU) (MTiG model, Xsens, Enschede, The Netherlands), installed on board, and 

synchronized with the micro-hyperspectral imager (as described by [17]). 

Two flights were carried out at noon on the solar plane on DOY 76 and DOY 126, 2014 over the 

experimental field. Flight altitude was 345 m. It delivered a ground resolution of 30 and 20 cm for the 

thermal and the hyperspectral imagery, respectively. 

 
(a) 

 
(b) 

Figure 2. (a) Hyperspectral imagery acquired from the study area; (b) Detail of a single plot. 

 

Figure 3. Airborne hyperspectral reflectance (a) and radiance (b) extracted from pure 

vegetation pixels obtained on DOY 76. 
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2.5. Hyperspectral-Derived Indices 

The indicators described in Table 1 were calculated from the hyperspectral imagery. These indices 

have been shown to be closely related to certain specific features of plant physiology [17,23]. We 

selected four types of indices, related to: (i) fluorescence emission by PS-I photosystem, (ii) structural 

effects, (iii) chlorophyll content, and (iv) carotenoid content. 

The fluorescence emission was assessed from the radiance spectra by the Fraunhofer Line Depth 

(FLD) principle calculated from a total of three bands for the in (L763 nm) and out bands (L750 nm; 

L780 nm) (FLD3), using the equation described in Zarco-Tejada et al. [17]. Some other indices related 

to the emission of chlorophyll fluorescence as described in Zarco-Tejada et al. [26] were also included 

in the analysis. 

The structural indices were calculated to assess whether final yield in wheat could be captured by 

the Normalized Difference Vegetation Index, NDVI [27], with a modification of NDVI to increase its 

sensitivity, in the form of the Renormalized Difference Vegetation Index, RDVI [28]. Soil-adjusted 

indices (OSAVI and MSAVI) that minimize the background influence were included in the analysis as 

well as MCARI1, which has demonstrated a great potential for LAI predictions [29]. 

The selected chlorophyll a + b indices were the Transformed Chlorophyll Absorption in Reflectance 

Index (TCARI) [30], the aforementioned TCARI, normalized by OSAVI to obtain TCARI/OSAVI, as 

proposed by Haboudane et al. [30] and used by Meggio et al. [31]. Other indices related with the 

pigment content were also included in the analysis (Table 1). 

The Photochemical Reflectance Index (PRI) was calculated using the 570 nm band as a reference [32] 

in the form PRI = (R570 − R531)/(R570 + R531), also using the 515 nm band as reference as proposed 

by Hernandez-Clemente et al. [33] and normalized by structural and chlorophyll effects (PRIn, [34]). 

Some other indices related with the carotenes content were included (CAR, [35]). RARS is related to 

the carotenoids content, as well as chlorophyll a + b [36]. 

Table 1. Hyperspectral indices used in this study. 

Index Equation Reference 

Fluorescence indices 

FLD 
Eout · Lin − Ein · Lout

Eout − Ein
 [17,37,38] 

UR 
𝑅6832

(𝑅675 · 𝑅691)
 [26] 

R690/R630 
𝑅690

𝑅630
 [26] 

DPi (R) 
𝑅688 · 𝑅710

𝑅6972
 [26] 

R685/R655 
𝑅685

𝑅655
 [26] 

Structural indices 

NDVI 
𝑅800 − 𝑅670

𝑅800 + 𝑅670
 [27] 

RDVI 
𝑅800 − 𝑅670

(𝑅800 + 𝑅670)0,5
 [28] 
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Table 1. Cont. 

