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Abstract: High spatial resolution soil moisture (SM) data are crucial in agricultural 

applications, river-basin management, and understanding hydrological processes. Merging 

multi-resource observations is one of the ways to improve the accuracy of high spatial 

resolution SM data in the heterogeneous cropland. In this paper, the Bayesian Maximum 

Entropy (BME) methodology is implemented to merge the following four types of observed 

data to obtain the spatial distribution of SM at 100 m scale: soil moisture observed by 

wireless sensor network (WSN), Advanced Spaceborne Thermal Emission and Reflection 
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Radiometer (ASTER)-derived soil evaporative efficiency (SEE), irrigation statistics, and 

Polarimetric L-band Multi-beam Radiometer (PLMR)-derived SM products (~700 m). From 

the poor BME predictions obtained by merging only WSN and SEE data, we observed that 

the SM heterogeneity caused by irrigation and the attenuating sensitivity of the SEE data to 

SM caused by the canopies result in BME prediction errors. By adding irrigation statistics to 

the merged datasets, the overall RMSD of the BME predictions during the low-vegetated 

periods can be successively reduced from 0.052 m3·m−3 to 0.033 m3·m−3. The coefficient of 

determination (R2) and slope between the predicted and in situ measured SM data 

increased from 0.32 to 0.64 and from 0.38 to 0.82, respectively, but large estimation errors 

occurred during the moderately vegetated periods (RMSD = 0.041 m3·m−3, R = 0.43 and 

the slope = 0.41). Further adding the downscaled SM information from PLMR SM 

products to the merged datasets, the predictions were satisfactorily accurate with an RMSD 

of 0.034 m3·m−3, R2 of 0.4 and a slope of 0.69 during moderately vegetated periods. 

Overall, the results demonstrated that merging multi-resource observations into SM 

estimations can yield improved accuracy in heterogeneous cropland. 

Keywords: soil moisture; Bayesian Maximum Entropy; soil evaporative efficiency; 

irrigation; PLMR; ASTER; wireless sensor network; heterogeneous cropland 

 

1. Introduction 

Soil moisture (SM) plays a fundamental role in land–atmosphere exchange processes [1], 

hydrological processes [2] and terrestrial water cycle trends [3]. L-band microwave remote sensing is 

the most promising technique for obtaining global SM measurements with frequent revisit times, and is 

independent of the effects of clouds and solar illumination [4]. Satellite-based microwave instruments, 

such as the Soil Moisture and Ocean Salinity (SMOS) satellite [5], and Aquarius [6] have 

demonstrated this capability. However, the spatial resolution of SM products from these instruments is 

lower than 40 km [7]. Although it is possible to use data with such a coarse spatial resolution in the field 

of hydrology, most hydrological processes are better observed and modeled at resolutions of less than  

1 km [8]. The fine resolution requirement is also derived from agriculture-related applications and  

river-basin management [9]. For instance, irrigation events affect the spatial distribution of SM at the 

field scale (100–1000 m) in croplands [10]. Active microwave sensors (synthetic aperture radar 

(SAR)) have fine spatial resolution, but SAR (e.g., ENVISAT) backscatter data in high frequency is 

not sensitive to soil moisture in irrigated and vegetated areas [11–14]. 

With the development of the wireless sensor networks (WSNs) which make it possible to acquire 

simultaneous measurements of regional SM, strategies for merging WSNs and remote sensing data are 

currently being investigated to refine high resolution observations using a variety of optical sensors in 

the context of geostatistics [15,16]. Visible/infrared/thermal sensors are applied to provide indirect 

measurements of SM, and have resolutions that are 10–500 times finer than the resolutions of 

microwave radiometers. WSN/optical data merging techniques for obtaining fine resolution SM 

information typically rely on the intrinsic relationships between vegetation indices (VIs) and land 
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surface temperature (LST) with SM using empirical approaches [17]. Based on these relationships, a 

range of optical SM indicators has successfully been merged with WSNs to obtain SM pattern, such as 

LST [18], temperature vegetation dryness index (TVDI) [19] and apparent thermal inertia (ATI) [20,21]. 

However, the previous studies have shown that the validity of WSN/optical data merging methods 

is often questionable in heterogeneous land surfaces [18,19]. The non-stationary and anisotropy of SM 

spatial correlation structure result in problems when applying WSN measurements directly for 

geostatistics. In order to account for this issue, some anisotropic semi-variograms need to be applied 

using remote sensing variables. Although the use of some optical indicators (e.g., TVDI and LST) [19] 

could somewhat mitigate the anisotropy of the measured SM data, the residuals still would not be 

isotropic or meet the requirements of geostatistics because some optical SM indicators exhibit low 

sensitivity to the extreme values of SM [18,19,22]. This low sensitivity increases the errors in spatial 

structures which are key to geostatistical methods. Moreover, optical SM indices have low sensitivity 

to SM under moderate to dense vegetation covers [23]. Dense canopies result in saturated VIs and 

attenuate LST variations related to SM [10]. An effective method of merging multi-sensor SM should 

enable the integration of sufficient information from multi-resource observations whilst accounting for 

issues of SM anisotropy and dense vegetation cover. As a nonlinear spatiotemporal mapping method, 

Bayesian Maximum Entropy (BME) is capable of integrating data with various accuracies and from 

various sources [24–26]. In addition, BME is a probabilistic method that can enable the application of 

uncertain data to provide information of interest while accounting for the data uncertainties. BME has 

been successfully used in many research fields, including environment assessment [27–30], soil 

science [31–33], and public health [34,35]. Furthermore, BME has shown potential as a merging 

method for integrating WSN measurements and remote sensing data [36]. 

In this paper, we attempt to present a multi-source fusion method to estimate high resolution SM 

data over heterogeneous cropland by merging the WSN observations, irrigation statistics, Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Polarimetric L-band  

Multi-beam Radiometer (PLMR)-derived SM products in the BME paradigm. This paper is organized as 

follows: Section 2 presents the study area and data used. The methodology, including BME principles 

and the merging framework, is introduced in Section 3. Section 4 presents the results and evaluates the 

BME predictions obtained by merging multi-resource observations from the perspective of accuracy. 

Finally, the entire paper is discussed and conclusions are presented in Sections 5 and 6, respectively. 

