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Abstract: The Random Forest algorithm was used to classify 86 Wide Fine Quadrature 

Polarized RADARSAT-2 scenes, five Landsat 5 scenes, and a Digital Elevation Model 

covering an area approximately 81,000 km2 in size, and representing the entirety of Dease 

Strait, Coronation Gulf and Bathurst Inlet, Nunavut. The focus of this research was to 

assess the potential to operationalize shoreline sensitivity mapping to inform oil spill 

response and contingency planning. The impact of varying the training sample size and 

reducing model data load were evaluated. Results showed that acceptable accuracies could 

be achieved with relatively few training samples, but that higher accuracies and greater 

probabilities of correct class assignment were observed with larger sample sizes. 

Additionally, the number of inputs to the model could be greatly reduced without 

impacting overall performance. Optimized models reached independent accuracies of 91% 

for seven land cover types, and classification probabilities between 0.77 and 0.98 (values 

for latter represent per-class averages generated from independent validation sites). Mixed 
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results were observed when assessing the potential for remote predictive mapping by 

simulating transferability of the model to scenes without training data. 
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1. Introduction 

Arctic marine shorelines are sensitive environments that can experience both immediate and  

long-term perturbations from oil spills, which may occur more frequently as a result of increased 

energy resource development and transportation in the Canadian Arctic [1–6]. In the event of a marine 

oil spill, detailed maps of the affected area are required to inform response operations as protection 

strategies and cleaning techniques differ depending on the shoreline type present. Both the 

predominant substrate type (e.g., sand vs. pebbles) and physical form (e.g., beach vs. flat) must be 

indicated as this largely determines the extent to which surface permeability and exposure permit oil to 

persist within the natural environment, as well as the appropriate treatment strategy [7,8]. Information 

on the extent and location of sensitive cultural and biological resources is also required to facilitate the 

use of spill countermeasures, including containment booms, which can prevent further spreading. In 

Canada, these so-called “shoreline sensitivity maps” have been prepared for the Great Lakes and 

majority of shorelines along the east and west coasts, however, relatively few areas throughout the 

Arctic have ever been systematically surveyed. Many of the maps that do exist are also decades old 

and based on outdated technology. As changing climatic conditions, including longer open water 

seasons, are expected to promote increased ship traffic and natural resource development, it is vital that 

response contingency plans are established for these areas.  

For over 30 years helicopter videography has been the primary data source for generating shoreline 

sensitivity maps in Canada. Typically analysts fly parallel along the coast, recording videos and audio 

commentaries in which they describe the predominant substrate type and physical form of the lower, 

middle, and upper intertidal zones (land exposed at low tide and covered by water at high tide), the 

supratidal zone (affected only by wave action and spray), and the backshore (not affected by marine 

processes, but used for access and staging purposes) [9]. This information is then transferred to a 

Geographic Information System through the manual segmentation of a vector file (representing the 

land-water interface) into homogeneous units [8]. In the event of a spill this information can then be 

used to make real-time decisions regarding the allocation of resources and personnel; improving 

response efficiency, and reducing long-term impacts on the environment [10].  

There are, however, additional logistical problems and higher costs associated with implementing this 

approach in vast, remote areas such as the Canadian Arctic. For example, there are relatively few sites for 

helicopters to refuel necessitating the use of fuel caches, especially on extended flights. This increases costs 

as additional flights are required to first deposit the fuel, then to collect the empty containers. In light of 

this, there is interest in developing a semi-automated mapping approach using Earth observation  

data [11–13]. Accordingly, the purpose of this study was to assess the potential to operationalize shoreline 

sensitivity mapping over a large region, using a single model to classify data that have been demonstrated 

to provide relevant and complementary information for this application [11–13]; specifically, multiple 
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RADARSAT-2 Synthetic Aperture Radar (SAR), and Landsat 5 optical scenes (images necessarily 

acquired on different dates and with different spatial footprints to provide full study site coverage), as well 

as a Digital Elevation Model (DEM). For this we used the Random Forest algorithm; a non-parametric 

classifier based on an ensemble of individual decision tree models [14]. Products from this analysis will be 

used to support oil spill response and contingency planning throughout the region. 

2. Background 

2.1. Potential for Shoreline Sensitivity Mapping Using Earth Observation Data: A Review of  

Relevant Literature  

Few studies have focused on assessing the potential for shoreline sensitivity mapping using Earth 

observation data, though of the studies that do exist, a number were undertaken in the Canadian  

Arctic [11–13]. Potential for this application has also been demonstrated in other regions [15,16]. Additional, 

relevant research has shown that it is possible to map more general Arctic land cover types [17]. 

Banks et al. [11] assessed the potential to classify shore and near-shore land cover types over two 

study areas: Richards Island and Tuktoyaktuk Harbour, Northwest Territories, Canada. The authors 

acquired three Fine Quadrature Polarized (Quad Pol) RADARSAT-2 scenes over each site to assess 

the impact of incidence angle on class separability, and classification accuracy. Analysis of the 

Bhattacharyya Distance and of relevant statistics indicated that steep angles (~21°–24°) were generally 

preferred for discriminating wetlands from other land covers (e.g., tall shrubs), while shallow angles 

(~45°–50°) were generally preferred for discriminating classes of varying surface roughnesses  

(e.g., sand beaches/flats from mixed sediment beaches/flats). Shallow incidence angle images also 

provided the best overall class separability, and when the three intensity channels (HH, HV and VV in 

dB) were combined with SPOT-4 imagery as inputs to the Maximum Likelihood classifier, the authors 

achieved overall accuracies of 76% and 86% for the Richards Island and Tuktoyaktuk Harbour sites, 

respectively. While it was not known what the weather conditions were immediately prior to each 

acquisition, potential for classifier transferability was demonstrated as the authors showed that values 

for many classes were consistent between the two study areas when compared at like incidence angles.  

In a follow-up paper Banks et al. [12] assessed the potential to classify shore and near-shore land 

cover types using unsupervised polarimetric SAR classifiers, including: Wishart-entropy/alpha, 

Wishart-entropy/anisotropy/alpha, and Freeman-Wishart [18,19]. The authors applied each classifier to 

the same six images used by Banks et al. [11], and found that they could detect more land covers using 

the shallow and medium incidence angle images. In general though, classification results obtained by 

combining available SAR and optical data in the Maximum Likelihood classifier by Banks et al. [11], 

were superior to results obtained with the polarimetric SAR classifiers. The authors also applied the 

Cloude-Pottier and Freeman-Durden decompositions [20–22] to characterize scattering behaviour, and 

assess the consistency of values between sites at like incidence angles. While in most cases outputs 

from the Cloude-Pottier decomposition were similar, Freeman-Durden decomposition variables, 

especially the double bounce parameter, showed high variability.  

Demers et al. [13] compared pixel-based Maximum Likelihood and hierarchical object-based 

classifiers over two study areas: Richards Island, Northwest Territories, Canada and Ivvavik, Yukon, 
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Canada. By combining the intensity channels and Freeman-Durden decomposition parameters from 

Fine Quad Pol RADARSAT-2 imagery, the spectral channels and Normalized Difference Vegetation 

Index (NDVI) data from SPOT-4 imagery, as well as a DEM, the authors achieved overall accuracies 

of 73% for both sites with the pixel-based approach, and overall accuracies of 74% and 63% at 

Richards Island, and Ivvavik with the hierarchical object-based approach. The authors demonstrated 

potential for classifier transferability by applying both models trained on data from the Richards Island 

site to the Ivvavik site, achieving overall accuracies of 71% and 78% for the pixel and object-based 

approaches, respectively. Notably, these results were attained with RADARSAT-2 images that were 

acquired on different dates, and at different incidence angles (~34°–36° (FQ15) over Richards Island, 

and ~48°–49° (FQ30) over Ivvavik), the latter of which has been shown to affect the backscattering 

behaviour of some shoreline classes [11,12]. 

Potential has also been demonstrated for manual shoreline mapping through visual interpretation 

of fused optical and SAR data. Souza-Filho et al. [15] used a Red Green Blue/Intensity Hue 

Saturation transformation to integrate Landsat and Fine RADARSAT-1 data in order to identify 

geobotanical features along the Amazonian mangrove coast of Brazil. The authors were able to 

visually discriminate 19 land cover types, including: sand flats, mudflats, barrier beach ridges, sand 

ridges, marshes, and various mangrove stands, and with the aid of field data, were able to create a 

geomorphological map of the area. Souza-Filho et al. [16] used a similar approach to manually 

generate a shoreline sensitivity map of their study area, which was also located along the coast of 

Brazil. Their research showed potential to identify 10 unique land cover types, which were 

differentiated on the basis of their sensitivity to oiling.  

Ullmann et al. [17] assessed the potential to classify five land cover types along the outer 

Mackenzie Delta, Northwest Territories, Canada, including: water, bare substrate, low/grass and herb 

dominated tundra, medium/herb dominated tundra, high/shrub dominated tundra, and wetlands. The 

authors compared results for supervised and unsupervised classification methods using different 

combinations of Dual Pol TerraSAR-X, Quad Pol RADARSAT-2, and Landsat 8 imagery. The 

optimal combination and method included both RADARSAT-2 and Landsat 8 data in a supervised 

classifier, which achieved an overall accuracy of 87%. The authors also observed potential for 

unsupervised classification of wetlands and non-vegetated substrates, due to the former showing 

dominant double bounce scattering, while the latter showed dominant surface scattering.  

To some extent these studies have all demonstrated the complementarity of SAR and optical data for 

mapping shore and near-shore land cover types. Both Banks et al. [11,12] attempted to classify SAR 

imagery alone, but found lower accuracies compared to those achieved with SAR and optical data [11]. 

Banks et al. [11] also found that both data types were required to discriminate sand from mixed-sediment 

beaches and flats. With their hierarchical object-based classifier, Demers et al. [13] observed that some 

classes were better detected with either SAR or optical data (e.g., vegetated and un-vegetated features were 

better differentiated with NDVI values; Freeman-Durden double bounce and HH/HV values were better for 

detecting wetlands). Souza-Filho et al. [15,16] found that fusing optical and SAR imagery together 

improved their ability to visually discriminate features, and Ullmann et al. [17] also found that the 

combination of SAR and optical imagery produced higher classification accuracies. Based on these 

results we chose to use both SAR and optical imagery in this research. 
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2.2. The Random Forest Classifier  

The Random Forest algorithm is a non-parametric classifier that uses bagging and a voting procedure 

to predict the majority output from an ensemble of individual decision tree classifiers [14]. It has proven 

effective for classifying highly dimensional data (i.e., many input variables) from a variety of  

sensors [23–26], and has been shown to outperform conventional parametric classifiers, including 

Maximum Likelihood [23,27–29]. This is particularly relevant with respect to the classification of SAR 

data, since backscatter values are not typically normally distributed when represented in linear power 

format [11]. As such, some authors maintain that non-parametric approaches like Random Forest are 

better suited to classifying these, as well as other multi-source datasets [27,30–33].  

A number of authors have also achieved comparable or improved results with Random Forest, 

compared to other non-parametric approaches, including Classification and Regression Trees  

(CARTs) [23,27,30,34], Support Vector Machines [29,35–37], and Neural Networks [29]. These 

approaches typically require more user-interference with classifier settings whereas Random Forest 

only requires that users define: (1) the number of trees that are generated; and (2) the number of 

variables tested during each iteration of node splitting (described subsequently); a benefit that is 

commonly noted in the literature [24,38,39]. Additionally, there is no need to spend time analyzing or 

pruning individual trees as is the case for single CART models.  