Index Equation Reference 

OSAVI (1 + 0.16) ·
𝑅800 − 𝑅670

𝑅800 + 𝑅670 + (0.16)
 [39] 

MCARI1 1.2 · [2.5 · (𝑅800 − 𝑅670) − 1.3 · (𝑅800 − 𝑅550)] [29] 

MSAVI 
1

2
[2 · 𝑅800 + 1 − √(2 · 𝑅800 + 1)2 − 8 · (𝑅800 − 𝑅670)] [40] 

Chlorophyll indices 

TCARI 3 · [(𝑅700 − 𝑅670) − 0.2 · (𝑅700 − 𝑅550) · 𝑅700/𝑅670)] [30] 

TCARI/OSAVI COMBINED TCARI/OSAVI [30] 

TVI 0.5 · [120 · (𝑅750 − 𝑅550) − 200 · (𝑅670 − 𝑅550)] [41] 

SIPI 
𝑅800 − 𝑅445

𝑅800 + 𝑅680
 [42] 

G 
𝑅550

𝑅670
 - 

ZTM 
𝑅750

𝑅710
 [43] 

VOG 
𝑅740

𝑅720
 [44] 

Carotenoid indices 

CAR 
𝑅515

𝑅570
 [35] 

LIC3 
𝑅440

𝑅740
 [45] 

RARS 
𝑅746

𝑅513
 [36] 

PRI 
𝑅570 − 𝑅531

𝑅570 + 𝑅531
 [32] 

PRI515 
𝑅515 − 𝑅531

𝑅515 + 𝑅531
 [33] 

PRIn 
𝑃𝑅𝐼

𝑅𝐷𝑉𝐼 ·
𝑅700
𝑅670

 [34] 

2.6. Determination of the Crop Water Stress Index (CWSI) and Water Stress Index (WSI) 

Two indices were derived from the thermal imagery obtained over the experiment. The Crop Water 

Stress Index (CWSI) was calculated by normalizing the canopy temperature (Tc) with the air temperature 

(Ta) and vapor pressure deficit (VPD), according to the methodology proposed by Idso et al. ([46]; 

Equation (1)). 

𝐶𝑊𝑆𝐼 =
(𝑇𝑐 − 𝑇𝑎) − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿
(𝑇𝑐 − 𝑇𝑎)𝑈𝐿 − (𝑇𝑐 − 𝑇𝑎)𝐿𝐿

 (1) 

where (Tc − Ta)LL is the lower limit and corresponds to the Tc − Ta value of a canopy that is 

transpiring at its potential rate and (Tc − Ta)UL is the upper limit and corresponds to the Tc − Ta value 

of a canopy where the transpiration is completely halted. The lower limit was determined by the Non-Water 

Stress Baseline proposed by Idso [47], with the following equation: (Tc − Ta)LL = −3.25·DPV + 3.38. 
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The Water Deficit Index (WDI) was calculated according to the procedure developed by  

Moran et al. [48]. It is based on the vegetation index/temperature trapezoid (VIT) and has been 

developed to combine the spectral vegetation indices with temperature measurements in order to apply 

CWSI theory to partially-vegetated fields without knowledge of foliage temperature. 

2.7. Climatic Conditions during the Experiment 

Climate during the growing season was close to the average for the past 10 years on the site. The 

previous autumn and winter were rainy, with a total of 260 mm rainfall. During the spring season, the 

amount of rainfall was 82 mm (Figure 4a). At the time of the flights, ETo and mean Ta were 3.3 mm 

and 15.5 °C on DOY 76 and 5.7 mm and 22.6 °C. Maximum Ta achieved on these days were 26.6 and 

33.3 °C on DOY 76 and 126, respectively (Figure 4b). 

  
(a) (b) 

Figure 4. (a) Temporal evolution of ETo (mm), solar radiation (MJ·m−2), and rainfall 

(mm) during the growing season; (b) Maximum, average, and minimum daily temperature 

(°C) for the same period. Arrows indicate the times of flights (on DOY 76 and 126). 

2.8. Statistical Analyses 

Data were analyzed using SPSS® software (IBM Corporation, Armonk, NY, USA). In order to 

obtain insight into the relative weight of each of the indices derived from the thermal and hyperspectral 

imagery, a stepwise multiple regression analysis was employed. The multiple regression model was run 

with yield as dependent variables and one index per category (categories are defined in Table 1) as 

independent variables. 

