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Abstract: Vegetation is an important part of terrestrial ecosystems. Although vegetation 

dynamics have explicit spatial and temporal dimensions, the study of the temporal process 

is in its infancy. Evaluation of temporal scaling behavior could provide a unique perspective 

for exploring the temporal nature of vegetation dynamics. In this study, the Global Inventory 

Modeling and Mapping Studies (GIMMS) Normalized Difference Vegetation Index (NDVI) 

was used to reflect vegetation dynamics, and the temporal scaling behavior of the NDVI in 

China was determined via detrended fluctuation analysis (DFA). Our main objectives were 

to reveal the temporal scaling behavior of NDVI time series and to understand variation 

among vegetation types. First, DFA revealed similar exponents, which ranged from 0.6 to 

0.9, for all selected pixels, implying that a long-range correlation was generally present in 

the NDVI time series at the individual pixel scale. We then extended the analysis to all of 

China and found that 99.30% of the pixel exponents ranged from 0.5 to 1. These results 

suggest that the NDVI time series displays strong long-range correlation throughout most of 

China; however, the exponents exhibited regional variability. To explain these differences, 
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we further analyzed the exponents for 12 vegetation types based on a vegetation map of 

China. All of the vegetation types exhibited well-defined long-range correlation, with 

exponents ranging from 0.7189 to 0.8436. For all vegetation types, the maximum and 

average value and standard deviation of the exponents decreased with increasing annual 

maximum NDVI values, suggesting that low vegetation density is much more sensitive to 

external factors. These findings may be useful for understanding vegetation dynamics as a 

complex, temporally varying phenomenon. 

Keywords: detrended fluctuation analysis; GIMMS NDVI time series; temporal scaling 

behavior; exponent; long-range correlation; power-law; persistence 

 

1. Introduction 

Vegetation is the most important component of the terrestrial ecosystem [1], serving as a medium for 

energy transfer, the water cycle, and the biogeochemical cycle [2,3]. Due to natural and/or anthropogenic 

causes, vegetation is endlessly changing at a variety of spatial and temporal scales [2,4–6]. Changes in 

vegetation play crucial roles in regulating the carbon balance, reducing greenhouse gases and 

maintaining climate stability across various spatial and temporal scales [5,7]. Therefore, the detection of 

vegetation dynamics has been widely recognized as an interesting topic in global change studies [8,9]. 

Vegetation change can be efficiently quantified using multi-temporal satellite observations because of 

the large coverage area and long time series [2,5,10]. In particular, the Normalized Difference Vegetation 

Index (NDVI) [11] is an important and widely applied indicator for representing vegetation dynamics on 

a broad scale because its temporal evolution is strongly sensitive to growth [3,5,12]. Various NDVI time 

series products, which are captured by the National Oceanic and Atmospheric Administration-Advanced 

Very High Resolution Radiometer (NOAA-AVHRR), Systeme Probatoire d’Observation de la  

Terre-Vegetation (SPOT-VGT) and Moderate Resolution Imaging Spectroradiometer (MODIS), have 

been used to study the variability of vegetation activity and changes in vegetation phenology at global, 

regional and local scales [5,6,10,13–20]. It is widely recognized that NDVI fluctuations are significantly 

related to climate variables [21] such as temperature [22,23], relative humidity [23] and solar  

radiation [24]. According to previous empirical studies, these factors are characterized by various 

temporal scaling behaviors [25–27], i.e., a long-range correlation behavior exists for these factors over 

time and exhibits diverse geographical distributions. However, few studies have formally identified and 

quantified the temporal scaling behaviors of the NDVI time series [28,29]. Telesca et al. found that the 

NDVI showed long-range correlation in the Mediterranean ecosystem of southern Italy based on the 

SPOT-VGT dataset [28] and also investigated differences in the correlations of the NDVI time series 

before and after vegetation burning [29]. An accurate measure of scaling behavior is important for 

modeling spatiotemporal processes and for formulating the physical mechanisms related to vegetation 

dynamics [30]. Therefore, detecting the temporal scaling behavior of the NDVI time series will enable 

us to understand and obtain new insight into the long-range correlation that characterizes complex 

vegetation dynamics. Additionally, the temporal patterns of the NDVI time series can be compared to 

determine whether vegetation dynamics are heterogeneous in different areas. 
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In general, power density spectra and rescaled range (R/S) analysis have been used to characterize 

the scaling behaviors of complex phenomena [31] affected by non-stationarity [32]. Unfortunately, 

NDVI time series are usually non-stationary due to the presence of different frequency components, such 

as seasonal variations and long- and short-term fluctuations [18,33]. Meanwhile, the dynamics of 

transients can play an important role in the structure of natural processes. These issues can be addressed 

by employing a detrended fluctuation analysis (DFA) [34], which is a suitable method for studying the 

scaling behavior of non-stationary time series. The DFA can be performed to explore intrinsic  

self-similar properties and avoid the spurious detection of apparent long-range correlations that may be 

caused by the non-stationary time series [34]. In addition, this method effectively filters out slow trends [35] 

and provides a simple exponent that represents the scaling behavior of a particular time series [36]. 