2. Data 

Heihe Watershed Allied Telemetry Experimental Research (HiWATER), was conducted from 2012 

to 2015, located in the Zhangye artificial oasis in the middle reaches of the Heihe River Basin in 

northwestern China. The implementation of HiWATER is to reveal the processes and mechanisms of 

an eco-hydrological system in an inland river basin [37]. While a full description of the data set is 

given in [2], a brief overview of the most pertinent details is provided here. The data used in this study 

include WSN measurements, irrigation statistics, ASTER data, and PLMR-derived SM products 

collected throughout the experimental area during periods of low (30 May 2012; 24 June 2012) and 

moderate vegetation (10 July 2012). 
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2.1. Soil Moisture Wireless Sensor Network and Irrigation Statistics 

As one part of HiWATER, an ecohydrological WSN was installed in the experimental area covering 

4.2 × 4.2 km2 as shown in Figure 1. The objective of WSNs is to capture the multi-scale spatiotemporal 

SM dynamics, and validate the remote sensing SM products [38]. The experimental area is covered 

predominantly by crops and rarely artificial facility (e.g., buildings, roads). The WSN consists of 48 

WATERNET nodes for collecting SM data at depths of 4 and 10 cm based on the frequency-domain 

reflectometry method using Hydro Probe II (HP-II) sensors. The distribution of WSN nodes was 

designed using an optimal spatial sampling strategy [39]. Table 1 shows a summary of WSN data used 

in this research. WSN measurements were obtained at a high temporal resolution (in 10-minute 

intervals), thereby ensuring their concurrency with the remote sensing observations. 

 

Figure 1. Overview of the study area and soil-moisture monitoring network. The right image is 

the ASTER L1B VNIR image covering the study area on 24 June 2012. The RGB components 

are channels 1 (0.56 μm), 3 (0.81 μm), and 2 (0.66 μm), respectively, with 15 m resolution. 

Irrigation is the main water source in the experimental area, where the annual precipitation is  

117 mm. Irrigation statistics were recorded daily for each irrigation date and each irrigation district 

from 1 May to 30 August 2012. The irrigation statistics has a temporal resolution of one day at a 

spatial resolution of 100m. 

Table 1. Summary of WSN data used in the study. 

Date Node Name Max(%) Min(%) Mean(%) SD(%) 

30 May WATERNET 36.9 10.6 19 6.47 

24 June WATERNET 35.3 11.7 19.7 6.86 

10 July WATERNET 33.1 20.4 25.6 3.31 

Note: The units for Max, Min, Mean and SD are m3·m−3. 
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2.2. PLMR-Derived Soil Moisture Products 

PLMR, an airborne microwave radiometer, is capable of dual-polarized brightness temperature 

measurements (TB) at a frequency of 1.413 GHz and bandwidth of 24 MHz. The instrument is 

equipped with six receiving beams, with fixed look angles of ±7°, ±21.5°, and ±38.5° [40,41]. TB are 

used to derive surface SM in this study. TB -to-SM inversion was performed using a modeling 

approach based on a τ − ω model combined with surface roughness, single scattering albedo, canopy, 

and polarization mixing parameters [42]. The PLMR SM product for 10 July 2012, is available with a 

spatial resolution of 700 m. The PLMR SM product was well correlated with the ground-observed SM 

data (RMSE = 0.04 m3·m−3, where RMSE is the root mean square error). A full description of the 

retrieval and validation of PLMR SM products is presented in [43].  

2.3. ASTER Data 

ASTER is an advanced multispectral imager which is to fly on EOS-AM1 polar orbiting spacecraft [44]. 

The ASTER records in 15 spectral bands covering from visible and near-infrared, shortwave-infrared, 

and thermal infrared ranges, with spatial resolutions of 15, 30, and 90 m, respectively[44]. Three 

clear-sky ASTER images were acquired over the experimental region on 30 May, 24 June and 10 July 

2012. The normalized difference vegetation index (NDVI) was computed using the ASTER red and 

near-infrared bands with a spatial resolution of 15 m, then re-sampled at a resolution of 100 m. This 

procedure can reduce the spatial scale effects of the NDVI [45]. The LST data were derived from the 

ASTER data at 90 m spatial resolution using the temperature emissivity separation algorithm [46], 

combined with the water vapor scaling atmospheric correction method [47], then LST data were  

re-sampled at 100 m resolution. The RMSE of LST for 30 May, 24 June, and 10 July are 1.56 k,  

1.66 k, and 1.77 k, respectively. 

3. Methodology  

BME is a spatiotemporal analysis and mapping method based on a combination of Bayesian law 

and maximum entropy theory [26]. This combination permits logical incorporation of measurements 

(hard data and soft data) from various knowledge bases [25]. In the BME framework, the measured 

values are defined as hard data, and specific observations are treated as soft data which are uncertain 

measurements expressed as interval values, probability statements, etc. [24]. In this study, the BME 

method was used to estimate the distribution of SM at a spatial resolution of 100 m by merging WSN 

measurements, ASTER-derived soil evaporative efficiency (SEE) data, irrigation statistics, and 

PLMR-derived SM. The general scheme of this study is depicted in Figure 2. First, only WSN data 

was applied to predict SM at 100 m-scale, and the predictions were denoted by SM from Method I. 

Second, ASTER-derived SEE and WSN data were merged to predict SM at 100 m-scale, and the 

predictions were denoted by SM from Method II. Third, irrigation statistics were added to the merged 

datasets to estimate SM, and the estimation was denoted by SM from Method III. Fourth, the 

downscaled SM at 100 m-scale obtained from PLMR SM was further added to the merged datasets, 

and the predictions were denoted by SM from Method IV. 
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Figure 2. Flowchart of SM estimation in irrigated areas using multi-resource observations. 

3.1. Predictions Obtained by WSN (Method I) 

For comparison of BME predictions using multi-resource observations, only WSN data was used to 

estimate SM firstly. In the framework of BME, when only hard data are available, BME algorithm 

reduces to the Kriging methods [48]. In this study, ordinary kriging (OK) method was applied to 

estimate SM using only WSN data. 

OK, as an optimally-linear unbiased method, can be expressed: 

𝑍∗(𝑠𝑜) = ∑ 𝜆𝑖(𝑠𝑜)𝑍(𝑠𝑖)

𝑛

𝑖=1

 (1) 

where 𝑍∗(𝑠𝑜) is the optimal estimator at location so, 𝑍(𝑠𝑖) is the WSN measurement at the location 𝑠𝑖, 

𝑛 is the number of WSN measurements. 𝜆𝑖(𝑠𝑜) is kriging weights at location 𝑠𝑜.  

To ensure unbiased estimation, the variance between 𝑍∗(𝑠𝑜) and 𝑍(𝑠𝑜) is required to be minimum: 

σ = Var[𝑍(𝑠𝑜) − 𝑍∗(𝑠𝑜)] = E {[𝑍(𝑠𝑜) − ∑ 𝜆𝑖𝑍(𝑠𝑖)

𝑛

𝑖=1

]

2

} = min (2) 

where σ must follow the constraint condition Equation (3) to ensure linear unbiased estimation. 