3. Results 

3.1. Water Relations 

Two durum and two bread wheat cultivars were chosen to assess the water relations under the 

conditions described above. The first measurements were made on DOY 76 and corresponded with the 

early stem elongation stage. The leaf water potential was maintained close to −1.1 MPa for the four 

cultivars, although the stomatal conductance varied between 245 and 485 mmol·m−2·s−1 (Figure 5a). 
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On DOY 126, due to water stress, the water potential ranged from −2.4 to −3.5 MPa.  

At this moment, the crop was at the milking stage (grain filling). Stomatal conductance was kept below 

120·mmol·m−2·s−1. The assimilation rate was linearly related to stomatal conductance for the two 

measurement dates (Figure 5b). 

  
(a) (b) 

Figure 5. Relationships between stomatal conductance (Gs; mmol·m−2·s−1) and leaf water 

potential (LWP; MPa) (a); and net assimilation (A; μmol·m−2·s−1) (b) for two selected 

varieties of bread wheat and two of durum wheat. Each point represented a single plot. A 

linear regression was fitted to both dates in Figure 5b. 

3.2. Variability of Grain Yield 

The average grain yield was 2466 kg·ha−1 for the 25 bread wheat genotypes and 1670 kg·ha−1 for 

the 25 durum wheat genotypes. The ranges of variability among the analyzed varieties were large for 

both wheat species (Figure 6), despite the severe heat and water stress at the time of grain filling. Mean 

grain yield was higher for bread wheat than for durum wheat varieties (Figure 6), which is the typical 

performance in this area. The coefficient of variation (CV) was calculated for each cultivar, taking into 

consideration the three replicates per cultivar. The CVs were separately averaged for bread and durum 

wheat. The results demonstrated that bread cultivars displayed a higher CV (10%) than durum wheat 

cultivars (7.2%). 

 

Figure 6. Mean, upper and lower quartile values for bread and durum wheat yield 

(kg·ha−1). Maximum and minimum values are also indicated by whiskers. Each group 

corresponded to a single species and 25 varieties were used for the calculation. 
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3.3. Relationship with the Assimilation Rate 

There was a good correlation between the assimilation rate and the indices derived from the thermal 

and hyperspectral images (Figure 7). The relationship between the CWSI and the assimilation rate on 

DOY 76 was different for the two species (Figure 7a), although this relationship was unique on DOY 

126 (R2 = 0.54, p < 0.05; Figure 7b). The assimilation rate was slightly higher for durum wheat than 

for the bread wheat. The well-watered conditions during the flight on DOY 76 can be observed in 

Figure 5 and were confirmed by the lower CWSI values, which were below 0.15. The CWSI values 

during the second flight ranged between 0.7 and 0.9 (Figure 7b). 

The relationship between the assimilation rate and the FLD was unique for the two species on both 

dates (Figures 7c,d). The coefficient of correlation was similar for the two dates with different water 

status, and the slope was positive on both dates. On the other hand, the relationship with NDVI was 

significant (R2 = 0.45 and 0.28 for the first and second flight, respectively) but weak, as the slope of 

the relationship with the assimilation rate was reversed on the two dates. On DOY 76, before the start 

of water stress, plots displaying a higher NDVI value (indicating a better developed canopy) exhibited 

a higher assimilation rate (Figure 7e). No difference between the two species was observed. 

Nevertheless, once the water stress was imposed on DOY 126, the tendency was the opposite, and the 

larger canopy volume was related to a further fall in photosynthetic capacity (Figure 7f). 

3.4. Relationship with Yield 

The relationship between the thermal and hyperspectral derived indices with yield was assessed for 

all 50 cultivars. The three replicates per cultivar were averaged to obtain a mean value per cultivar. 

The two species displayed the same tendency, so although they were individually identified, the 

regression analyses took both into account (Figure 8). The analysis was performed for the two dates, 

although on DOY 76 none of the indices produced good results and the differences were not 

significant (data not shown). On DOY 126, the best relationship with yield (R2 = 0.53, p < 0.001) was 

obtained for the CWSI (Figure 8a). The results for the regression with yield for the whole set of indices 

can be found in Table 2. Other indices that produced good results were FLD, which obtained an R2 = 

0.47 (p < 0.001; Figure 8b), PRI (R2 = 0.49, p < 0.001; Figure 8c) and WDI (R2 = 0.45, p < 0.001;  

Table 2). Among the structural-related indices, MSAVI obtained the best relationship with yield, with 

R2 = 0.31 (p < 0.001; Table 2). It can be observed that, for each category presented in Table 2, there 

was a wide variability in the results, from highly significant (p < 0.001) to non-significant (p > 0.05). 