Some authors have also demonstrated that Random Forest performs well, even with a relatively small 

training sample size. Waske and Braun [27] classified multi-temporal SAR imagery and evaluated the 

effect of changes to training sample size on classifier performance. The authors observed that accuracy was 

not overly dependent on training sample size, and that acceptable accuracies could be achieved with as few 

as 50 sample sites per-class. Ham et al. [40] classified two study sites using hyperspectral data with limited 

training data, and observed only marginal improvements when their training sample size was increased 

from 15% to 75% of their total datasets (each of which contained 5211 and 3245 training samples in total, 

for each of the two study areas). The effect of training sample size on classifier performance is an important 

consideration for Arctic shoreline mapping applications, since these areas tend make up a relatively small 

proportion of the total image, leading to fewer available training sites [11–13]. In addition, these areas tend 

to be remote, which makes them difficult and expensive to access for extended periods. 

The supervised Random Forest classification approach works by generating a user-defined number 

(ensemble or “forest”) of CART-like classifiers that are built from, and subsequently tested, using a 

random bootstrapped sample of a training/internal validation dataset provided by the user [30]. Sampling 

with replacement generates different subsets for each tree, with the proportion of each remaining constant 

at about two thirds for training and one third for internal validation. To determine the split at each node, a 

random subset of available predictor variables are tested, and only that variable which provides the best 

split is used [38,41]. This approach seeks to reduce the degree of correlation amongst individual trees in the 

forest, which often improves performance and enables the use of both independent and dependent 

data [14,27,30,31,34]. The model is also said to be robust to overfitting, and since only a subset of all 

variables are used to determine the split at each node, the algorithm is more computationally efficient than 

other methods (e.g., boosting), which better permits the use of highly dimensional datasets [27,30,31]. 

Once the forest is built image values at each pixel are run down all trees. However, because each tree is 

built from different training data, input variables, and split rules, the final output (per-pixel class prediction) 



Remote Sens. 2015, 7 13533 

 

 

may differ among each tree in the forest [26]. As such, a voting procedure is utilized, whereby each  

fully-grown tree casts a single vote and the majority is provided as the final output. In doing so errors that 

could be produced by the individual classifiers are potentially avoided as it assumed that the same errors 

are not generated by the majority [27,39,42,43]. A cumulative error estimate called the Out of Bag Error 

(OOBE) is also produced, which is based on the results achieved during the internal validation process 

applied to each tree. Under certain conditions it may be possible to use this in place of an independent 

accuracy assessment as the OOBE values can be comparable to independent error estimates [14].  

The Random Forest algorithm also produces measures of variable importance, which can be used to 

determine which inputs contribute predictive ability within the overall model. Not only does this 

provide insight into the underlying structure within the multivariate dataset, it can also be used to 

perform variable reduction to increase computational efficiency. Specifically, the script used in this 

analysis reads in values for each image channel at all training sites. Depending on the number of 

inputs, this process can be time consuming [25,26]. It has also been demonstrated that using just the 

most important variables can significantly improve overall accuracy [25].  

Within the “randomForest” package currently available in R (used in the present analysis), it is 

possible to generate two measures of importance: that which is based on the Gini index, and that which 

is based on the Mean Decrease in Accuracy [38]. Values for the former provide an indication of the 

extent to which the variable generates homogeneous or pure nodes, while the latter is based on a 

relative change in accuracy as a result of the variable being randomly permuted or excluded from the 

model. In both cases, higher values indicate higher importance [14,38,44]. Importance values can also 

vary greatly among models built on the same predictor variables, although it has been shown that 

values become more stable when a high number of trees are built into the forest [38]. 

3. Objectives 

The overarching objective of this research was to assess the potential to operationalize shoreline 

sensitivity mapping through the use of a single Random Forest model to classify multiple RADARSAT-2 

and Landsat 5 scenes acquired over a large, remote area. Our specific objectives were to: 

1. Assess the effect of training sample size on classifier accuracies and probabilities. Obtaining 

a large amount of training data for remote Arctic shorelines can be challenging since these 

areas are both expensive and difficult to access. It can also be difficult to generate a 

sufficient number of training sites because many shoreline features tend to make up a 

relatively small proportion of the total image area [11–13]. To help plan future shoreline 

mapping work along other Arctic coasts, we determined the smallest training sample size 

required to classify each of the land cover types considered to an acceptable level. 

2. Determine which predictor variables provide relevant information to the model and assess the 

effect of reducing the data load on classifier accuracies and probabilities. Preparing images for 

classification is time consuming, especially if multiple variables need to be generated for 

multiple scenes, and for multiple image types. Storing and classifying these highly dimensional 

datasets can also be computationally expensive. To decrease image processing times and storage 

requirements, as well as to increase computational efficiency of the model, we assessed the 
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extent to which variables with relatively low importance values could be removed from the 

model, while still maintaining or improving classifier accuracies and probabilities. 

3. Assess the potential for remote predictive mapping. To map areas that are expensive or difficult 

to access, it would be advantageous to generate shoreline maps without collecting new field data. 

As such, we assessed the potential for remote predictive mapping by excluding training data 

from one in five helicopter videography surveys (collected in lieu of conventional ground data; 

described subsequently) to simulate application of model to areas without any training data. 

4. Materials and Methods 

4.1. Study Area  

The study area considered in this research is located between Dolphin and Union Strait, and Queen 

Maud Gulf, encompassing the entirety of Coronation Gulf, Dease Strait, and Bathurst Inlet in the 

Kitikmeot region of Nunavut (Figure 1). Together these waterways divide Victoria Island from the 

mainland, representing a potential route along the Northwest Passage. There are two main communities 

within the region: Kugluktuk (formerly Coppermine) which is situated at the mouth of the Coppermine 

River to the west, and Cambridge Bay on the southeastern side of Victoria Island. Houses, fishing, and 

hunting camps are also found intermittently along the coast. The last shoreline sensitivity map generated 

for the area was commissioned by Environment Canada over twenty years ago [45]. 

Areas south of Rae River along the mainland fall on the northernmost extent of Canadian Shield, 

while the sedimentary rocks forming the Arctic Platform are found in the lowlands to north and on 

Victoria Island (Figure 1). Glacial and marine deposits cover most of the landscape, while the 

underlying bedrock is visible in some areas along the coast and on several islands offshore. Coastal 

features consist primarily of low lying beaches with varying proportions of gravel and sand, beach 

ridges/berms, raised beach ridges, bedrock platforms, cliffs, and talus slopes, deltas and bars at the 

mouths of rivers, and low lying tundra, and wetlands [45,46]. 

4.2. Land Cover Classes  

The land cover classes considered in this analysis are presented in Table 1. These have been adapted from 

the 25 land cover types currently used by Environment Canada for shoreline sensitivity mapping [8]. By 

combining expert knowledge from previous studies [11–13] with preliminary classifier results, and  

class-specific descriptive statistics (e.g., mean, mode, standard deviation, and range), some land covers with 

similar morphologies, sediments, and or vegetation types were merged to form more general classes  

(Table 1). For example, the decision was made not to differentiate between tidal flats and beaches, since 

analysts often confuse these features in manual shoreline mapping/segmentation [8]. Similarly, sandy 

materials tend to be misidentified as mud and vice versa [8]. All areas visible in the intertidal, supratidal, and 

backshore zones were also classified together, and no attempt was made to differentiate them from one 

another [13]. 
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Figure 1. Map of Canada (left) and of the study area considered in this research (right) showing coverage of the RADARSAT-2 and Landsat 

5 data (represented as same-day strips), as well as the portions of the coast along which helicopter videography surveys were completed. The 

estimated length of shoreline covered is indicated on each line segment. 
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Table 1. Shoreline types used by Environment Canada in conventional shoreline sensitivity mapping, and the generalized land cover classes 

considered in this analysis. Note that a general tundra class is not defined in conventional shoreline sensitivity mapping. 

Adapted Land Cover Class for 

This Analysis 
Shoreline Type Description 1 Sensitivity Information 2  

Water Water 
All open water including rivers, lakes, ponds and  

the ocean. 
N/A 

Mud/Sand 

Mud Tidal Flat 

Dominant grain size: 0.00024 to 0.0625 mm;  

slope < 5°; other sediments present but cover < 10%  

of surface.  

Important species habitat, particularly for migrant birds 

and burrowing animals.  

Sand Beach 
Dominant grain size: 0.0625 to 2 mm; slope > 5°; 

other sediments present but cover < 10% of surface.  

With the exception of some low energy environments, 

biological productivity is generally low due to frequent 

reworking of the surface. 

Sand Tidal Flat 
Dominant grain size: 0.0625 to 2 mm; slope < 5°; 

other sediments present but cover < 10% of surface.  

Typically contain larvae, worms and insects that 

migratory bird species feed on during the 

summer months. 

Mixed Sediment 

Mixed Sediment Beach 

Primarily fine grained sediments (sand and mud), 

with coarser materials (pebbles, cobbles, boulders) 

making up some proportion that is > 10% of the 

surface. Slope is > 5°.  

In sheltered areas plants and animals are able to survive, 

however in areas that are regularly reworked, biological 

productivity is often low.  

Mixed Sediment Tidal Flat 

Primarily fine grained sediments (sand and mud), 

with coarser materials (pebbles, cobbles, boulders) 

making up some proportion that is > 10% of the 

surface. Slope is < 5°.  

In sheltered areas plants and animals are able to survive, 

however in areas that are regularly reworked, biological 

productivity is often low.  

Pebble/Cobble/Boulder 

Pebble/Cobble Beach 
Dominant grain size: 4 to 256 mm; other sediments 

present but cover < 10% of surface. 

Low biological productivity in general, due to constant 

reworking of materials. 

Boulder Beach 
Dominant grain size: > 256 mm; other sediments 

present but cover < 10% of surface.  

Biological productivity may be high, since these 

shorelines are stable.  

Bedrock Bedrock 
Bedrock outcrop, plateau or ramp. Other sediments 

present but cover < 10% of surface. 
Biological productivity is relatively low.  
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Table 1. Cont. 

Adapted Land Cover Class 

for This Analysis 
Shoreline Type Description 1 Sensitivity Information 2 

Wetland 

Marsh 
Wetlands containing saline-adapted plant species, 

including sedges, grasses, rushes, and reeds [48].  

Important species habitat; highly productive 

environments.  

Wetland  

According to Owens [47], marshes and wetlands 

are differentiated on the basis of species 

composition. Wetlands are predominated by 

grasses, which are  

salt tolerant.  

Important species habitat; highly productive 

environments.  

Tundra NA 
All non-marsh and non-wetland areas that  

are vegetated. 
N/A 

1 Unless otherwise indicated information in this column has been summarized from Owens [47]. 2 Unless otherwise indicated information in this column has been 

summarized from Owens et al. [48]. 
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4.3. RADARSAT-2 Acquisitions and Available Landsat 5 Data  

Two passes of Single Look Complex Wide Fine Quad Pol RADARSAT-2 data with a nominal pixel 

spacing of 8.2 m and a 35° incidence angle at NADIR (FWQ21 beam mode) were acquired over the 

majority of the study area between August and September of 2014 (Table 2). The shallowest of available 

incidence angles was selected since: (1) these data are provided at a higher spatial resolution, so could 

combined with higher resolution optical data if it were made available; (2) the effects of foreshortening 

are reduced (albeit with increased image shadow) [49]; and (3) previous studies have indicated that 

shallow angles are generally preferred for this application [11,12]. All images were acquired using the 

same beam mode, since backscatter values for some specific shore and near-shore land cover types can 

show incidence angle dependence [11,12]. Each scene was acquired with the Land Look-up Table, in the 

ascending look direction, and was provided with Definitive Orbit information.  