∑ 𝜆𝑖

𝑛

𝑖=1

= 1  (3) 

where the weight coefficients 𝜆𝑖 and the optimal estimator 𝑍∗(𝑠𝑜) are calculated using the Lagrange 

Multiplier Method with Equation (2) as the object function and Equation (3) as the constraint. 𝜆𝑖 can 

be calculated by the covariances[49]: 

𝝀 = 𝑪−1 × 𝒄𝟎 (4) 

where 𝑪 is the matrix of the covariances 𝐶(ℎ) expressed as a function of the separated distance ℎ. 𝒄𝟎 is 

the vector of the covariances at unknown location. 𝐶(ℎ) can be calculated by the variogram𝛾(ℎ) : 
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𝐶(ℎ) = 𝑐𝑛𝑢𝑔𝑔𝑒𝑡 + 𝑐𝑝𝑎𝑟𝑡−𝑠𝑖𝑙𝑙 − 𝛾(ℎ) (5) 

where 𝑐𝑛𝑢𝑔𝑔𝑒𝑡  represents the nugget, which characterizes the minimum variability observed or the 

“noise” at ℎ = 0 , and 𝑐𝑝𝑎𝑟𝑡−𝑠𝑖𝑙𝑙  is the partial sill representing the structural variance. 𝑐𝑛𝑢𝑔𝑔𝑒𝑡  and 

𝑐𝑝𝑎𝑟𝑡−𝑠𝑖𝑙𝑙 are estimated by Equation(6)–(7). 𝛾(ℎ) can be calculated using the semi-variance function: 

𝛾(ℎ) =
1

2𝑁(ℎ)
∑ [𝑧𝑖 − 𝑧𝑖+ℎ]2

𝑁(ℎ)

𝑖=1

 (6) 

where ℎ is the separated distance between the random variables 𝑧𝑖  and 𝑧𝑖+ℎ. 𝑁(ℎ) is the number of 

pairs of points of 𝑧𝑖  and 𝑧𝑖+ℎ  at a given separated distance ℎ . Generally, 𝛾(ℎ)  generally can be 

modeled by variogram models such as an exponential, spherical or Gaussian models. Gao, et al. found 

that the variogram of WSN observations can be fitted by the nugget-exponential model better [18]. 

Thus, the nugget-exponential model was selected to describe 𝛾(ℎ), which is expressed as[50]: 

𝛾(ℎ) = 𝑐𝑛𝑢𝑔𝑔𝑒𝑡 + 𝑐𝑝𝑎𝑟𝑡−𝑠𝑖𝑙𝑙 (1 − 𝑒
3ℎ

𝑎 ) (7) 

where 𝑎 is the lagged distance representing the correlation length. 

3.2. Predictions Obtained by Merging WSN and SEE (Method II) 

3.2.1. SEE Calculation 

SEE represents the surface moisture availability [51], which is the ratio of the actual to potential soil 

evaporation. The rationale for choosing SEE as soft information in the BME procedure is based on its 

good correlation with near-surface SM and relative stability during the daytime on clear-sky days [52]. 

SEE can be derived from ASTER LST and NDVI using Equation (8) [53]: 

𝑆𝐸𝐸 =
𝑇𝑚𝑎𝑥 − 𝑇𝐴𝑆𝑇𝐸𝑅

𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛
 (8) 

where 𝑇𝐴𝑆𝑇𝐸𝑅  is the soil skin temperature; 𝑇𝑚𝑎𝑥 is the maximum 𝑇𝐴𝑆𝑇𝐸𝑅 , representing the soil 

temperature at the minimum SM; and 𝑇𝑚𝑖𝑛 is the minimum 𝑇𝐴𝑆𝑇𝐸𝑅, representing the soil temperature at 

the maximum SM. Using the triangle approach, 𝑇𝐴𝑆𝑇𝐸𝑅 is estimated as: 

𝑇𝐴𝑆𝑇𝐸𝑅 =
𝑇𝑠𝑢𝑟𝑓,𝐴𝑆𝑇𝐸𝑅 − 𝑓𝑣𝑒𝑔𝑇𝑣𝑒𝑔

1 − 𝑓𝑣𝑒𝑔
 (9) 

where 𝑇𝑠𝑢𝑟𝑓,𝐴𝑆𝑇𝐸𝑅 is the ASTER LST, 𝑇𝑣𝑒𝑔 is the vegetation skin temperature, and 𝑓𝑣𝑒𝑔 is the fraction 

of vegetation cover. Herein, 𝑇𝐴𝑆𝑇𝐸𝑅 is defined as the temperature of the bare soil. 𝑇𝑣𝑒𝑔 is assumed to be 

uniform in the experimental area, equal to the minimum ASTER LST[53,54]. The effect of root-zone 

SM on 𝑇𝑣𝑒𝑔 was not considered in the calculation of SEE. 𝑓𝑣𝑒𝑔 can be expressed as follows[55]: 

𝑓𝑣𝑒𝑔 = (𝑁𝐷𝑉𝐼𝐴𝑆𝑇𝐸𝑅 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛) (𝑁𝐷𝑉𝐼𝑚𝑎𝑥⁄ − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)  (10) 

where 𝑁𝐷𝑉𝐼𝐴𝑆𝑇𝐸𝑅  is the ASTER NDVI; 𝑁𝐷𝑉𝐼𝑚𝑖𝑛  and 𝑁𝐷𝑉𝐼𝑚𝑎𝑥 are NDVI values of the dense 

vegetation canopy and the bare soil in the study area, respectively. Table 2 presents the summary 

statistics for 𝑓𝑣𝑒𝑔. More details regarding the SEE calculation are given in [53,56,57]. 
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3.2.2. Soft Data Estimated from the SEE 

The SEE is used to provide soft information at 100m-scale in terms of interval values in the BME 

procedure. SEE has the moderate and high correlation with SM, but SEE represents SM of bare soil at 

a depth of 0–2 cm, which is inconsistent with WSN and PLMR sensed depth (0–4 cm); SEE fails to 

reflect the root-zone SM in the vegetated areas. Due to these certainties, SEE-derived SM was 

processed as soft data in this study. 

Firstly, SEE was converted into SM using the Lee-Pielke model, which accounts for the transport of 

water from inner soil pores to the soil surface and for the soil hydraulic conductivity [22,58]. The SM 

estimations obtained using the Lee-Pielke model represent a bare soil layer of 0–2 cm [51]. Lee-Pielke 

model is expressed as follows [59]: 

𝑆𝑀𝐿𝐸𝐸 = {

θ𝑓𝑐

𝜋
𝑐𝑜𝑠−1(1 − 2β0.5)  β < 1 

θ𝑓𝑐                                   β ≫ 1
 (11) 

where 𝑆𝑀𝐿𝐸𝐸 represents the SM for bare soil. β representing the surface moisture availability is a 

coefficient in bulk transfer formula[51], and it is called “soil evaporative efficiency (SEE)” in [53,60]. 