Note that NDVI, the most widely used index for the assessment of structural effects, was not significantly 

correlated with yield (Figure 8d and Table 2) (R2 = 0.10; p > 0.05). Concerning the chlorophyll content, 

the best indices were TCARI and TCARI/OSAVI (Table 2) yielding R2 = 0.35 and 0.41, respectively. 

3.5. Stepwise Multiple Regression Analysis 

One index per category (the one that obtained the best relationship with yield) was selected for the 

stepwise multiple regression. The categories considered were: (i) temperature-derived, (ii) chlorophyll 

fluorescence emission-related, (iii) structural indices, (iv) chlorophyll indices, and (v) carotenoid 

indices. The indices chosen for this analysis were CWSI, FLD, PRI, MSAVI, and TCARI/OSAVI but 



Remote Sens. 2015, 7 13596 

 

 

the stepwise multiple regression excluded MSAVI and TCARI/OSAVI from the analysis (Table 3), 

indicating that these two indices did not contribute to predict yield. This analysis was repeated for all 

of the indices comprised in the categories iii and iv (structural and chlorophyll indices), and the results 

obtained were the same (data not shown). These categories were therefore eliminated from the analysis 

and only CWSI, FLD, and PRI were included. The regression model for these three indices explained 

77% of the total variability in yield and was significant (p < 0.001). The RMSE yielded 259 kg·ha−1 

(Figure 9), which corresponded to a relative RMSE of 10.2%. When NDVI and TCARI/OSAVI were 

included in the regression analysis, the RMSE was 276 kg·ha−1 (RMSEr = 10.8%). 

DOY 76 DOY 126 

  

  

  

Figure 7. Relationship between net assimilation (A; μmol·m−2·s−1) and: CWSI (a) and (b), 

FLD (c) and (d) and NDVI (e) and (f) for two selected varieties of durum wheat (solid 

symbols) and two varieties of bread wheat (open symbols) on DOY 76 (a), (c) and (e) and 

DOY 126 (b), (d) and (f). For each case, a linear regression was fitted. 
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Figure 8. Relationship between yield (kg·ha−1) and: CWSI (a), fluorescence (FLD) (b), 

PRI (c) and NDVI (d) for durum (solid symbols) and bread wheat (open symbols). Each 

point represents the average of the three replicates of each variety. 

Table 2. Coefficient of correlation (R2) and level of significance of the thermal- and 

hyperspectral-derived indices related with yield.  

Index R2 

(i) Thermal-derived indices 

CWSI 0.53** 

WDI 0.45** 

(ii) Fluorescence indices  

FLD 0.47** 

CUR 0.41** 

R690/R630 0.13* 

DPi (R) 0.03 

R685/R655 0.14* 

(iii) Structural indices 

NDVI 0.10 

RDVI 0.25** 

OSAVI 0.20** 

MCARI1 0.17* 

MSAVI 0.31** 

(iv) Chlorophyll indices 

TCARI 0.35** 
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Table 2. Cont. 

Index R2 

TCARI/OSAVI 0.41** 

TVI 0.22** 

SIPI 0.17* 

G 0.00 

ZTM 0.02 

VOG 0.01 

(v) Carotenoid indices 

CAR 0.44** 

LIC3 0.36** 

RARS 0.29** 

PRI 0.49** 

PRI515 0.23** 

PRIn 0.05 

* p < 0.05, **p < 0.001 

Table 3. Results of the multiple regression analysis performed on the selected indicators. 