Of the two available passes, those images that appeared to have calmer sea states (less wave 

activity) and were believed to be acquired under relatively dry weather conditions were used in this 

analysis. Unfortunately weather information could only be obtained from stations at Kugluktuk and 

Cambridge Bay, which are hundreds of kilometres away from some scenes. As such, visual 

comparisons were also used to assess scene-to-scene consistency. In all cases but one, this resulted in 

the selection of the August acquisition (Table 2). While not a focus here, future work will assess the 

effect of combining both passes on classifier accuracy. 

Table 2. Wide Fine Quad Pol RADARSAT-2 data acquired for this research. All training 

and validation sites fell on those images that are greyed out. Two complete passes were 

acquired for each image strip with exception of strip 8 (only first pass acquired), and strips 

9 and 10 (second pass only covered a portion of the first same-day strip). 

Image Strip (West to East) Acquisition Timing Number of Scenes Per-Pass 

1 26 August 2014 4 

2 9 August 2014 5 

3 16 August 2014 6 

4 23 August 2014 6 

5 6 August 2014 6 

6 13 August 2014 9 

7 20 August 2014 14 

8 3 August 2014 12 

9 10 August 2014 7 

10 10 August 2014 8 

11 24 August 2014 9 

Five Level-1 orthorectified Landsat 5 images, acquired in August of 2009, 2010, and 2011 were 

downloaded from the Earth Explorer Data Portal made available by the United States Geological 

Service (Table 3). These surface reflectance products were generated from the Landsat Ecosystem 

Disturbance Adaptive Processing System, which applies an atmospheric correction based on a 

Moderate Resolution Imaging Spectroradiometer routine in the Second Simulation of a Satellite Signal 

in the Solar Spectrum. Inputs to the model included: a DEM, values for aerosol optical thickness, 
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geopotential height, ozone, and water vapour. For this analysis only the six spectral channels provided 

at a nominal pixel spacing of 30 m were used, including: blue (0.45–0.52 μm), green (0.52–0.60 μm), 

red (0.63–0.69 μm), near-infrared (0.76–0.90 μm), short-wave infrared (SWIR-1 (1.55–1.75 μm)), and 

short-wave infrared (SWIR-2 (2.08–2.35 μm)) [50].  

Initially, focus was on classifying Landsat 8 imagery acquired between August and September of 

2013 and 2014 (also obtained from Earth Explorer); however, problems were observed with classifier 

transferability in areas where September images were available. Specifically, senescent vegetation 

tended to be misclassified as bedrock. We therefore chose to use Landsat 5 imagery, and only scenes 

that were acquired during the growing season. 

Table 3. Landsat 5 data downloaded from the Earth Explorer Data Portal for use in this 

research. All training and validation sites fell on those images that are greyed out. 

Image Strip (Ordered West to East) Date of Acquisition Row Path 

1 17 August 2010 12 49 

2 25 August 2009 12 46 

3 8 August 2011 11 45 

3 8 August 2011 12 45 

3 8 August 2011 13 45 

4.4. Satellite Image Processing  

Using PCI Geomatica’s SAR Polarimetry Work Station each raw RADARSAT-2 image was used 

to create a multichannel PCI-DSK (.pix) file representing the non-symmetrized scattering matrix (S4) 

in Sigma-Nought (σº). For the purpose of this analysis it was assumed that HV ≈ VH, as is typically 

the case for most natural targets [51–54]. This was also confirmed using five images selected at 

random from the total dataset, which were used to assess the degree of correlation between the HV and 

VH channels. r values for those bands ranged from 0.97 to 0.98. As such, each S4 matrix was 

converted to both the symmetrized covariance (C3) and the symmetrized coherency (T3) matrices. In 

addition to improving the signal-to-noise ratio of the cross-polarized component [53,54], matrix 

symmetrization is also a requirement in PCI for the application of a number of algorithms  

(i.e., Freeman-Durden decomposition, Cloude-Pottier decomposition, Touzi decomposition, and for the 

Touzi discriminators).  

To suppress image speckle, the Enhanced Lee adaptive filter was applied using a 5 × 5 pixel  

window [55], after which several polarimetric decompositions and other SAR variables were 

calculated from the appropriate matrix representation (Figure 2), including: the Freeman-Durden [22], 

Cloude-Pottier [21], and Touzi [56] decompositions, intensity channels (HH, HV and VV), total 

power, HH/VV and HV/HH intensity ratios, pedestal height, HH-VV phase difference, magnitude and 

phase of the correlation coefficient, and the Touzi discriminators: anisotropy, minimum and maximum 

polarization response, and difference between minimum and maximum polarization responses [57].  
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Figure 2. Processing chain applied to available Wide Fine Quad Pol RADARSAT-2 imagery, Landsat 5 imagery, and other data (left), as well 

as a list of the 49 predictor variables used in this analysis (right).  
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Each scene was orthorectified using the Definitive Orbit information and the 1:50,000 Canadian 

Digital Elevation Dataset (CDED) [58] as inputs to the Rational Functions Model in PCI Geomatica’s 

OrthoEngine. No additional Ground Control Points were collected since the co-registration with the 

Landsat 5 data, as assessed via 10 check points per-scene, indicated a shift of less than one pixel (30 m). 

Differences in intensity values as a result of topographic variations were not considered a major issue 

in this analysis since the focus was on classifying those features closest to the land-water interface, 

which tended to be low sloping. Specifically, approximately 81% of the land area within 500 m of the 

helicopter flight path taken to collect field data has a slope of less than 5° (as estimated from the slope 

product derived from the CDED).  

During the orthorectification process the output pixel spacing of the RADARSAT-2 images  

was set to 10 m, then each set of images that were acquired on the same day were mosaicked into 

single “same-day” strips. Each 10 m same-day strip was then resampled to 30 m via bilinear  

interpolation [59] to be combined with the other data used in this analysis (Figure 2). For each same-

day strip of the SAR data a channel was also created with values representing the Julian Day on which 

each scene was acquired (Figure 2). We theorized that model outputs could be affected by the scene 

acquisition date, since changes in moisture conditions (soil and vegetation), as well as plant phenology 

have been shown to affect backscattering behaviour of wetlands and other land cover types [60–63]. 

Prior to being combined with available RADARSAT-2 imagery, cloud and cloud shadow were 

removed from each Landsat 5 scene using the masks provided with each image [50]. Afterward a large 

scene mosaic covering approximately 99% of the entirety of the study site was created (~1% of the study 

area was not covered due to the presence of cloud and cloud shadow), and the red and near-infrared 

channels were used to calculate the NDVI. From the DEM, slope and aspect values were calculated.  

4.5. Reference Data: Helicopter Videography and Geotagged Photos 

In lieu of conventional ground data, oblique helicopter videography surveys were conducted 

between 13 and 15 August, 2014 along 939 km of shoreline at five key sites located throughout the 

study area (Figure 1). These contained a number of different shoreline types within a relatively small 

area to maximize the number of training and validation sites per-class. Selection of these areas was 

based on information contained in the last helicopter videography survey of the region [45], as well as 

available surficial geology maps. The communities of Kugluktuk and Cambridge Bay were also 

surveyed as both contain ports and culturally significant sites, which are considered priority protection 

areas in oil spill response and contingency planning [8]. 

The survey methodology used in this research was consistent with Environment Canada’s standard 

approach to shoreline sensitivity mapping, with flight speed, altitude, and distance from shore ranging 

between 130–150 km/h, 90–120 m, and 100–150 m, respectively, with more complex shorelines 

requiring slower speeds and higher altitudes [8]. A Global Positioning System encoder-decoder  

(VMS-333) was used to simultaneously record a track log, and high definition videos and audio 

commentaries to the left and right audio channels of a handheld high-definition video camera [64]. 

Analysts filmed through an open door on the helicopter, pointing the camera at an oblique angle to 

capture features immediately ahead of the helicopter’s flight path. Where possible, an attempt was 

made to identify and describe the predominant substrate type, and or vegetation present in the upper 
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intertidal, supratidal, and backshore zones, as well as other characteristics such as the slope and width 

of each area. Analyst also collected geotagged photos using a Nikon D3000 camera, and visited several 

landing sites to cross validate what was interpreted from the air. 

The GeoVideo extension [65] available in ArcGIS 9.3 [66] was used to convert the digital track log 

which recorded latitude, longitude, and altitude at one second intervals, to a point vector file. This 

enabled the precise association of ground locations with video time stamps, and was used in 

combination with the geotagged photos and ground information obtained at landing sites, to manually 

generate 250 training/validation sites per-class (total of 1750 vector points, with each being centered 

on a single pixel, and being used to sample single pixel values). Effort was made to select sites 

throughout the entirety of the study area in order to capture the variability each class naturally exhibits, 

and to ensure that no points fell on areas where a change in tide or in land cover could be observed 

between the RADARSAT-2 and Landsat 5 data. It should be noted that through visually comparing 

each dataset, it was observed that in most cases a difference in tide could not be detected and the 

predominant land cover type was also consistent between these acquisitions.  

In an attempt to ensure the spatial and statistical independence of training and validation sites [67], 

each point was also separated by a minimum 100 m [25]. The entire training/validation dataset covered 

the span of nine same-day strips of the RADARSAT-2 Wide Fine Quad Pol data, and four of the five 

Landsat 5 images (Figure 1; Tables 2 and 3). A stratified random sampling approach (by land cover 

class) was then used to select points for use in: (1) model training/internal validation; and  

(2) independent accuracy assessment. 

4.6. Applying the Random Forest Algorithm 

The open-source R language and software [68] was used to implement the Random Forest 

supervised classification algorithm using the “randomForest” package [38]. Though it is possible to 

generate both supervised and unsupervised classifications we chose to generate the former because 

reference data were available. No restriction was applied to the number of nodes that were created for 

each model, and in all cases the number of variables that were tested at each split (mtry) was equal in 

size to the square root of the number of predictor variables as this value often achieves close to optimal 

results [14,30,33]. We chose to generate 1000 trees for each model (ntree) since generating a large 

number of trees tends to produce more stable importance values [38], without causing overfitting [14], 

and because it has been demonstrated that more than 1000 trees does not result in significant 

improvements in overall accuracy [25,26,33].  

Model performance was assessed via: Out of Bag Accuracy or OOBA (100-OOBE), independent 

overall accuracy, Kappa statistic, per-class User’s and Producer’s accuracy, and classifier  

probabilities [31,69]: 

𝑝(𝑖) =
𝑘𝑖
𝑘

 (1) 

where 𝑝(𝑖) represents the probability of the given class (𝑖), 𝑘 is the number of trees and 𝑘𝑖  is the 

number of trees involved in the majority vote for class 𝑖 (for this analysis 𝑘 = 1000 in all cases).  

To address each objective in this research, we ran multiple tests, organized as follows: 
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(1) Assess the effect of training sample size on classifier accuracies and probabilities. 