θ𝑓𝑐 is the SM at field capacity, which depends on soil type and wind speed [61]. θ𝑓𝑐 as an empirical 

parameter was assumed to be 0.3 or 0.35 m3∙m−3 in previous works [58,62]. However, considering that 

θ𝑓𝑐 varies with soil type and wind speed, Merlin, et al. [53] proposed that θ𝑓𝑐 can be obtained using 

SEE and SM by least square regression. This is achieved by inverting Equation (11) and analytically 

expressing θ𝑓𝑐 as a function of SEE and SM as follows: 

θ𝑓𝑐 = {

𝜋 × 𝑆𝑀𝐿𝐸𝐸

𝑐𝑜𝑠−1(1 − 2β0.5)
 β < 1 

𝑆𝑀𝐿𝐸𝐸                      β ≫ 1

 (12) 

where 𝑆𝑀𝐿𝐸𝐸  was represented by in situ measured SM. β represented the 𝑆𝐸𝐸, which was equal to 

ASTER-derived SEE. In this study, in situ measurements at 4cm depth were used in Equation (12) 

considering the small bias and good correlation of SM at a depth of between 0–2 cm and 0–4 cm as 

Figure 3 shown. 

 

Figure 3. Scatters of SM measurements at a depth of 2cm versus that of 4cm. The 

measurements at 2 cm and 4 cm corresponding to ASTER overpass were provided by 

automatic meteorological stations (AWSs) [63,64]. There were 8, 12, 12 AWSs 

measurements available in the study area for 30 May, 24 June, and 10 July, respectively. 
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Considering the uncertainties of SEE-derived SM, the prediction interval of 𝑆𝑀𝐿𝐸𝐸 can be estimated 

as following: 

𝑆𝑀𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 = 𝑆𝑀𝐿𝐸𝐸 ± 𝑡𝑛−2 ∙ 𝑆𝑆𝐸𝐸⋅𝑆𝑀√1 +
1

𝑛
+

(𝑆𝐸𝐸 − 𝑆𝐸𝐸̅̅ ̅̅ ̅̅ )2

𝑆𝑆𝐸𝐸
 (13) 

where 𝑆𝑀𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  is the prediction interval corresponding to 𝑆𝑀𝐿𝐸𝐸 , 𝑡𝑛−2 is the critical value of the  

t-distribution with (n−2) degrees of freedom and a confidence level of 95%[18]. n is the number of 

WSN measurements. 𝑆𝑆𝐸𝐸⋅𝑆𝑀 is the standard deviation of the regression error of Lee-Pielke model, 

𝑆𝐸𝐸̅̅ ̅̅ ̅̅  is the mean of 𝑆𝐸𝐸 , and 𝑆𝑆𝐸𝐸  is the sum of the squares of the 𝑆𝐸𝐸  deviations[18]. Figure 4 

displays the SM-SEE relationship and corresponding to the prediction interval for each period. The 

accuracy of 𝑆𝑀𝐿𝐸𝐸 retrieved from 𝑆𝐸𝐸 is also displayed in Figure 4. 

 

Figure 4. SM-SEE scatter plots, linear regression lines and associated prediction 

intervalsfor soft data. (a–c) correspond to 30 May 2012, 24 June 2012, and 10 July 2012, 

respectively. The dashed lines represent the regression line between the transformed SEE 

and in situ measurements. The solid lines indicate the prediction interval for 𝑆𝑀𝐿𝐸𝐸 at a 

confidence level of 95%, where 𝑇𝑟𝑎𝑛𝑠𝑓𝑜𝑟𝑚𝑒𝑑 𝑆𝐸𝐸 = 𝑐𝑜𝑠−1(1 − 2𝑆𝐸𝐸0.5) /𝜋 . R 

represents the correlation coefficient between the transformed SEE and the in situ SM. 

RMSE is root-mean-squared error of 𝑆𝑀𝐿𝐸𝐸, which is presented in units of %∙m3·m−3. 

3.2.3. BME Estimation  

In BME algorithm, 𝑆𝑀𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 as soft information was merged with WSN measurements as hard 

data to estimate SM. The SM predictions 𝑥̅𝑘 can be expressed as [25]: 

𝑥̅𝑘 = ∫ 𝑥𝑘𝑓∗(𝑥𝑘|𝑥𝑠𝑜𝑓𝑡 , 𝑥ℎ𝑎𝑟𝑑)𝑑 𝑥𝑘 (14) 

where 𝑓∗(𝑥𝑘|𝑥𝑠𝑜𝑓𝑡 , 𝑥ℎ𝑎𝑟𝑑) is a posterior probability density function (PDF). 𝑥ℎ𝑎𝑟𝑑,𝑥𝑠𝑜𝑓𝑡, and 𝑥𝑘 denote 

the values of the hard, soft data, and unknown values at the estimation locations, respectively. Here, 

𝑥ℎ𝑎𝑟𝑑 is WSN-observed SM, and 𝑥𝑠𝑜𝑓𝑡 is equivalent to the 𝑆𝑀𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙. In this study, the SM in each 

ASTER-pixel area was considered to be homogeneous, because intensive field campaigns or higher 

resolution (finer than 100 m) remote sensing data are unavailable to analyze the SM heterogeneity 

within ASTER pixels. Hence, the WSN-observed SM data were used to represent the referenced 

values at 100 m-scale. 
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In the formulation of Bayesian law, 𝑓∗(𝑥𝑘|𝑥𝑠𝑜𝑓𝑡 , 𝑥ℎ𝑎𝑟𝑑) at each estimation locations updates from 

the prior PDF 𝑓𝐺(𝑥𝑚𝑎𝑝) as Equation (15): 

𝑓∗(𝑥𝑘|𝑥𝑠𝑜𝑓𝑡, 𝑥ℎ𝑎𝑟𝑑) =
𝑓𝐺(𝑥𝑚𝑎𝑝)

𝑓𝐺(𝑥𝑠𝑜𝑓𝑡, 𝑥ℎ𝑎𝑟𝑑)
 (15) 

where 𝑥𝑚𝑎𝑝 consists of a vector of 𝑥𝑠𝑜𝑓𝑡 , 𝑥ℎ𝑎𝑟𝑑  and 𝑥𝑘. 𝑓𝐺(𝑥𝑠𝑜𝑓𝑡, 𝑥ℎ𝑎𝑟𝑑) is the joint PDF of the hard 

and soft data. 𝑓𝐺(𝑥𝑚𝑎𝑝), the prior PDF of 𝑥𝑚𝑎𝑝, is expressed by a joint PDF rather than an actual prior 