China encompasses a wide area and contains diverse vegetation types [37]. According to monitoring 

results from remote sensing data, the characteristics of dynamics of various vegetation types showed 

diverse trends since the 1980s. Forest and desert NDVI data had the smallest and highest coefficients of 

variation during 1982 and 1999, respectively [38]. Furthermore, during the same period, the annual net 

primary production increased markedly for all vegetation types except deciduous needleleaf forest, with 

the most rapid increase corresponding to cultivated vegetation [37]. Zhao et al. analyzed the vegetation 

dynamics in northern China based on the SPOT-VGT dataset and found that the NDVI exhibited a 

degradation trend in Xilingol Steppe during 1998 and 2007 [39]. The variation of the NDVI for the 

alpine vegetation showed no significant trend in the Tibet Plateau [40]. 

In this study, the temporal scaling behavior of the Global Inventory Modeling and Mapping Studies 

(GIMMS) NDVI time series was explored in China using DFA. The main objectives were to: (1) reveal 

the dynamic patterns of the NDVI time series by characterizing the spatial pattern of the temporal scaling 

behavior and (2) understand the differences in the temporal scaling behaviors of the NDVI time series 

among various vegetation types to explain the vegetation-climate relationship for the terrestrial 

ecosystems of China. 

2. Data and Method 

2.1. GIMMS NDVI Dataset and Pre-Processing 

The GIMMS NDVI dataset was used as a proxy for vegetation dynamics in this study. The NDVI 

dataset was downloaded from the website of the Environmental and Ecological Science Data Center for 

West China, National Natural Science Foundation of China [41], and was acquired by the  

NOAA-AVHRR series sensors (NOAA 7, 9, 11, 14, 16, 17, and 18) over a 25-year period from July 

1981 to December 2006. The dataset has an 8 × 8 km spatial resolution and is composed of approximately 

15-day intervals using the maximum value composite (MVC) method [42]. The GIMMS NDVI has been 

corrected for sensor calibration, sensor degradation and contamination, view geometry, and volcanic 

aerosols issues [43]. As the dataset did not cover the entire year of 1981, we selected January 1982 as 

the beginning time point of the analysis. Therefore, 600 images were utilized in this study. Trends in the 

GIMMS NDVI dataset compared favorably with trends derived from Landsat [44] and MODIS  

NDVI [45]; moreover, it covers a longer period than other available NDVI datasets. The dataset has been 
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widely applied to monitor long-term and large-scale trends in vegetation dynamics in various regions of 

the world [3,6,8,13,20,21]. 

To detect the exact temporal scaling behavior of the NDVI time series, we focused on the departure 

of the NDVI from the mean 15-day composition. The seasonal cycle was removed from the original 

NDVIi time series before applying the method. The process works as follows: 

௜ݔ ൌ ௜ܫܸܦܰ െ  ఫതതതതതതതത (1)ܫܸܦܰ

where xi is the deseasonalized time series, i ranges from 1 to 600, ܰܫܸܦఫതതതതതതതത is the average value for each 

15-day composition in all years in the record, and j ranges from 1 to 24. Figure 1 shows an example of 

the original NDVIi and the deseasonalized time series xi of one arbitrary pixel for the study period. The 

deseasonalized time series exhibits irregular behavior that is primarily related to the inter-annual changes 

exhibited by climate variables, such as temperature and precipitation. 

 

Figure 1. Characteristic fluctuation of the original and deseasonalized GIMMS NDVI time 

series for one arbitrary pixel from 1982 to 2006. 

To better understand the DFA method and temporal scaling behavior, we randomly selected 10 pixels 

distributed across China (Figure 2). The selected pixels were used to test the effectiveness of DFA at the 

individual pixel scale in China based on the GIMMS NDVI time series. 

Additionally, to confirm whether the temporal scaling behavior of the raw time series is indicative of 

long-range correlations or a broad probability density function [46,47], we processed a shuffled 

deseasonalized time series using a phase randomized method [48] for all of the selected pixels. All of 

the shuffled series were randomly rearranged 107 times to ensure that the time series were completely 

random. These shuffled series were not affected by any probability distribution functions. Moreover, the 

temporal ordering of the raw time series was broken. 
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2.2. Vegetation Map of China 

The Vegetation Map of China [49], which had a scale of 1:1,000,000, was employed to identify 

vegetation types in this study. This map was obtained from the Environment and Ecological Science 

Data Center for West China, National Natural Science Foundation of China [41]. It is shown in  

Figure 2 and contains numerous polygons that are categorized into 12 types: needleleaf forest, needleleaf 

and broadleaf mixed forest, broadleaf forest, scrub, grassland, steppe, meadow, marsh, alpine vegetation, 

desert, cultivated vegetation, and no vegetation. The “no vegetation” type describes regions without any 

vegetation covering the land surface. This type represents an important biome group in China, and it was 

regarded as equal to the other vegetation types in the study. The map was used to analyze differences in 

the temporal scaling behavior of the NDVI time series among various vegetation types. 