Stratified random sampling (by land cover class) was used to select a third of the training/validation 

data to set aside for independent accuracy assessment (83 points per-class). Stratified random sampling 

was then used again to generate training samples from the remaining points, representing: ~5% 

(13 points per-class), 10% (25 points per-class), 20% (50 points per-class), 40% (100 points per-class), 

and ~67% (167 points per-class) of the total. For each set of training data all 49 predictor variables 

were included as inputs to the model, and overall performance was assessed via OOBA, overall 

independent accuracy, the Kappa statistic, per-class User’s and Producer’s accuracy, and classifier 

probabilities (latter five calculated using the points initially set aside for independent accuracy 

assessment). Since final per-pixel outputs can differ among models generated with the same inputs 

(i.e., due to the random sampling approach used to select training data for each tree, and the predictor 

variables used to split each node), multiple models were generated for each set of training data to 

assess the variability of outputs. Results were used to determine the optimal training sample size for 

use in subsequent models. 

(2) Determine which predictor variables provide relevant information to the model and assess the 

effect of reducing the data load on classifier accuracies and probabilities. 

Using all 49 predictor variables as inputs to the model and the training sample size defined in (1), 

additional models were generated to capture the variability of importance rankings for each predictor 

variable. Both the Mean Decrease in Accuracy and Gini Index values were then used to determine the 

five predictor variables with the lowest importance values. These variables were set aside, and 

additional models were generated using the remaining 44 predictor variables and the same training 

dataset. This process was continued until as few as four predictor variables were included in the model, 

and significant differences between iterations were detected using the McNemar’s Statistic [70]. Since 

potentially complex interactions between variables may affect their respective importance values [38], 

we deemed this iterative approach appropriate for this analysis. Model performance was assessed via 

OOBA, independent overall accuracy, the Kappa statistic, per-class User’s and Producer’s accuracy, 

and classifier probabilities (latter five calculated using the same points set aside in 1. for independent 

accuracy assessment). Results from this analysis were used to select an optimal, reduced set of 

predictor variables for use in subsequent models.  

(3) Assess the potential for remote predictive mapping: 

The training sample size defined in (1), and the set of predictor variables define in (2) were used to 

generate models for this test. Training data collected along one in five of the videography surveys was 

set aside and models were trained and re-run multiple times to assess the variability of outputs. This 

process was repeated five times for each of the five videography surveys shown in Figure 1. Model 

performance was assessed via OOBA, independent overall accuracy, the Kappa statistic, per-class 

User’s and Producer’s accuracy, and classifier probabilities (latter five calculated using the same 

points set aside in (1) for independent accuracy assessment).  
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5. Results and Discussion  

5.1. Effect of Training Sample Size on Classifier Accuracies and Probabilities 

Three model iterations were deemed sufficient to represent the variability of outputs since models 

generated with the same training sample size tended to predict the same classes at the same locations, 

and tended to achieve similar accuracies, Kappa statistic values, and probabilities. For the 15 models 

that were generated in total: OOBAs, independent overall accuracies, Kappa statistic values, and  

per-class User’s and Producer’s accuracies are provided in Table 4. Average probabilities for the 

winning class are provided in Table 5.  

Results indicate that acceptable accuracies for all land cover types were achieved with as few as 25 

training points per-class. Models based on 13 points per-class yielded poor User’s accuracies for 

Mixed Sediment (65% to 69%), and though a McNemar’s test indicated there was not a significant 

difference between models generated with 13 or 25 points per-class, the notable increase in the User’s 

accuracies for Mixed Sediment (87%) indicates that the latter should be preferred (Table 4). Training 

sample sizes of 25 to 167 points per-class yielded comparable results (OOBAs ranged from 88% to 

91%, independent overall accuracies from 88% to 92%, Kappa statistic values from 0.88 to 0.90, and 

User’s and Producer’s Accuracies from 78% to 100%), indicating that under the conditions tested, 

model performance was not highly dependent on the training sample size. This was confirmed with the 

McNemar’s statistic, which indicated that differences between all models generated with 25 versus 50, 

and 25 versus 100 points per-class were not significant to the 95% confidence level. In some cases a 

significant difference was observed for models based on 25 versus 167 points per-class (nine 

comparisons made between the six models, five of which showed significant differences), though 

acceptable classification accuracies for all land cover types (i.e., >~80%) were still achieved with 

either training sample size.  

These results are consistent with Waske and Braun [27], who classified multi-temporal C-band 

SAR data and achieved overall accuracies of 69%, 75% and 75% with training sample sizes of 15, 

30, and 50 points per-class, respectively. The authors similarly noted that Random Forest showed 

little sensitivity to training sample size, and they also achieved acceptable accuracies with 

relatively few samples. Other authors have reported similar findings with different data types, 

including Landsat imagery and a DEM [30], as well as hyperspectral imagery [40]. In cont rast, 

Millard and Richardson [26] used LiDAR derivatives to classify wetland types, and found that 

both the training sample size and the proportion allocated to individual classes had a significant 

impact on independent accuracies. This indicates that the effect of training sample size may also 

depend on the individual dataset. As such, the results demonstrated here should not be expected in 

all cases. 
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Table 4. OOBA, independent overall accuracies, Kappa statistic values, and per-class User’s and Producer’s accuracies (UA and PA) of 

Random Forest models generated with different training sample sizes. For each model all 49 image channels were included as 

predictor variables. 

Proportion of 

Dataset  

Used to Train 

the Model 

Model 

Iteration 

OOBA 

(%) 

Independent 

Overall  

Accuracy 

(%) 

Kappa  

Statistic 

Water Sand/Mud 
Mixed 

Sediment 

Pebble/ 

Cobble/ 

Boulder 

Bedrock Wetland Tundra 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

~5% 

(13 points 

per-class) 

1 78 88 0.86 100 86 93 88 65 86 92 80 87 92 83 97 95 89 

2 79 87 0.85 100 84 90 87 65 86 92 80 87 92 83 97 95 89 

3 80 88 0.86 100 85 92 87 69 86 92 82 87 92 83 97 95 90 

10% 

(25 points 

per-class) 

1 91 90 0.88 98 86 90 90 87 80 89 94 86 99 81 96 96 86 

2 89 90 0.88 98 86 92 90 87 80 88 94 86 97 81 96 96 87 

3 91 89 0.88 99 86 92 92 87 80 88 94 86 99 78 96 96 84 

20% 

(50 points per-

class) 

1 89 89 0.87 100 84 94 94 86 87 86 92 86 95 83 86 87 85 

2 89 88 0.86 100 85 94 93 83 87 86 91 86 92 84 85 86 86 

3 88 89 0.87 100 85 94 93 86 88 86 92 87 95 82 87 88 84 

40% 

(100 points per-

class) 

1 90 91 0.89 100 86 94 92 84 84 84 92 88 94 93 92 90 95 

2 90 91 0.89 100 86 94 91 83 86 87 92 88 94 93 91 89 95 

3 90 90 0.89 100 86 94 92 84 84 84 92 88 92 92 90 89 95 

~67% 

(167 points 

per-class) 

1 90 91 0.90 98 88 96 91 88 87 86 93 89 96 94 91 89 95 

2 90 92 0.90 98 88 96 92 88 88 86 93 89 95 94 91 90 95 

3 90 91 0.90 98 88 96 93 88 85 84 93 89 95 93 91 89 94 
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Table 5. Average classification probability for the winning class over all validation sites for Random Forest models generated with different 

training sample sizes. For each model all 49 image channels were used as predictor variables. Values for sites that were incorrectly classified 

were excluded from averages. 

Proportion of Dataset used for 

Training 

Model 

Iteration 
Water Sand/Mud 

Mixed 

Sediment 

Pebble/ 

Cobble/ 

Boulder 

Bedrock Wetland Tundra 

~5% (13 points per-class) 

1 0.92 0.67 0.48 0.67 0.61 0.58 0.61 

2 0.92 0.70 0.49 0.67 0.60 0.58 0.61 

3 0.92 0.68 0.49 0.66 0.61 0.58 0.61 

10% (25 points per-class) 

1 0.96 0.72 0.57 0.78 0.66 0.71 0.70 

2 0.96 0.71 0.58 0.79 0.64 0.71 0.70 

3 0.95 0.71 0.58 0.79 0.65 0.71 0.69 

20% (50 points per-class) 

1 0.93 0.79 0.60 0.86 0.72 0.79 0.78 

2 0.93 0.80 0.61 0.86 0.72 0.79 0.78 

3 0.93 0.79 0.60 0.86 0.72 0.79 0.78 

40% (100 points per-class) 

1 0.97 0.86 0.68 0.88 0.82 0.78 0.79 

2 0.97 0.85 0.68 0.87 0.82 0.79 0.80 

3 0.97 0.85 0.68 0.88 0.82 0.79 0.80 

~67% (167 points per-class) 

1 0.97 0.86 0.70 0.89 0.84 0.79 0.82 

2 0.98 0.86 0.69 0.88 0.84 0.80 0.82 

3 0.97 0.86 0.69 0.89 0.84 0.80 0.83 
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While not entirely conclusive, these findings do indicate that it may be possible to classify shore and 

near-shore land covers to acceptable levels (e.g., >~80%) with a relatively small amount of training data. 

This has important implications since collecting training data can be difficult along remote Arctic 

shorelines, which are costly and challenging to access, and which tend to make up only a fraction of the 

total image area [11–13,40]. The potential for accurate classification with a reduced training sample size is 

also relevant for mapping large areas, since reducing the training sample size also decreases memory 

requirements and the duration of the tree-growing process [25,26]. These benefits were similarly noted by 

Deschamps et al. [24] who classified crop types, albeit using a much larger dataset (25,000 to 200,000 

training points). However, results from this analysis also show that under certain conditions, some classes 

may require additional training data to be accurately classified. We theorize that the lower User’s accuracy 

observed for mixed sediment in particular, could be due to the fact that the range and diversity of the SAR 

and spectral values were not well represented by just 13 training samples. This seems plausible since 

compared to other classes like sand, which were well classified with 13 training samples, values for mixed 

sediment were much more variable. 

Despite the advantages associated with a decreased training sample size, in this analysis models 

built on the largest training sample sizes also had the highest overall accuracies. This suggests that the 

added effort associated with collecting more training data, as well as the added memory requirements 

and processing times may be warranted in some cases [24]. This is further supported by the fact that 

classifier probabilities were also considerably higher for models generated with larger training sample 

sizes (Table 5), indicating greater certainty associated with class predictions [69]. For these reasons the 

largest training sample size (i.e., 167 points per-class or ~67% of the training/validation dataset) was 

selected as the final, optimal dataset used to generate subsequent models. While not addressed here, it 

is possible that models based on fewer predictor variables would need less training data, as 

increasingly complex datasets (higher dimensionality) often require more training samples to achieve 

acceptable accuracy levels [26,35]. 

In this analysis differences observed between independent overall accuracies and OOBAs ranged 

from +10% to −2% (independent overall accuracy-OOBA), with independent accuracies generally being 

higher than OOBAs. Larger differences were also observed for models based on 13 training points per-

class (8% to 10%) compared to all others (1% to 2%). While the tendency for OOBAs to underestimate 

true accuracies is well known [14,30], this analysis has shown that with a sufficient training sample size 

OOBA rates are similar enough to true accuracy rates to warrant the use of the former alone for model 

assessment. This result is also of interest for shoreline mapping applications, as users could potentially 

collect less ground data, as independent validation sites would not be required. However, other authors 

have also observed the opposite result. Millard and Richardson [25,26], for example, found that OOBA 

rates were up to 21% higher than independent accuracies (i.e., OOBAs were overly optimistic), and so 

this result may not be repeatable with a different dataset. 