PDF in the BME framework. Hence, 𝑓𝐺(𝑥𝑚𝑎𝑝) should be obtained first, which is calculated by general 

knowledge 𝐺 , based on the maximum entropy theory. 𝐺 is expressed in mathematical formula  

as Equation (16):  

ℎ∝ = ∫ 𝑑 𝑥𝑚𝑎𝑝𝑔∝(𝑥𝑚𝑎𝑝)𝑓𝐺(𝑥𝑚𝑎𝑝) (16) 

where the expectations ℎ∝ is the moments of general knowledge, which is mathematically expressed 

by the covariance function 𝐶(𝑥𝑚𝑎𝑝) as Equation (17). 𝑔∝(𝑥𝑚𝑎𝑝) is expressed by the covariances 

𝑐(𝑝𝑖 , 𝑝𝑗) of random variables at location 𝑝𝑖 and 𝑝𝑗 as Equation (18). The covariances can be calculated 

by Equations (5)–(7). 

ℎ∝ = 𝐶(𝑥𝑚𝑎𝑝) (17) 

𝑔∝(𝑥𝑚𝑎𝑝) = 𝑐(𝑝𝑖, 𝑝𝑗) (18) 

𝑓𝐺(𝑥𝑚𝑎𝑝) is mathematically expressed as[24]: 

𝑓𝐺(𝑥𝑚𝑎𝑝) = exp(𝜇0 + 𝝁𝑇𝑔) (19) 

where 𝜇0 is a Lagrange multiplier and 𝝁 is a vector of the Lagrange multiplier. In order to maximize 

ℎ∝ based on the maximum entropy theory, 𝝁 is calculated by substituting Equations (17)–(19) into 

Equation (16). Then 𝝁 is inserted back into Equation (19) to obtain 𝑓𝐺(𝑥𝑚𝑎𝑝). 

3.3. Predictions Obtained by Merging WSN, SEE and Irrigation Statistics (Method III) 

Irrigation leads to the strong spatial heterogeneity of SM in the experimental area [24]. However, in 

the framework of BME, the SM distribution is treated as a spatial random field (SRF) [65], where SM 

is a regionalized random variable. Hence, under the requirements of SRF and the second order 

stationary assumption of covariance, the anisotropic variability of SM is necessary to be removed. 

Irrigation statistics were used to construct SM trends for the removal of SM anisotropy. The spatial SM 

distribution can be decomposed into a primarily spatial trend (𝑆𝑀𝑡𝑟𝑒𝑛𝑑) and a random auto-correlated 

residual component (𝑆𝑀𝜀) as Equation (20) expressing: 

𝑆𝑀 = 𝑆𝑀𝑡𝑟𝑒𝑛𝑑 + 𝑆𝑀𝜀 (20) 

where 𝑆𝑀𝑡𝑟𝑒𝑛𝑑 can be further divided into the SM trend in the irrigated portion denoted by 𝑆𝑀𝑖𝑟, and 

the SM trend in the non-irrigated portion denoted by 𝑆𝑀𝑛−𝑖𝑟 as following: 

𝑆𝑀𝑡𝑟𝑒𝑛𝑑 = 𝑆𝑀𝑖𝑟 + 𝑆𝑀𝑛−𝑖𝑟 (21) 

𝑆𝑀𝑖𝑟  and 𝑆𝑀𝑛−𝑖𝑟 can be estimated using data from the irrigation districts combined with  

WSN-observed SM as follows: 
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(1) Identify the irrigated and non-irrigated areas. Although the frequencies and durations of 

irrigation are not uniform among different fields, the average irrigation interval of a field is five days 

according to the irrigation statistics. The irrigation events corresponding to ASTER overpass dates do 

not influence the SM pattern of those days, because each ASTER overpass occurs at noon local time 

rather than at night when irrigation events occur. Therefore, the irrigated areas with respect to ASTER 

overpass times are defined as the fields in which irrigation events occurred during the five days before 

the corresponding ASTER overpass. The rest of the experimental area consists of non-irrigated areas. 

For example, for the SM obtained from the ASTER overpass conducted on 30 May, the SM 

redistribution and SM trends are expected to be dominated by the irrigation events that occurred from 

25 May to 29 May. The overpass dates of the ASTER data and the periods influenced by irrigation are 

displayed in Table 2. 

(2) The values of 𝑆𝑀𝑖𝑟  are represented by the average WSN observations associated with the 

irrigated areas according to the ASTER overpass times, and the values of 𝑆𝑀𝑛−𝑖𝑟 are the averages of 

the synchronous WSN measurements acquired in the non-irrigated areas. SM trends constructed by 

irrigation statistics in the three investigated periods are displayed in Figure 5. 

After performing the above procedure, the 𝑆𝑀𝑡𝑟𝑒𝑛𝑑 results were applied to remove the SM trends of 

the WSN SM data and the 𝑆𝑀𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 results calculated in Section 3.2.2, and the residuals of the WSN 

SM and 𝑆𝑀𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙  data were obtained. The residuals of the WSN SM and 𝑆𝑀𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 data were 

regarded as hard and soft data, respectively. BME predictions were obtained by applying both sets of 

residuals in Equations (14)–(19). 𝐵𝑀𝐸𝑖𝑟 can be obtained as the sum of the BME predictions  

and 𝑆𝑀𝑡𝑟𝑒𝑛𝑑. 

 

Figure 5. SM spatial trends modeled from the irrigation statistics and WSN data with 90m 

spatial resolution. The white areas in each map represent masked areas that contain buildings. 

Table 2. Summary of the ASTER, PLMR and irrigation statistics. 

ASTER 

Date 

PLMR 

Data 
Min_Fr Max_Fr Mean_Fr 

Periods of Irrigation 

Influence 
𝑺𝑴𝒊𝒓(%) 𝑺𝑴𝒏−𝒊𝒓(%) 

30 May None 0.01 0.5 0.09 25 May–29 May 31.7 16.8 

24 June None 0.01 0.49 0.32 19 June–23 June 34.3 17.7 

10 July Available 0.01 0.59 0.45 5 July–9 July 31.1 25.5 

Note: Units for 𝑆𝑀𝑖𝑟  and 𝑆𝑀𝑛−𝑖𝑟  are m3 ∙m−3. Max_Fr, Min_Fr, and Mean_Fr represent the maximum, 

minimum, and mean of fraction vegetation cover, respectively, in the study area. 
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3.4. Predictions Obtained by Merging the WSN, SEE, Irrigation Statistics, and PLMR SM Data 

(Method IV) 

The microwave brightness temperature data from PLMR were well correlated with SM [42,66,67]. In 

vegetated areas, the microwave brightness temperature may be more closely related to SM than some 

optical dryness indices (e.g., TVDI) [19,68]. Therefore, PLMR-derived SM at 700m were introduced to 

improve the accuracy of BME estimations. A downscaling approach proposed by Merlin et al. [53] was 

used to transform the PLMR SM into SM at 100 m resolution. The downscaling approach was based 

on high-resolution optical data derived SEE and physically-based model predictions of SEE. 