Explanatory Variable Beta t p 

CWSI −0.468 −4.499 0.000 

FLD 0.383 3.141 0.003 

PRI 0.539 6.609 0.000 

MSAVI 0.078 0.465 0.644 

TCARI/OSAVI −0.335 −1.693 0.098 

 

Figure 9. Comparison of measured yield and the estimation derived from the multiple 

regression, with CWSI, FLD, and PRI as independent variables. The adjusted regression and 

the calculation of the RMSE include both durum (solid symbols) and bread wheat (open 

symbols). 
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4. Discussion 

The reliable and early assessment of yield and overall crop performance is of paramount importance 

for breeding programs. Plant breeders need to be able to phenotype large numbers of lines rapidly and 

accurately identify the best progeny [9]. The performance of the breeding programs for crop yield and 

productivity must be evaluated under natural conditions [6,7]. In this study, we demonstrate that  

high-resolution thermal and hyperspectral imagery obtained from imagers installed on-board aircraft 

can provide valuable information about yield and crop performance, with the resolution necessary for 

phenotyping studies. We have observed that some indices derived from the thermal and hyperspectral 

imagery described the variations in yield in bread and durum wheat varieties more accurately than the 

standard structural-derived indices such as NDVI, which demonstrated good results in previous  

studies [19,49]. The relationship between the indices and the assimilation rate at the times of flights 

demonstrated that the results were robust and physiologically relevant. The thermal-based index CWSI 

and the fluorescence retrieval through the FLD method demonstrated their value for monitoring 

physiological processes. It has previously been observed in the context of water stress monitoring 

[23,38]. On the other hand, the widely used structural-derived NDVI index was not suitable in the 

context of this study for successfully tracking rapid changes in water status and assimilation rate. 

Earlier studies support this conclusion [17]. 

The climatic conditions during this study were within average values for the site, with a relatively 

rainy winter and spring, followed by a hot and dry summer. The crop would have maintained its water 

status during the vegetative phase, and thus a relatively satisfactory rate of growth. However, the 

depletion of soil water reserves and the increase in temperature and evaporative demand in the spring 

and summer left the plants under terminal water stress, which is typical in this region under rainfed 

conditions. Terminal stress causes substantial losses of yield in wheat. This is mainly driven by early 

leaf senescence and thus a shortening of the green leaf area duration, reduced rates of assimilation and 

reduced grain set and development, among other effects [50]. The relationship between the indices and 

crop yield was only significant for the second flight, performed during grain filling, while no 

relationship was observed on DOY 76. Previous studies have demonstrated that yield can be estimated 

at earlier stages, such as stem elongation [49]. The contrasted and variable climate would explain the 

inability to estimate yield before grain filling, as this period is critical for yield formation. Under most 

conditions, 90%–95% of the carbohydrate in grain is derived from carbon dioxide fixation after 

anthesis. Thus, the post-anthesis period seems the most appropriate period for screening crop 

performance in arid environments, as has already been observed by other authors [18,21]. 

The thermal-derived indices displayed the best relationship with yield. It was already proposed as a 

method to carry out high-throughput field phenotyping [24,25,51]. The close links between 

temperature changes, stomatal conductance, and finally, yield, are well known. The thermal-derived 

index CWSI showed a good relationship with assimilation rate (Figure 7a,b). Fischer et al. [52] 

demonstrated that the increase in yield in eight cultivars over six years was correlated with the 

difference between canopy and air temperatures (known as canopy temperature depression). A similar 

conclusion was reached by Amani et al. [22], who suggested canopy temperature as a criterion for 

grain yield selection in wheat breeding in hot climates. Gutierrez et al. [21] obtained similar results. 
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In addition to thermal-derived indices, those related to chlorophyll fluorescence emissions are also 

candidates for screening of wheat yield under these conditions. The close link between fluorescence 

emission and photosynthesis is well known [53]. Indices derived from this process may track changes 

in photosynthetic activity. In fact, Araus et al. [54] evaluated the usefulness of chlorophyll fluorescence 

measurements at leaf level during grain filling to evaluate yield performance under Mediterranean 

conditions. Remote sensing of chlorophyll fluorescence emissions under natural sunlight conditions 

confirmed its usefulness for tracking gross primary productivity (GPP) at field [23] and even global level [55]. 