5.2. Predictor Variables Providing Relevant Information to the Model and the Effect of Reducing Data 

Load on Classifier Accuracies and Probabilities 

The rank of variable importances differed between models generated with the same training data and 

predictor variables, so 10 models were required to adequately represent the variability of outputs (for the 10 
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sets of variables tested 100 models were generated in total). As was observed in 1., models generated with 

the same set of predictor variables still tended to predict the same classes at the same locations, and 

accuracies, Kappa statistic values, and probabilities were also similar. As such, we present results of the 

first three models only for each set of increasingly fewer predictor variables. Results from this test, 

including: OOBAs, independent overall accuracies, Kappa statistic values, and per-class User’s, Producer’s 

accuracies are provided in Table 6, and classifier probabilities are provided Table 7.  

Models generated with nine or more variables achieved relatively stable results regardless of the 

number of inputs (OOBAs and independent overall accuracies ranged from 90% to 92%, Kappa 

statistic values from 0.89 to 0.90, and User’s and Producer’s accuracies from 84% to 99%). This 

indicates that under the conditions tested, model performance was not adversely affected by reducing 

the number of inputs from 49 to nine predictor variables. However, a decrease in accuracy was 

observed with models generated with four predictor variables, and the McNemar’s test indicated that 

the difference between these and models generated with nine predictor variables was significant to the 

95% confidence level. Classifier probabilities tended to remain stable or increase slightly as fewer 

predictor variables were included as inputs, though with fewer than 14 predictor variables, 

probabilities for some classes also decreased substantially (e.g., for Pebble/Cobble/Boulder 

probabilities were ~0.92 with 14 predictor variables, and ~0.86 with nine predictor variables). Since 

the set of 14 predictor variables achieved both relatively high classifier accuracies and probabilities it 

was chosen as the final, optimized dataset used to generate subsequent models (Tables 6 and 7).  

The ability to achieve similar outputs from Random Forest with a reduced data load was also 

observed by Corcoran et al. [44] who classified uplands, water and wetlands using Landsat 5, 

PALSAR, topographic, and soils data. The authors found comparable results when generating models 

with all, or just the top 10 most important predictor variables (an overall accuracy of 85% and Kappa 

statistic of 0.73 was achieved with the former, and an overall accuracy of 81% and Kappa statistic of 

0.67 was achieved with the latter). The authors found similar results while classifying more detailed 

wetland types. Millard and Richardson [26] also classified wetland types using LiDAR data, though in 

their study the authors found that accuracies significantly improved when just the most important 

predictor variables were included in the model.  

This finding is relevant for mapping large areas, as reducing the model data load also reduces data storage 

requirements, and increases computational efficiency. These results may also inform future shoreline 

mapping work, as a similar set predictor variables could be used to classify other areas. Then, fewer variables 

would need to be generated, which would decrease the time required to prepare images for classification. 

However, it is worth noting that a different set of predictor variables could achieve comparable results, and 

another user may find different predictor variables are important for classifying their particular dataset. 

Similarly, because both the Mean Decrease in Accuracy and Gini Index values identified different variables 

as having the lowest importance values another analyst may have chosen to remove other variables through 

the same iterative process. Since focus was to accurately classify the land covers of interest, values for the 

Mean Decrease in Accuracy were used more often in making final decisions regarding which variables to 

remove, and to some extent, expert knowledge also played a role [44]. 



Remote Sens. 2015, 7 13549 

 

 

Table 6. OOBAs, independent overall accuracies, and Kappa statistic values, and per-class User’s and Producer’s accuracies (UA and PA) for 

Random Forest models generated with increasingly fewer predictor variables. For each model a training sample size of 167 points per-class 

was used. 

Number of 

Variables 

Model 

Iteration 

OOBA 

(%) 

Independent 

Overall 

Accuracy (%) 

Kappa 

Statistic 

Water Sand/Mud 
Mixed 

Sediment 

Pebble/ 

Cobble/ 

Boulder 

Bedrock Wetland Tundra 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

49 

1 91 90 0.90 98 88 96 91 88 87 86 93 89 96 94 91 89 95 

2 92 90 0.90 98 88 96 92 88 88 86 93 89 95 94 91 90 95 

3 91 90 0.90 98 88 96 93 88 85 84 93 89 95 93 91 89 94 

44 

1 90 91 0.90 98 88 96 92 87 87 86 93 90 94 92 90 89 94 

2 90 91 0.90 98 88 96 92 89 86 86 95 88 95 94 91 89 95 

3 90 91 0.90 98 88 96 92 88 87 86 95 90 95 93 91 89 94 

39 

1 91 91 0.90 98 87 96 92 87 87 86 93 90 95 92 90 89 94 

2 90 91 0.90 98 88 96 92 87 87 86 93 90 95 93 91 89 94 

3 91 91 0.90 98 88 96 91 86 87 86 93 90 95 94 91 89 95 

34 

1 91 91 0.90 98 88 96 91 88 87 86 93 89 96 94 91 89 95 

2 90 92 0.90 98 88 96 93 88 87 86 93 90 95 94 91 89 95 

3 90 91 0.90 98 88 96 91 87 86 84 93 89 95 93 91 89 94 

29 

1 90 91 0.90 98 87 96 91 86 88 86 93 90 94 93 92 90 95 

2 90 91 0.90 98 88 96 91 86 87 86 93 90 95 94 91 89 95 

3 91 92 0.90 98 87 96 93 88 88 86 93 90 94 93 93 92 95 

24 

1 90 92 0.90 98 88 96 92 87 87 87 94 90 95 93 92 90 95 

2 91 92 0.90 99 88 96 93 88 87 87 94 90 96 93 91 89 95 

3 91 91 0.90 98 87 96 92 87 87 87 94 90 95 92 90 89 95 
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Table 6. Cont. 

Number of 

Variables 

Model 

Iteration 

OOBA 

(%) 

Independent 

Overall Accuracy 

(%) 

Kappa 

Statistic 

Water Sand/Mud 
Mixed 

Sediment 

Pebble/ 

Cobble/ 

Boulder 

Bedrock Wetland Tundra 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

19 

1 90 92 0.90 98 88 95 92 87 85 87 94 90 96 95 92 90 97 

2 91 92 0.90 98 87 95 92 88 85 87 94 90 97 93 92 90 96 

3 90 91 0.90 98 87 95 92 88 86 87 94 90 97 92 92 90 94 

14 

1 90 91 0.90 99 87 95 92 86 86 87 94 90 95 92 92 90 95 

2 90 91 0.90 99 87 95 93 87 85 86 93 90 95 90 93 92 94 

3 90 91 0.90 99 88 96 93 86 86 86 92 90 95 93 92 90 95 

9 

1 91 91 0.90 99 87 93 92 87 86 86 95 92 94 92 92 90 94 

2 91 91 0.89 99 87 93 91 86 86 86 95 92 94 92 92 90 94 

3 91 91 0.90 99 87 93 92 87 86 86 95 92 94 92 92 90 94 

4 

1 86 88 0.86 96 83 90 91 82 84 87 90 88 91 86 87 86 89 

2 87 87 0.85 96 83 88 91 82 80 87 90 88 91 84 88 84 88 

3 86 87 0.85 95 83 89 89 80 80 87 90 88 91 84 88 87 89 
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Table 7. Average classification probability for the winning class over all validation sites 

for Random Forest models generated with increasingly fewer predictor variables. Values 

for sites that were incorrectly classified were excluded from averages. 

Number of Variables 
Model 

Iteration 
Water Sand/Mud 

Mixed  

Sediment 

Pebble/ 

Cobble/ 

Boulder 

Bedrock Wetland Tundra 

49 

1 0.97 0.86 0.70 0.89 0.84 0.79 0.82 

2 0.98 0.86 0.69 0.88 0.84 0.80 0.82 

3 0.97 0.86 0.69 0.89 0.84 0.80 0.83 

44 

1 0.97 0.86 0.70 0.89 0.84 0.80 0.82 

2 0.97 0.86 0.70 0.89 0.85 0.80 0.82 

3 0.97 0.86 0.70 0.89 0.84 0.80 0.83 

39 

1 0.98 0.87 0.71 0.89 0.85 0.82 0.84 

2 0.97 0.87 0.72 0.89 0.85 0.81 0.84 

3 0.98 0.87 0.72 0.89 0.85 0.81 0.83 

34 

1 0.98 0.87 0.72 0.90 0.86 0.81 0.84 

2 0.97 0.87 0.71 0.90 0.86 0.81 0.84 

3 0.98 0.87 0.72 0.90 0.86 0.81 0.84 

29 

1 0.97 0.88 0.73 0.90 0.87 0.83 0.84 

2 0.98 0.88 0.73 0.90 0.87 0.82 0.85 

3 0.98 0.88 0.73 0.90 0.87 0.83 0.84 

24 

1 0.98 0.88 0.73 0.90 0.87 0.84 0.85 

2 0.97 0.88 0.73 0.90 0.87 0.84 0.85 

3 0.98 0.88 0.73 0.90 0.87 0.84 0.85 

19 

1 0.98 0.89 0.77 0.90 0.90 0.84 0.86 

2 0.98 0.89 0.76 0.90 0.90 0.85 0.86 

3 0.98 0.89 0.76 0.90 0.90 0.86 0.86 

14 

1 0.98 0.90 0.77 0.92 0.91 0.88 0.86 

2 0.98 0.90 0.77 0.92 0.91 0.88 0.85 

3 0.98 0.89 0.78 0.92 0.91 0.87 0.86 

9 

1 0.99 0.88 0.75 0.86 0.91 0.90 0.87 

2 0.98 0.88 0.75 0.86 0.91 0.91 0.87 

3 0.98 0.88 0.75 0.87 0.91 0.90 0.87 

4 

1 0.91 0.81 0.77 0.91 0.94 0.92 0.88 

2 0.91 0.82 0.77 0.92 0.94 0.93 0.89 

3 0.91 0.82 0.78 0.92 0.94 0.93 0.88 

Variables included in the final, optimized dataset, as well as their respective importance values 

(averaged for all 10 model iterations) are presented in Table 8. Of the six spectral channels available 

with the Landsat 5 data, all but the blue channel were included. As was the case for all models 

generated in this research, the most important predictor variable was NDVI. This result is sensible 

since it was often difficult to distinguish between vegetated and un-vegetated classes in available SAR 

imagery. During the collection of field data many classes appeared to have comparable surface 
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roughnesses (e.g., Tundra and Mixed Sediment), and moisture conditions could have also been similar 

or not detectable in available SAR imagery due to the acquisition of shallow versus steep incidence 

angle data, which tends to be more sensitive to differences in roughness than differences moisture [11]. 

This result is consistent with Demers et al. [13], who found that NDVI was instrumental in 

differentiating vegetated versus un-vegetated shoreline types. The DEM and slope were also important 

variables in this analysis. Baptist [71] found that classification of coastal features often improves with 

the inclusion of these data. 

Table 8. Reduced set of predictor variables for an optimal Random Forest model, and their 

respective importance values for the Mean Decrease in Accuracy and Gini Index 

(importance values are based on averages generated from all 10 model iterations). 