Considering the uncertainties caused by the downscaling method and the discrepancy between PLMR-

scale and 100m-scale, the downscaled SM at 100 m from PLMR data was processed as soft data. The 

downscaling method was formulated as [53]: 

𝑆𝑀𝐴𝑆𝑇𝐸𝑅 = 𝑆𝑀𝑃𝐿𝑀𝑅 + (𝑆𝐸𝐸𝐴𝑆𝑇𝐸𝑅 − 〈𝑆𝐸𝐸𝐴𝑆𝑇𝐸𝑅〉𝑃𝐿𝑀𝑅) × (
𝜕𝑆𝑀

𝜕𝑆𝐸𝐸
)

𝑃𝐿𝑀𝑅
 (22) 

where 𝑆𝑀𝑃𝐿𝑀𝑅 is the PLMR SM product and 𝑆𝑀𝐴𝑆𝑇𝐸𝑅 is the corresponding downscaled SM product at 

100m-scale. The definition of 𝑆𝐸𝐸𝐴𝑆𝑇𝐸𝑅 is the same as that of𝑆𝐸𝐸in Equation (1). 〈𝑆𝐸𝐸𝐴𝑆𝑇𝐸𝑅〉𝑃𝐿𝑀𝑅 

denotes the average of 𝑆𝐸𝐸𝐴𝑆𝑇𝐸𝑅 within the PLMR grid box. (
𝜕𝑆𝑀

𝜕𝑆𝐸𝐸
)

𝑃𝐿𝑀𝑅
 is the partial derivative of 

SM with respect to SEE. In this study, we obtained (
𝜕𝑆𝑀

𝜕𝑆𝐸𝐸
)

𝑃𝐿𝑀𝑅
 via optimization using a least square 

method [69]. The SEE of buildings are considered zero. As shown in Figure 6, the 𝑆𝑀𝐴𝑆𝑇𝐸𝑅  results 

predicted using the downscaling method exhibit a RMSE of 0.048 m3·m−3 and a correlation coefficient of 

0.61 between the downscaled and in situ measured SM data. 

 

Figure 6. The scatter plots between in situ measurements and the downscaled SM from 

PLMR SM products for 10 July. R represents the correlation coefficient between in situ 

observations and the downscaled SM.  

When considering the uncertainty resulting from the downscaling approach, 𝑆𝑀𝐴𝑆𝑇𝐸𝑅  can be 

transformed into soft data intervals [70]. The variance 𝜎2 of residuals obtained from the downscaling 

model were calculated. Then, the upper (𝑆𝑀𝑢𝑝) and lower (𝑆𝑀𝑑𝑜𝑤𝑛) bounds of the prediction interval 

were calculated using Equations (23) and (24): 

SMup = 𝑆𝑀𝐴𝑆𝑇𝐸𝑅 + σ2 (23) 
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SMdown = 𝑆𝑀𝐴𝑆𝑇𝐸𝑅 − σ2 (24) 

Next, the SM trends of 𝑆𝑀𝑢𝑝 and 𝑆𝑀𝑑𝑜𝑤𝑛 were removed using the 𝑆𝑀𝑡𝑟𝑒𝑛𝑑 results constructed from 

the irrigation statistics shown in Section 3.3, and the residuals of 𝑆𝑀𝑢𝑝 and 𝑆𝑀𝑑𝑜𝑤𝑛 were obtained. The 

residuals of 𝑆𝑀𝑢𝑝 and 𝑆𝑀𝑑𝑜𝑤𝑛 were treated as soft data, and the residuals of WSN-observed SM were 

treated as hard data. These data were applied in Equations (14)–(19) to obtain BME predictions. Next, 

the final Method IV results were obtained by summing these BME predictions and the 𝑆𝑀𝑡𝑟𝑒𝑛𝑑. 

4. Results 

4.1. SM Variograms and Residuals 

Figure 7 shows the variograms and residuals of the WSN-observed SM data. The corresponding 

parameters of the fitted variogram models are displayed in Table 3. The variograms of WSN SM for 

the three investigated periods exhibit irregular fluctuations as separation distance increases, which 

reflects the non-stationary and anisotropic of WSN SM. It can be attributed to that the local irrigation 

may spatially redistribute the SM, and damage the correlated structure of the SM variograms. This 

would result in inaccuracies of the fitted variogram models.  

 

Figure 7. SM semi-variograms (red circles), the correspondingly fitted SM variograms 

(red solid line), the semi-variograms of SM residual (blue squares) and the correspondingly 

fitted residual variograms (blue solid line). 

The WSN-observed SM variograms for the three periods exhibit small nugget effects (0.01–0.02) 

and large sill variances (37–51.1), as shown in Table 3. The sills of WSN SM for 30 May and 24 June 

are larger than those of 10 July, which indicates that the spatial variations of SM for 30 May and  

24 June are larger than those of 10 July. This result is also indicated by the smaller ranges of the SM 

data for 30 May and 24 June than that for 10 July. The smaller spatial variation of SM on 10 July 

indicates the stronger spatial autocorrelation of SM. However, after removing SM trends constructed 

from the irrigation statistics, the residual variograms for the three periods exhibit smaller ranges of 

spatial dependence and smaller sills compared with the variograms of the WSN SM data. Therefore, 

the irrigation statistics could be used to successfully remove the principal SM trends to obtain isotropic 
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variograms of the residuals and reasonable variogram models, which can be converted into covariances 

for application in the BME framework. 

Table 3. Parameters of the variogram models. 