Fluorescence retrieval using the Fraunhofer Line Depth (FLD) has recently been linked to stomatal 

conductance [38] and net photosynthesis [23]. Our results confirmed these findings and scaled up the 

usefulness of fluorescence for phenotyping purposes.  

In this study, indices related to the xantophyll pigments cycle (mainly the PRI) showed a close 

relationship with yield. However, previous studies have demonstrated a lower discrimination power for 

PRI compared to other indices at different locations [19]. Our study was limited to a single site, 

although the relationship was consistent for the two species considered. 

The weaker relationship with the structural-derived indices was evaluated by the stepwise multiple 

regression. The usefulness of these indicators (mainly the NDVI) as a criterion for yield selection has 

been well established [12,56]. It has been shown to be effective under well-watered conditions [20,57]. 

In high-yielding environments, the ability to intercept radiation can define final yield much more 

accurately than under arid Mediterranean conditions, where limitations on water availability during 

grain filling can overcome other constraints and defines yield. Lobos et al. [58] recently observed a 

good relationship between yield and NDVI for a large number of spring bread wheat varieties under 

Mediterranean conditions. However, compared to our average temperatures, their climate was milder 

and, even under severe water stress conditions, the level of stress reached was probably lower than in 

our study. The sudden change in air temperature and thus atmospheric demand for transpiration would 

have substantially increased the use of water by the crop. Plots displaying more vigorous growth would 

therefore already have depleted the soil water reserves, and thus, would have been more sensitive to 

terminal stress. This is corroborated by the relationship observed between NDVI and assimilation rate 

(Figure 7f) and would impair the relationship between crop vigor and yield (Figure 8d). In agreement 

with this conclusion, Royo et al. [19] observed that NDVI was not closely correlated with grain yield 

at the milk stage for those experiments that received less water and produced lower yields. The early 

leaf senescence caused by the terminal stress was probably the origin of this impairment. 

Other indices have been proposed for screening yield performance under arid conditions.  

Gutierrez et al. [21] observed that vegetation indices did not clearly correlate with yield, while other 

indices, related to water content (calculated from the near infrared spectral region) obtained better 

results under a wide range of environmental conditions. 

5. Conclusions 

This study demonstrated that thermal and hyperspectral imagery provides indices that display a 

close link with plant functioning, show potential for wheat yield screening and phenotyping under real 

field breeding trial conditions. High-resolution imagery was acquired with thermal and hyperspectral 

cameras installed on-board a manned aircraft that flew over a field trial for wheat phenotyping on two 
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separate dates. The imagery enabled the calculation of vegetation and spectral indices related to 

canopy structure, photosynthetic pigment absorption, the quantification of chlorophyll fluorescence 

emission, as well as indices derived from canopy temperature. These physiological indices designed to 

minimize the sensitivity to structural changes while maximizing a rapid response to environmental 

conditions could be of paramount importance for plant breeding in variable climates such as the 

Mediterranean, and especially under rainfed conditions. Under the settings of this study, the thermal 

index CWSI demonstrated the best relationship with yield (R2 = 0.53), the fluorescence emission 

quantification carried through the FLD method (R2 = 0.47) and the xanthophyll index PRI (R2 = 0.49). 

The multiple regression model built for the three indices explained 77% of the total variability in yield 

and was statistically significant (p < 0.001). On the contrary, NDVI, a standard vegetation index 

widely used in plant phenotyping, showed a weaker relationship for both durum and bread wheat (R2 = 

0.10). These results may be explained by the terminal stress that is usually observed in semi-arid 

regions, as crops displaying higher values of NDVI deplete soil reserves during vegetative growth and 

are more sensitive to water stress during yield formation. This study showed promising results on the use 

of new high-resolution remote sensing indices suitable for field-based phenotyping under rainfed 

conditions. The use of the remote sensing physiological indicators enables the evaluation of crop 

performance over wider areas, allowing high throughput phenotyping assessments while still taking 

spatial variability into account. 
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