  

Average Importance Value 

Mean 

Decrease 

in 

Accuracy  

Rank of 

Variable 

(Most to 

Least 

Important) 

Gini 

Index 

Rank of 

Variable 

(Most to 

Least 

Important) 

L
an

d
sa

t 
5

 V
ar

ia
b

le
s Green 37.25 8 47.85 13 

Red 39.75 6 73.15 5 

Near-Infrared 39.35 7 88.91 3 

SWIR-1 36.79 10 82.64 4 

SWIR-2 40.62 4 91.89 2 

NDVI 68.94 1 119.90 1 

R
A

D
A

R
S

A
T

-2
 

V
ar

ia
b

le
s 

Freeman-Durden decomposition: double-bounce scattering 56.58 3 57.47 12 

Freeman-Durden decomposition: volume scattering 36.22 11 62.94 9 

Pedestal Height 31.31 14 65.26 7 

Touzi Decomposition: Secondary Eigenvalue 31.86 13 60.35 10 

Touzi Decomposition: Tertiary Eigenvalue 33.68 12 65.97 6 

HV Intensity 37.17 9 65.22 8 

DEM 

Variables 

DEM 57.82 2 60.28 11 

Slope 40.27 5 35.28 14 

Several SAR variables were found to be of high importance to the model (Table 8). Of these, the 

Freeman-Durden double bounce parameter had the highest importance. Demers et al. [13] similarly 

observed that this variable was useful for detecting wetlands, and Ullmann et al. [17] found that double 

bounce intensity was related to vegetation density (low values were observed over sparser vegetation; 

high values were observed over denser vegetation). Banks et al. [12] observed that double bounce 

scattering was useful for differentiating wetlands from other vegetated land covers, and while double 

bounce values for all other classes were vastly different between their two study areas, values for 

wetlands at shallow angles were highly consistent. HV was the only SAR intensity channel included in 

the final, optimized set of 14 predictor variables (Table 8). Banks et al. [11] also found that compared 

to HH and VV, HV achieved the highest average class separability (based on the Bhattacharyya 

Distance) for multiple shoreline types [12]. Several SAR and optical variables achieved similar 

importance values, indicating a multi-sensor approach is optimal for this application. This is supported 
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by the fact that Banks et al. [11] found low overall classification accuracies when attempting to 

classify shore and near-shore land cover types with SAR data alone, and found that their model 

required the combination of both SAR and optical data to distinguish sand from mixed-sediment 

beaches and flats.  

Classifier results for models generated with 14 predictor variables are presented visually in 

Figure 3, including outputs for the first model as well as variability of class predictions for all 10 

model runs (i.e., the number of times a different class was predicted by one of the 10 models). 

Results show that while many areas are well classified, there is still potential for improvement. For 

example, some portions of the backshore containing pebbles and cobbles were misclassified as 

Bedrock (Figure 3; example for Mixed Sediment). This could be due to an insufficient number of 

training sites for that particular type of material, which could be of a similar roughness and colour 

as the bedrock types that were sampled [13]. This seems plausible since it was observed during the 

collection of field data that, in some cases, pebbles and cobbles were approximately as smooth as 

bedrock due to the size and arrangement or packing of materials. This is relevant with respect to 

the SAR data, since backscattering behaviour is affected by roughness, especially at shallow 

incidence angles [11,12].  

In some cases Tundra was also misclassified as Wetland, though because wetlands are more 

sensitive to the effects of oiling this is not of major concern for the application of shoreline 

sensitivity mapping. This is because preference is always to avoid under-estimating the more 

sensitive class [8,13]. Demers et al. [13] also observed confusion between tundra and wetlands, 

which they suggested could be due to the misidentification of features during the training and or 

validation process, as both classes tended to transition into one another making it difficult to 

establish boundaries even in the field [72]. A similar observation was made in this research during 

the collection of training and validation data. 

Though it is possible for Random Forest outputs to vary, despite models being generated with the 

same training data and set of predictor variables [25], this analysis has demonstrated potential for 

highly consistent results. Specifically, the last column of Figure 3 shows that the majority of each sub-

scene was classified as the same land cover type by all 10 models. Other authors have observed highly 

variable outputs. Millard and Richardson [26] for example, found a high degree of variability between 

model iterations particularly along the edges of features. To compensate the authors ran 25 iterations 

of the same model and calculated probability values based on the number of times each model 

assigned the most commonly predicted class. As such, the degree of variability observed, may again 

depend on the particular dataset being tested.  

OOBAs and independent accuracies were similar for all models generated in this test (differences 

ranged between 0% and 2%). This further demonstrates that with a sufficient training sample size 

it may be possible to utilize the internal accuracy assessments of Random Forest alone for 

model validation. 
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Classifier Legend 
 

  Water   Wetland 
      

  Sand/Mud   Tundra 
      

  Mixed Sediment    
      

  Pebble/Cobble/Boulder    
      

  Bedrock    
 

 

Variability Legend 
 

  1 
   

  2 
   

  3 
   

  4 
   

  5 
 

Figure 3. Field photos (left), classifier results for the first model generated with 14 

predictor variables and 167 training points per-class (middle), and inter-model variability 

the number of times a different class was predicted by one of the 10 models (right). Values 

of 1 indicate no variability (all models predicted the same class) and values of 5 indicate 

the highest observed variability (five models predicted different classes at that pixel 

location). Approximately the same area in all three images is indicated by arrows.
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For this research, preference would have been to use training and validation data that was completely 

randomly distributed throughout the study area. Implementing this approach proved difficult in practice 

however, as analysts could not interpret the land cover types present at all locations, resulting in a large 

proportion of points being disregarded. As such we chose a purposeful sampling design, and while effort 

was still made to ensure some independence between training and validation data (e.g., each 

training/validation site was separated in space by a minimum of 100 m), it is still possible that the 

accuracies presented here are somewhat inflated as a result of optimistic bias [67].

Further study is required to fully address the degree to which this has affected classifier performance. 

5.3. Potential for Remote Predictive Mapping 

As was the case for test (1), three model iterations were deemed sufficient to represent the 

variability of outputs as only model accuracies and probabilities were assessed in this test. For each of 

the 15 models that were generated in total (three models each for the five different sets of training 

data), OOBAs, independent accuracies, Kappa statistic values, and per-class User’s and Producer’s 

accuracies for each iteration are provided in Table 9, and average probabilities for the winning class 

are provided in Table 10.  

Results indicate that further study is required to fully assess the potential for spatial transferability of the 

model to areas without training data (Table 9). In all cases, models performed relatively well (OOBAs 

ranged from 89% to 92%, independent overall accuracies from 81% to 88%, Kappa statistic values from 

0.77 to 0.86), though for each set of training data one or more land cover types tended to be poorly 

classified. The Class(es) that were poorly classified also varied between the different sets of training data. 

As an example, Bedrock was classified relatively well by all models except those that excluded data from 

survey 4 (User’s and Producer’s accuracies for the former were 71% and 74%; User’s and Producer’s 

accuracies for the latter were 33% and 7%). In contrast, Tundra was well classified by all models except 

those that excluded data from survey 3 (User’s and Producer’s accuracies for the former were 86% and 

78%; User’s and Producer’s accuracies for the latter were 25% to 29% and 67%). 

It is expected that the low accuracies observed in these cases are as a result of image-to-image 

variations in moisture conditions, differences in plant phenology, and for the substrate classes in 

particular (Sand/Mud, Pebble/Cobble/Boulder, and Bedrock) both differences in colour and in surface 

roughness. These are all likely to impact the consistency of SAR and optical image values in space and 

in time [60–63], which would make it more difficult to classify a given land cover type, especially if 

the full range of values exhibited throughout the study area are not well represented in the training 

dataset. This could explain why better accuracies were achieved when training data from all regions 

were included in the model, even if the sample size was relatively small (e.g., 13 to 25 points per-class, 

as was the case for test (1)). 
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Table 9. OOBAs, independent overall accuracies, and Kappa statistic values, and per-class User’s and Producer’s accuracies (UA and PA) for 

Random Forest models generated with excluded training data from one in five videography surveys (numbered from west to east (see Figure 1)). 

Survey Data  

Excluded From  

Model 

Model 

Iteration 

OOBA 

(%) 

Independent 

Overall 

Accuracy 

(%) 

Kappa 

Statistic 

Water Sand/Mud 
Mixed 

Sediment 

Pebble/ 

Cobble/ 

Boulder 

Bedrock Wetland Tundra 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

UA 

(%) 

PA 

(%) 

1 

1 90 84 0.80 94 99 100 32 26 90 88 70 97 100 66 93 100 78 

2 89 84 0.80 96 99 100 32 25 90 88 70 97 100 66 93 100 78 

3 90 84 0.81 96 99 100 32 24 90 88 70 99 100 68 93 100 80 

Number of Validation Sites 67 38 10 10 72 45 97 

2 

1 90 83 0.79 70 92 79 95 72 72 38 75 96 75 91 74 93 86 

2 90 83 0.80 71 94 81 95 72 72 38 75 96 75 91 74 93 86 

3 90 83 0.79 70 92 79 95 72 72 38 75 96 75 91 74 93 86 

Number of Validation Sites 49 61 18 8 101 39 77 

3 

1 91 81 0.77 79 100 77 95 75 68 99 72 72 80 91 91 29 67 

2 92 81 0.77 79 100 77 95 74 68 99 72 73 80 94 91 25 67 

3 91 81 0.77 79 100 77 95 74 68 99 72 73 80 91 91 29 67 

Number of Validation Sites 41 59 80 96 41 33 3 

4 

1 90 88 0.86 94 100 85 90 84 81 85 97 33 7 93 93 91 85 

2 90 88 0.86 94 100 85 90 84 81 86 97 33 7 93 92 88 86 

3 90 88 0.86 94 100 85 90 84 82 86 97 33 7 93 93 93 86 

Number of Validation Sites 58 67 94 72 14 102 59 

5 

1 91 85 0.83 85 100 91 80 88 73 81 89 74 74 100 97 86 86 

2 90 85 0.82 85 100 91 80 89 71 79 89 74 74 100 97 86 86 

3 90 85 0.82 85 100 91 80 88 73 80 89 77 74 100 97 86 86 

Number of Validation Sites 35 25 48 64 31 31 14 
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Table 10. Average classification probability for the winning class over all validation sites 

for Random Forest models generated with excluded training data from one in five 

videography surveys (numbered from west to east (see Figure 1)). Values for sites that 

were incorrectly classified were excluded from averages. 