Date Variable Nugget Sill Range(m) 

30 May WSN SM 0.02 51.1 656.1 

30 May Residual 0.01 10.7 249.1 

24 June WSN SM 0.02 42.4 390.3 

24 June Residual 0.02 12.4 295.6 

10 July WSN SM 0.01 37 808.3 

10 July Residual 0.01 10.9 218.6 

4.2. Spatial Estimation of Soil Moisture 

Figure 8 displays the four method estimations for the three periods. The white areas in the maps 

represent the masked areas that contain buildings and are not correlated with the surrounding SM 

distribution. Among the three periods, larger spatial variations in SM occurred on 30 May and 24 June, 

and smaller variations were observed on 10 July. Both Method I (Figure 8a–c) and Method II 

estimations (Figure 8d–f) show smooth changes in SM, such that the boundaries of the irrigated fields 

are unclear, although the Method II estimations show larger areas with high SM values. However, the 

irrigated regions are clearer in the Method III estimations, as shown in Figure 8g–i, because merging 

the irrigation statistics into the data used for the predictions provided helpful information regarding the 

irrigation districts.  

 

Figure 8. SM spatial distribution estimated by four methods with 90 m spatial resolution.  

(a–c), (d–f), (g–i), j are the method I, II, III and IV estimations for three periods, respectively. 

The white areas in each map represent the masked areas that contain buildings. 
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Compared with Method I, II, III (Figure 8c,f,i) for 10 July, a larger spatial variance in SM is 

displayed in the Method IV estimations (Figure 8j). This result indicates that the PLMR-derived SM 

data provided more spatial SM information for improved BME estimation during this moderate 

vegetated period. Generally, Method III and Method IV predictions display more information 

regarding the spatial pattern of SM than Method I and Method II results, especially in large field 

regions with sparse WSN observations. The quantitative validation of the BME estimates is discussed 

in the next section. 

4.3. Validation of BME Estimations 

The cross validation (leave-one-out) method was used to evaluate the BME estimations [71].  

Forty-eight in situ measurements were used to validate the predictions. The scatterplots in Figure 9 

present the cross validation results for the four methods estimations for the three periods. Quantitative 

results in terms of the root mean square difference (RMSD), bias, the coefficient of determination (R2), 

and slope between the BME estimations and in situ measured SM are presented in Figure 9. 

As shown in Figure 9a–c, all Method I estimations show the poor predictions with large RMSD and 

small R2 and slopes. Compared with Method I estimations, Method II results obtained for the  

low-vegetated periods (30 May and 24 June) exhibited moderate correlations with in situ SM but low 

slopes, as shown in Figure 9d,e. These findings indicate the inclusion of SEE in Method II provide 

more information related to SM than Method I, but Method II overestimates SM at low values and 

underestimates SM at high values.  

The Method II results for the moderately vegetated period (10 July) exhibit a poor correlation (0.45) 

with in situ SM, whereas the slope is only 0.26 as shown in Figure 9f. This result potentially occurred 

due to the failure of SEE to reflect SM in the vegetated areas. As shown in Figure 4, SEE as soft data 

is only weakly correlated with SM on 10 July, which increases the uncertainties in the Method II 

prediction. In addition, the biases of the Method II results for the three periods are −0.0083, −0.0065 

and −0.002 m3·m−3 indicating that Method II predictions underestimate the overall SM in the study 

area. These findings may be explained by the overall underestimation of the SM prediction intervals 

calculated from SEE. The RMSD of all Method II aregreater than the acceptable RMSD (0.04 m3·m−3) 

for SM estimation missions [66,67]. The reasons for the unacceptable RMSD may be that Method II 

estimations just represent SM for bare soil, rather than SM for bare and vegetated soil at 100m scale. 

Another reason could be the inaccurate SM variogram models, which provide biased spatial structure 

information as prior knowledge for auxiliary interpolation in the BME algorithm. Generally, the 

accuracy of Method II predictions for all three periods is not satisfactory, potentially due to the 

inaccuracies of the variogram models and soft data from SEE. 

Compared with Method II, R2 and slope between Method III and in situ SM measurements obtained 

for the low-vegetated periods (30 May and 24 June) are improved significantly, as shown in Figure 9g,f. 

In particular, the extreme SM values can be better estimated by Method III predictions. As shown from 

a comparison of the error statistics for the Method II and Method III predictions, the RMSD decreased 

from 0.0461 to 0.0324 m3·m−3 for 30 May and from 0.0571 to 0.0331 for 24 June, whilst R2 increased 

from 0.39 to 0.62 and from 0.26 to 0.66, respectively. From the bias indicators, Method III for 30 May 

and 24 June provide excellent unbiased estimations. This result indicates that merging the irrigation 
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trends data into the datasets used to generate the predictions improved the accuracy of BME 

estimations. In summary, compared with Method III in the low vegetated periods, Method III caused 

the overall RMSD to decrease from 0.052 to 0.033 m3·m−3, and the overall R2and slope between the 

predicted and in situ measured SM increase from 0.32 to 0.64 and from 0.38 to 0.82, respectively. 

 

Figure 9. Cross-validation and accuracy statistics of the results from the four methods.  

(a–c), (d–f), (g–i), j are the validation of predictions from method I, II, III and IV for three 

periods, respectively. Units for RMSD and Bias are % 

Nevertheless, for the moderately vegetated period (10 July), no significant improvement relative to 

Method II results (Figure 9f) was achieved when using the Method III (Figure 9i). However, R2 and 
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slope between the Method IV results and in situ SM are superior to those for the Method II and 

Method III results, as shown in Figure 9f,i,j. The RMSD decreased from 0.0411 m3·m−3 for Method III 

to 0.0342 m3·m−3 for Method IV, whereas R2 increased from 0.18 to 0.4 and the slope increased from 

0.41 to 0.69. These results indicate that merging PLMR-derived SM data into the data used for BME 

predictions can improve the accuracy of SM estimations. In particular, Method IV enhanced the 

estimation of the extreme values, as shown in Figure 9j. This suggests that PLMR-derived SM data can 

provide additional SM information during moderately vegetated periods when the SEE fails to 

sufficiently reflect the SM pattern. Finally, these results suggest that merging WSN data, ASTER data, 

irrigation statistics, and PLMR-derived SM data for predictions could yield better SM estimates for 

low-to-moderately vegetated periods. 

5. Discussion 

5.1. Method I and Method II 

It has been demonstrated that SM estimations can be improved by integrating multi-resource 

observations over heterogeneous cropland. However, the poor predictions from Method I indicate the 

sparse point-observations provide the limited SM information in heterogeneous cropland. An optical 

SM index, the SEE can be incorporated into Method II to provide high resolution SM information.  

Method II estimations are better related to in situ measurements than Method I, but still have poor 

prediction accuracies. The reasons for the poor accuracies could be that Method II is valid for bare soil 

and fails to estimate SM in vegetated areas. Thus, Method II could lead to the prediction errors in the 

vegetated areas, especially for 10 July under moderate vegetation cover. In future works, some optical 

indices such as evaporative fraction accounting for the root-zone SM in vegetated areas should be used 

in BME algorithm. 