Survey Data  

Excluded From  

Model 

Model 

Iteration 
Water Sand/Mud 

Mixed  

Sediment 

Pebble/ 

Cobble/ 

Boulder 

Bedrock Wetland Tundra 

1 

1 0.98 0.71 0.74 0.72 0.87 0.91 0.79 

2 0.99 0.72 0.73 0.72 0.87 0.91 0.79 

3 0.99 0.71 0.74 0.72 0.87 0.91 0.79 

2 

1 0.99 0.93 0.81 0.93 0.85 0.85 0.81 

2 0.98 0.93 0.80 0.93 0.85 0.85 0.81 

3 1.00 0.93 0.81 0.94 0.85 0.85 0.80 

3 

1 1.00 0.97 0.70 0.86 0.84 0.82 0.71 

2 1.00 0.97 0.70 0.85 0.84 0.82 0.70 

3 1.00 0.97 0.70 0.85 0.84 0.82 0.70 

4 

1 0.98 0.86 0.72 0.89 0.83 0.81 0.80 

2 0.98 0.85 0.73 0.88 0.84 0.81 0.80 

3 0.98 0.85 0.73 0.88 0.84 0.81 0.80 

5 

1 0.98 0.82 0.72 0.90 0.91 0.85 0.83 

2 0.98 0.82 0.73 0.89 0.91 0.85 0.83 

3 0.98 0.82 0.72 0.89 0.91 0.86 0.83 

These results are comparable to those achieved by Demers et al. [13] who assessed the 

transferability of both pixel-based Maximum Likelihood and hierarchical object-based classifiers for 

shoreline sensitivity mapping. The authors similarly observed relatively high overall accuracies, with 

only one or two land cover types being poorly classified. While the focus of this analysis was not to 

compare Random Forest to object-based classification, it is worth noting that the latter approach has 

greater flexibility in terms of being able to make site-specific adjustments to the segmentation 

approach, as well as to the threshold values being used [73,74]. Demers et al. [13] theorized that this 

could improve results on a site-by-site basis, though this would require more user interference 

developing the model. While similar adjustments cannot be made to the Random Forest model 

produced in this research, it has been demonstrated that it is still possible to achieve accurate results 

with quality training data that better represents the full range of values for a given class. 

6. Conclusions  

This research has demonstrated the potential to classify shore and near-shore land cover types to 

acceptable levels (e.g., >~80%) using relatively few training samples (i.e., 25 points per-class). This 

result is relevant for mapping remote, Arctic shorelines since these areas are often difficult and expensive 

to access, and tend to make up only a fraction of the total image, which can make it harder to collect a 

large quantity of ground data. This result is also significant for mapping large areas since reducing the 

training sample size also decreases memory requirements and increases computational efficiency.  
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Where possible, it may still be reasonable to use more than the minimum required training samples, 

as it has also been demonstrated that increasing the training sample size also tends to increase 

classification accuracy and classifier probabilities. With a sufficient training sample size, it may also 

be possible to forego independent accuracy assessments, since it was found in this research that values 

can be comparable with the OOBAs provided by Random Forest.  

In this analysis, the number of predictor variables used in the model could be greatly reduced 

without affecting model performance, including overall accuracy and classifier probabilities. Since 

using fewer predictor variables also increases computational efficiency and decreases data storage 

requirements, this result is relevant for mapping large areas. A final, optimized set of 14 predictor 

variables has also been defined that includes: all Landsat 5 spectral channels (except blue), NDVI 

values, Freeman-Durden double bounce and volume scattering, pedestal height, the secondary and 

tertiary eigenvalues of the Touzi decomposition, HV intensity, DEM values, and slope. While it is 

possible that a different set of predictor variables would achieve comparable or better results, these 

could be used as a basis for future shoreline mapping work, since it is probable that some or all of 

these would still be useful for classifying similar land cover types. 

While accuracies of 91% were achieved when training data from the entire region were included in 

the model, mixed results were observed when assessing the potential for remote predictive mapping. 

This could be as a result of a combination of image-to-image variations in SAR and spectral values due 

to differences in moisture, roughness, and or colour, as well as from training samples not fully 

representing the range values a given class exhibits. When a variety of training data were included in 

the model, performance was improved, demonstrating that quality training data are required to achieve 

accurate results.  

Using the conventional manual segmentation method, Environment Canada has only mapped 

approximately 6% of the ~162 000 km of shoreline contained within Arctic Canada [8,75]. With the 

methods developed in this research, there is potential to generate maps more efficiently if quality 

training data are available. These products could then provide at least some basis for oil spill response 

and contingency planning in other remote areas. 

Acknowledgments 

The authors would like to thank Valerie Wynja for contributing to the organization and collection of 

field data and for providing guidance on the identification of shoreline types, as well as Anne-Marie 

Demers for her advice regarding image processing and classification techniques. The authors would also 

like to thank the Canadian Coast Guard, especially the Captain and crew of the Sir Wilfrid Laurier, for 

providing logistical support during our field campaign. We would also like thank the reviewers for 

providing relevant comments and suggestions, as these have greatly improved the quality of the 

manuscript. 

Funding for this research was provided by the Canada Space Agency in support of Environment 

Canada’s Emergency Spatial Pre-SCAT for Arctic Coastal Ecosystems (eSPACE) project.  

  



Remote Sens. 2015, 7 13559 

 

 

Author Contributions 

All experiments were designed by Banks, Millard, and Richardson. Banks performed the 

experiments, analysed the results, and wrote the manuscript. Millard wrote the R scripts and also 

analysed results. All authors advised on the contents, and helped edited the original and subsequent 

versions of the manuscript.  

Conflicts of Interest 

The authors declare no conflict of interest. The funding sponsors had no role in the design of the 

study; in the collection, analyses or interpretation of data; in the writing of the manuscript, and in the 

decision to publish the results.  

References  

1. Piatt, J.F.; Lensink, C.J.; Butler, W.; Kendziorek, M.; Nysewander, D.R. Immediate impact of the 

“Exxon Valdez” oil spill on marine birds. The Auk 1990, 107, 387–397. 

2. Fukuyama, A.; Shigenaka, G.; Coats, D.A. Status of intertidal infaunal communities following the 

Exxon Valdez oil spill in Prince William Sound, Alaska. Mar. Poll. Bull. 2014, 84, 56–69. 

3. Rice, S.D.; Thomas, R.E.; Carls, M.G.; Heintz, R.A.; Wertheimer, A.C.; Murphy, M.L.; 

Short, J.W.; Moles, A. Impacts to pink salmon following the Exxon Valdez oil spill: Persistence, 

toxicity, sensitivity and controversy. Rev. Fish. Sci. 2001, 9, 165–211.  

4. Golet, G.H.; Seiser, PE.; McGuire, A.D.; Roby, D.D.; Fischer, J.B.; Kuletz, K.; Irons, D.B.; Dean, 

T.A.; Jewett, S.C.; Newman, S.H. Long-term direct and indirect effects of the Exxon Valdez oil 

spill on pigeon guillemots in Prince William Sound, Alaska. Mar. Ecol. Prog. Ser. 2002, 241, 

287–304. 

5. Bowyer, T.R.; Testa, J.W.; Faro, J.B. Habitat selection and home ranges of river otters in a marine 

environment: Effects of the Exxon Valdez oil spill. J. Mammal. 1995, 76, 1–11. 

6. Andres, B.A. The Exxon Valdez oil spill disrupted the breeding of black oystercatchers. J. Wildl. 

Manage. 1997, 61, 1322–1328. 

7. Owens, E.H; Sergy. G.A. The Arctic SCAT Manual: A Field Guide to the Documentation of Oiled 

Shorelines in Arctic Environments; Environment Canada: Edmonton, AB, Canada, 2004. 

8. Wynja, V.; Demers, A.; Laforest, S.; Lacelle, M.; Pasher, J.; Duffe, J.; Chaudhary, B.; Wang, H.; 

Giles, T. Mapping coastal information across Canada’s northern regions based on low-altitude 

helicopter videography in support of environmental emergency preparedness efforts. J. Coast. 

Res. 2014, 31, 276–290.  

9. Lamarche, A.; Sergy, G.A.; Owens, E.H. Shoreline Cleanup Assessment Technique (SCAT) Data 

Management Manual. Emergencies Science and Technology Division, Science and Technology 

Branch; Environment Canada: Ottawa, ON, Canada, 2007. 

10. Lamarche, A.; Owens, E.H.; Martin, V.; Laforest, S. Combining pre-spill shoreline segmentation 

data and shoreline assessment tools to support early response management and planning. In 

Proceedings of the 26 Arctic and Marine Oilspill Program (AMOP) Technical Seminar, Victoria, 

BC, Canada, 10–12 June 2003; pp. 219–223. 



Remote Sens. 2015, 7 13560 

 

 

11. Banks, S.N.; King, D.J.; Merzouki, A.; Duffe, J. Assessing RADARSAT-2 for mapping shoreline 

cleanup and assessment technique (SCAT) classes in the Canadian Arctic. Can. J. Remote Sens. 

2014, 40, 243–267. 

12. Banks, S.N.; King, D.J.; Merzouki, A.; Duffe, J. Characterizing scattering behaviour and 

assessing potential for classification of arctic shore and near-shore land covers with fine  

quad-pol RADARSAT-2 data. Can. J. Remote Sens. 2014, 40, 291–314. 

13. Demers, A.M.; Banks, S.N.; Pasher, J.; Duffe, J.; LaForest, S. A comparative analysis of object-

based and pixel-based classification of RADARSAT-2 C-band and optical satellite data for 

mapping shoreline types in the Canadian Arctic. Can. J. Remote Sens. 2015, 41, 1–19. 

14. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. 

15. Souza-Filho, P.W.; Paradella, W.R. Recognition of the main geobotanical features along the 

Bragança mangrove coast (Brazilian Amazon Region) from Landsat TM and RADARSAT-1 data. 

Wetl. Eco. Manag. 2002, 10, 123–132. 

16. Souza-Filho, P.W.; Goncalves, F.D.; Rodrigues, S.W.; Costa, F.R.; Miranda, F.P. Multi-sensor 

data fusion for geomorphological and environmental sensitivity index mapping in the Amazonian, 

Mangrove Coast, Brazil. J. Coast. Res. 2009, 56, 1592–1596. 

17. Ullmann, T.; Schmitt, A.; Roth, A.; Duffe, J.; Dech, S.; Hubberten, H.W.; Baumhauer, R. Land 

cover characterization and classification of arctic tundra environments by means of polarized 

synthetic aperture X- and C-Band Radar (PolSAR) and Landsat 8 multispectral  

imagery—Richards Island, Canada. Remote Sens. 2014, 6, 8565–8593. 

18. Lee, J.S.; Grunes, M.R.; Ainsworth, T.L.; Du, L.J.; Schuler, D.L.; Cloude, S.R. Unsupervised 

classification using polarimetric decomposition and the complex Wishart classifier. IEEE Trans. 

Geosci. Remote Sens. 1999, 37, 2249–2258. 

19. Lee, J.S.; Grunes, M.R.; Pottier, E.; Ferro-Famil, L. Unsupervised terrain classification preserving 

polarimetric scattering characteristics. IEEE Trans. Geosci. Remote Sens. 2004, 42, 722–731. 

20. Cloude, S.R.; Pottier, E. A review of target decomposition theorems in radar polarimetry. IEEE 

Trans. Geosci. Remote Sens. 1996, 34, 498–518. 

21. Cloude, S.R.; Pottier, E. An entropy based classification scheme for land applications of 

polarimetric SAR. IEEE Trans. Geosci. Remote Sens. 1997, 35, 68–78. 

22. Freeman, A.; Durden, S.L. A three component scattering model for polarimetric SAR data. IEEE 

Trans. Geosci. Remote Sens. 1998, 36, 963–973. 

23. Lawrence, R.L.; Wood, S.D.; Sheley, R.L. Mapping invasive plant species using hyperspectral 

imagery and Breiman Cutler classifications (randomForest). Remote Sens. Environ. 2006, 100, 

356–362. 

24. Deschamps, B.; McNairn, H., Shang, J.; Jiao, X. Towards operational radar-only crop type 

classification: Comparison of a traditional decision tree with a random forest classifier. Can. J. 

Remote Sens. 2012, 38, 60–68. 