The calculation of the SEE assumes that the canopy skin temperature is relatively uniform 

throughout the experimental area. In fact, the canopy skin temperature varies with various factors (e.g., 

leaf water content), especially when SEE is applied at large scales, such as the SMOS-scale (~40 km). 

Additionally, the triangle approach used to estimate SEE is based on a number of assumptions, which 

makes it sensitive to various sources of error, as described in [72,73]. 

5.2. Method III 

The calculated covariance when using variograms is a significant prior knowledge that can be used 

to express the spatial correlations and dependencies applied for interpolation in the BME algorithm. 

When irrigation statistics are used in BME predictions, Method III results offer the satisfactory 

prediction accuracy during low-vegetated periods. The predominant SM trends can be successfully 

removed by including irrigation statistics in the analysis, which results in reasonable variograms. 

Compared with the SM trends constructed based on remotely sensed variables in [19], the SM trends 

constructed based on irrigation statistics eliminate the problem of the failure of remotely sensed SM 

trends to remove extreme SM values. Moreover, the inclusion of irrigation information allows the 

boundaries of irrigated and non-irrigated areas to be described clearly (Figure 8), which is difficult to 

achieve in BME predictions that are based only on merging sparse point observations and remotely 
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sensed variables. However, two assumptions regarding the application of irrigation statistics should be 

noted: (1) the period of influence of irrigation events is assumed to be five days. The length of this 

period should be further investigated by analyzing the temporal dynamic of SM caused by irrigation; 

(2) The residual SM variograms are assumed isotropic. However, the irrigation statistics can be used to 

remove the primary SM trends and the residuals could remain anisotropic in local regions due to the 

strong heterogeneity of the SM. These errors in the fitted residual variograms could be reduced using 

the local anisotropy model [74].  

5.3. Method IV 

Merging PLMR SM data into the datasets used for BME predictions successfully yields Method IV 

results with satisfactory accuracy for the moderately vegetated periods. In vegetated areas, the TB 

observed in the L-band are more sensitive to variations in SM than optical data, because vegetation 

attenuation is smaller at lower frequencies and at horizontal polarization [75]. The ability to achieve 

good performance using Method IV depends on the acceptably accurate PLMR SM products and the 

downscaling method. In this study, the downscaled SM from PLMR SM, treated as soft data, were 

beneficial as auxiliary data for improving BME estimations during the moderately vegetated periods. 

However, the bias from the downscaled results may bring in uncertainties to Method IV estimations. 

As shown in Figure 6, the downscaled results showed the underestimation at low values, which could 

result in the underestimation of Method IV (Figure 9j). Likewise, the overestimation of the downscaled 

results may lead to the overestimation of Method IV. Additionally, Method IV was applied for only one 

day (10 July 2012) in this study, and it could be further evaluated in the days of other seasons. 

In the downscaling method [57], it is assumed that the SM distribution within each PLMR pixel is 

represented by SEE at ASTER scale. Namely, the heterogeneity of a PLMR pixel can be described by 

the SEE at 100 m-scale. However, the errors incurred by this method will increase when SEE at  

100 m-scale are not accurate enough to represent the heterogeneity within the PLMR pixels. 

Additionally, the downscaling method requires the completeness of ASTER-derived SEE within 

PLMR pixels. This requirement could limit the application of the method in areas where data at  

100 m-scale are missing. The development of optical-based downscaling approaches of microwave-

derived SM is still in its infancy, and further evaluation studies are needed [57,76].  

The SM values of buildings at ASTER- and PLMR-scales are considered as zero m3m−3 in the 

downscaling method. This relies on one implicit assumption that SM of buildings derived from PLMR 

using the L-MEB model is zero m3m−3. The sensitivity analysis of the L-MEB model has indicated 

that SM of building (or rocks) is nearly zero m3m−3 [77,78]. However, it is noted that the intra-pixel 

was assumed to be homogeneous in L-MEB model [79,80]. The effects of different land types within 

pixels on TB  values should be discussed for the appropriate application of L-MEB model over  

heterogeneous land surfaces. 

Note also that the mismatch of sensing depth between Lee-Pielke model estimations and 

WSN/PLMR observations. The WSN/PLMR sensing depth is approximately 4–5 cm, whereas  

Lee-Pielke model only estimates the top 2 cm soil layer. Although Lee-Pielke model estimation was 

processed as soft data in BME method, the sensed depth mismatch between Lee-Pielke model 

estimation and PLMR/WSN observations could lead to the large error of Method II, III, and IV. The 
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issues could be solved using the inversion models which can derive SM at 0–4 cm depth using optical 

data. It is also noted that Lee-Pielke model fails to estimate SM larger than filed capacity as  

Equation (11) shown. Thus, soft data from Lee-Pielke model could result in the underestimation of SM 

at high extreme values, particularly in the irrigated areas. 

It should be noted that WSN-observed SM were considered to represent the SM at 100m-scale in this 

study. However, the footprint of WSN measurements is far smaller than that of ASTER. Due to the 

strong heterogeneity of SM, the mismatching footprint could lead to the errors in the validation of BME 

estimations. Thus, the representative footprint of in situ measurements should be investigated, and 

strategies for upscaling point observations could be further introduced into the BME algorithm [15]. 

6. Conclusions 

Results indicate that BME predictions obtained by merging only SEE and WSN measurements are 

well correlated with in situ SM, but underestimate the overall SM in the low-vegetated periods. After 

irrigation statistics were added to the merged datasets, the non-stationary and anisotropic of the SM data 

were successfully removed, and Method III results clearly outlined the irrigation domains. During the 

low-vegetated periods, Method III decreased the overall RMSD from 0.052 m3·m−3 to 0.033 m3·m−3, and 

increased the overall R2 and slope between the predicted and in situ measured SM data from 0.32 to 0.64 

and from 0.38 to 0.82, respectively. Furthermore, adding PLMR SM data into the merged datasets used 

for BME predictions improved the performance of the BME predictions during the investigated 

moderately vegetated period. The RMSD decreased from 0.0411 for Method III results to 0.0342 m3·m−3 

for Method IV, whilst the R2 and slope increased from 0.18 to 0.4 and from 0.41 to 0.69, respectively. 

In summary, the issues on SM prediction in heterogeneous cropland are noticeably improved by 

merging WSN, ASTER-derive SEE, irrigation statistics, and PLMR data in the framework of BME. 

However, this study only estimates the spatial SM pattern without considering spatiotemporal auxiliary 

data. In future studies, the time series observations from multi-resource will be applied to obtain SM 

estimates with high spatiotemporal resolution in the framework of BME. 
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