25. Millard, K.; Richardson, M. Wetland mapping with LiDAR derivatives, SAR polarimetric 

decompositions, and LiDAR-SAR fusion using a random forest classifier. Can. J. Remote Sens. 

2013, 39, 290–307. 



Remote Sens. 2015, 7 13561 

 

 

26. Millard, K.; Richardson, M. On the importance of training data sample selection in random forest 

image classification: A case study in peatland ecosystem mapping. Remote Sens. 2015, 7,  

8489–8515. 

27. Waske, B.; Braun, M. Classifier ensembles for land cover mapping using multi-temporal SAR 

imagery. ISPRS J. Photogramm. Remote Sens. 2009, 64, 450–457. 

28. Rodriguez-Galiano, V.F.; Chica-Olmo, M.; Abarca-Hernandez, F.; Atkinson, P.M.; Jeganathan, C. 

Random Forest classification of Mediterranean land cover using multi-seasonal imagery and 

multi-seasonal texture. Remote Sens. Environ. 2012, 121, 93–107. 

29. Attarchi, S.; Gloaguen, R. Classifying complex mountainous forests with L-Band SAR and 

Landsat data integration: A comparison among different machine learning methods in the 

Hyrcanian Forest. Remote Sens. 2014, 6, 3624–3647.  

30. Gislason, P.O.; Benediktsson, J.A.; Sveinsson, J.R. Random forests for land cover classification. 

Pattern Recogn. Lett. 2006, 27, 294–300. 

31. Loosvelt, L.; Peters, J.; Skriver, H.; Lievens, H.; Van Coillie, F.; De Baets, B.; Verhoest, N.E.C. 

Random forests as a tool for estimating uncertainty at pixel-level in SAR image classification. Int. 

J. Appl. Earth Obs. 2012, 19, 173–184. 

32. Larrañaga, A.; Álvarez-Mozos, J.; Albizua, L.; Peters, J. Backscattering behaviour of  

rain-fed crops along the growing season. IEEE Geosci. Remote S. 2013, 10, 386–390. 

33. Akar, Ö.; Güngör, O. Integrating multiple texture methods and NDVI to the Random Forest 

classification algorithm to detect tea and hazelnut plantation areas in northeast Turkey. Int. J. 

Remote Sens. 2015, 36, 442–464.  

34. Sonobe, R.; Tani, H.; Wang, X.; Kobayashi, N.; Shimamura, H. Random forest classification of 

crop type using multi-temporal TerraSAR-X dual-polarimetric data. Remote Sens. Lett. 2014, 5, 

157–164. 

35. Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 

217–222. 

36. Adam, E.; Mutanga, O.; Odindi, J.; Abdel-Rahman, E.M. Land-use/cover classification in a 

heterogeneous coastal landscape using RapidEye imagery: Evaluating the performance of random 

forest and support vector machines. Int. J. Remote Sens. 2014, 35, 3440–3458. 

37. Akar, Ö.; Güngör, O. Classification of multispectral images using Random Forest algorithm.  

J. Geod. Geoinf. 2012, 1, 105–112.  

38. Liaw, A.; Wiener, M. Classification and regression by Random Forest. R News 2002, 2, 18–22. 

39. Ghimire, B.; Rogan, J.; Miller, J. Contextual land-cover classification: Incorporating spatial 

dependence in land-cover classification models using random forests and the Ghetis statistic. 

Remote Sens. Lett. 2010, 1, 45–54. 

40. Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the Random Forest framework for 

classification of hyperspectral data. IEEE Geosci. Remote Sens. 2005, 43, 492–501. 

41. Breiman, L.; Friedman, J.; Stone, C.; Olshen, R.A. Classification and Regression Trees; Chapman 

and Hall: New York, USA, 1984. 

42. Dietterich, T.G. Ensemble methods in machine learning. In Multiple Classifier Systems, Lecture 

Notes in Computer Science; Springer Berlin Heidelberg: Cagliari, Italy, 2000; pp. 1–15. 

43. Kotsiantis, S.B.; Pintelas, P.E. Combining bagging and boosting. Int. J. Comp. Intell. 2004, 1, 324–333. 



Remote Sens. 2015, 7 13562 

 

 

44. Corcoran, J.M.; Knight, J.; Gallant, A. Influence of multi-source and multi-temporal remotely 

sensed and ancillary data on the accuracy of random forest classification in northern Minnesota. 

Remote Sens. 2013, 5, 3212–3238.  

45. Gillie, R. Aerial Video Shoreline Survey Coronation Gulf and Queen Maud Gulf, Northwest 

Territories, August 18–25; AXYS Environmental Consulting Ltd.: Sidney, BC, Canada, 1995. 

46. Dredge, L.A. Where the River Meets the Sea: Geology and Landforms of the Lower Coppermine 

River Valley and Kugluktuk, Nunavut; A Report to the Geological Survey of Canada, 

Miscellaneous Report 69; Geological Survey of Canada: Ottawa, ON, Canada, 2001. 

47. Owens, E. Primary Shoreline Types of the Canadian North; Environment Canada: Ottawa, ON, 

Canada, 2010. 

48. Owens, E.; Solsberg, L.; West, M.; McGrath, M. Emergency Prevention, Preparedness and 

Response (EPPR); Environment Canada: Vancouver, BC, Canada, 1998. 

49. MacDonald, Dettwiler, and Associates (MDA) Ltd. RADARSAT Illuminated: Your Guide to 

Products and Services. MacDonald, Dettwiler, and Associates (MDA). Available online: 

http://gs.mdacorporation.com/products/sensor/radarsat/rsiug98_499.pdf (accessed on 18 

September 2014). 

50. United States Geological Service, Landsat Surface Reflectance High Level Data Products. 

Available online: http://landsat.usgs.gov/CDR_LSR.php (accessed on 30 September 2014).  

51. Van Zyl, J.J. Calibration of polarimetric radar images using only image parameters and trihedral 

corner reflector responses. IEEE Geosci. Remote Sens. 1990, 28, 337–348. 

52. Freeman, A.; van Zyl, J.J.; Klein, J.D.; Zebker, H.A.; Shen, Y. Calibration of stokes and scattering 

matrix format polarimetric SAR data. IEEE Geosci. Remote Sens. 1992, 30, 531–539. 

53. Raney, R.K. A free 3-dB in cross-polarized SAR data. IEEE Geosci. Remote Sens. 1998, 26,  

700–702.  

54. Touzi, R.; Hawkins, R.K.; Côté, S. High precision assessment and calibration of polarimetric 

RADARSAT-2 SAR using transponder measurements. IEEE Geosci. Remote Sens. 2013, 51, 

487–503. 

55. Lee, J.S.; Grunes, M.R.; de Grandi, G. Polarimetric SAR speckle filtering and its implication for 

classification. IEEE Geosci. Remote Sens. 1999, 37, 2363–2373.  

56. Touzi, R. Target scattering decomposition in terms of roll-invariant target parameters. IEEE 

Geosci. Remote Sens. 2007, 45, 73–84.  

57. Touzi, R.; Goze, S.; Le Toan, T.; Lopes, A.; Mougin, E. Polarimetric discriminators for SAR 

images. IEEE Geosci. Remote Sens. 1992, 30, 973–980. 

58. Natural Resources Canada (NRCAN). Canadian Digital Elevation Data. Available online: 

ftp://ftp2.cits.rncan.gc.ca/pub/geobase/official/cded/ (accessed on 30 September 2014). 

59. Toutin, T.; Wang, H. Impact of DEM source on Radarsat-2 polarimetric information during ortho-

rectification. Int. J. Remote Sens. 2014, 5, 109–122.  

60. Bourgeau-Chavez, L.L.; Leblon, B.; Charbonneau, F.; Buckley, J.R. Assessment of polarimetric 

SAR data for discriminating between wet versus dry soil moisture conditions. Int. J. Remote Sens. 

2013, 34, 5709–5730. 

61. Cable, J.W.; Kovacs, J.M.; Jiao, X.; Shang, J. Agricultural monitoring in northeastern Ontario, 

Canada, using multi-temporal polarimetric RADARSAT-2 data. Remote Sens. 2014, 6, 2343–2371. 



Remote Sens. 2015, 7 13563 

 

 

62. McNairn, H.; Champagne, C.; Shang, J.; Holmstrom, D.; Reichert, G. Integration of optical and 

Synthetic Aperture Radar (SAR) imagery for delivering operational annual crop inventories. 

ISPRS J. Photogramm. Remote Sens. 2008, 64, 434–449.  

63. Kasischke, E.S.; Bourgeau-Chavez, L.L.; Rober, A.R.; Wyatt, K.H.; Waddington, J.M.; Turetsky, 

M.R. Effects of soil moisture and water depth on ERS SAR backscatter measurements from an 

Alaskan wetland complex. Remote Sens. Environ. 2009, 113, 1868–1873.  

64. Red Hen Systems LLC. Video Mapping System, Versatile Hardware for Geospatial Intelligence, 

Geotag Photos and Video. Available online: https://www.redhensystems.com/ 

products/vms-333 (accessed on 30 September 2014). 

65. Red Hen Systems Staff. GeoVideo for ArcGIS: User’s Guide; Red Hen Systems: Fort Collins, 

CO, USA, 2004. 

66. Environmental Systems Research Institute (ESRI). ArcGIS Desktop: Release 9.3; ESRI: Redlands, 

CA, USA, 2008. 

67. Hammond, T.; Verbyla, D. Optimistic bias in classification accuracy assessment. Int. J. Remote 

Sens. 1996, 7, 1261–1266. 

68. The R Project for Statistical Computing. Available online: http://www.R-project.org/ (accessed on 

1 September 2014). 

69. Barrett, B.; Nitze, I.; Green, S.; Cawkwell, F. Assessment of multi-temporal, multi-sensor radar 

and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches. 

Remote Sens. Environ. 2014, 152, 109–124. 

70. Foody, G. Thematic map comparison: Evaluating the statistical significance of differences in 

classification accuracy. Photogramm. Eng. Remote Sens. 2004, 70, 627–633. 

71. Baptist, E. A Multi-Scale Object-Based Approach to Mapping Coastal Natura 2000 Habitat Types 

Using High Spatial Resolution Airborne Imagery and LIDAR Data; Alterra-rapport 1929; Alterra: 

Wageningen, The Netherlands, 2009. 

72. National Wetlands Working Group. Wetlands of Canada; A Report to the Ecological Land 

Classification Series, No. 24; Sustainable Development Branch, Environment Canada: Ottawa, 

ON, Canada; Polyscience Publications Inc.: Montreal, PQ, Canada, 1998. 

73. Flanders, D.; Hall-Bayer, M.; Pereverzoff, J. Preliminary evaluation of eCognition  

object-based software for cut block delineation and feature extraction. Can. J. Remote Sens. 2003, 

4, 441–452. 

74. Grenier, M.; Demers, A.-M.; Labrecque, S.; Benoit, M.; Fournier R.A.; Drolet, B. An  

object-based method to map wetland using RADARSAT-1 and Landsat ETM images: Test case 

on two sites in Quebec, Canada. Can. J. Remote Sens. 2007, 33, S28–S45. 

75. Department of Oceans and Fisheries (DFO). The Canadian Arctic. Available online: http://www. 

dfo-mpo.gc.ca/science/coecde/ncaare-cneraa/index-eng.htm (accessed on 5 April 2013). 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