 

Figure 2. The vegetation map of China and the locations of selected pixels. The vegetation 

types of selected pixels are following: A-Scrub, B-Cultivated vegetation, C-Desert,  

D-Needleleaf forest, E-Cultivated vegetation, F-Alpine vegetation, G-Alpine vegetation,  

H-Cultivated vegetation, I-Cultivated vegetation, J-Needleleaf forest. 

2.3. Detrended Fluctuation Analysis (DFA) 

DFA stems from random walk theory and has been effectively used to explore the scaling behavior 

of natural process time series in diverse fields, such as weather records [25,35], tree-ring width [50], 

intervention time series of forest fires [31,46], groundwater systems [51], and features of  

atmosphere [52,53]. DFA provides a simple quantitative parameter to represent the properties of the 

scaling behavior of complex systems [54]. 
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Consider a deseasonalized time series xi, where i = 1, 2, 3, …, N. N is the length of the series, which 

is 600 in this study. We first calculate the average of the deseasonalized series xi as follows: 

ݔ̅ ൌ
1
ܰ
෍ݔ௜

ே

௜ୀଵ

 (2) 

where ̅ݔ is the average value of the series xi. We then integrate the series xi: 

ሺ݇ሻݕ ൌ෍ሺݔ௜ െ ሻݔ̅
௞

௜ୀଵ

 (3) 

The bounded series xi is thus converted to an unbounded series y(k), which is the profile of the 

deseasonalized time series, where k is the order of the time series. 

Next, the integrated series y(k) is divided into non-overlapping windows of equal length l, where there 

are a total of N/l windows for a particular l. 

To represent the local trend in each window, the least squares fitting method is used to fit the linear 

trend yl(k), which is the local trend of each window for a particular length l. The integrated series is 

detrended by subtracting the local linear trend curve yl(k) in each window. Figure 3 illustrates the local 

trend of the deseasonalized series for a single pixel in the study area fitted using the linear least squares 

method with a window length of 50 (blue line) and 100 (red line). In Figure 3, the fluctuation takes a 

parabola-like shape, which means that the deseasonalized series of anomalies at various times are 

cumulated. The local trend changes as a function of the window length, suggesting that the local trend 

of each window depends on the window length. 

 

Figure 3. Application of local linear fitting to the integrated series divided into window 

lengths of 50 and 100 at a single pixel. 

The root-mean-square fluctuation F(l) of this integrated series is calculated after the detrending 

procedure using the following equation: 
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1
ܰ
෍ሾݕሺ݇ሻ െ ௟ሺ݇ሻሿଶݕ
ே

௞ୀଵ

 (4)  

Generally, the window length l ranges from 4 to N/4. Therefore, we repeated the calculations outlined 

in Equation (4) for different window lengths l, i.e., 4 to 150. We can obtain the variances F(l) as a 

function of window length l. 

We focus on the relationship between F(l) and the window length l for different window length. If 

the series is characterized by long-range correlation, then F(l)~l has a linear relationship in  

log-log plots: 

logሾܨሺ݈ሻሿ ൌ   logሺ݈ሻ (5)ߙ

where α is an exponent obtained by measuring the slope of the line that relates log[F(l)] to log(l). The 

numerical value of α implies that the characteristics of scaling behavior and self-similar process for 

fluctuations of a series. Different exponents represent different types of scaling behavior in the original 

series. When α is less than 0.5, the time series exhibits short-range correlation or anti-correlation 

behavior [25,29,31,46] suggesting that the fluctuation of the series at different times are oppositely 

correlated and the opposite correlation is the strongest when α closes to 0; when α is around 0.5, the 

series corresponds to white noise (there is no correlation in the series), i.e., it is a random series; if a 

long-range correlation exists in the series, α is between 0.5 and 1 [29,31,34,36,46], and the series exhibits 

power-law behavior meaning that the fluctuation of the series at different times are positively correlated 

and the positive correlation is the strongest when α closes to 1; when α is equal to 1, the series exhibits 

characteristics of 1/f noise [31,46], thereby indicating that the series shows a self-organized  

criticality [55]; and when α is bigger than 1, long-range correlation exists in the series, although it does 

not obey a power-law relationship [31]. 

3. Results  

3.1. Temporal Scaling Behavior of the NDVI Time Series at the Pixel Scale 

To understand the detailed characteristics of the root-mean-square series, we first performed DFA to 

determine the temporal scaling behavior of the NDVI time series for all of the selected pixels in China. 

In Figure 4, a coincident linear feature can be identified in all of the log-log plots. This feature indicates 

that temporal scaling behaviors exist in the NDVI time series for the selected pixels, suggesting that the 

NDVI values are correlated at different times. Figure 4 shows that the exponent α ranges from 0.6690 to 

0.9126 for all of the log-log plots and that all of the coefficients of determination r exceed 0.99, which 

is a high value and indicative of statistical significance. The corresponding correlation function suggests 

long-range correlation exists in the NDVI time series for all of the selected pixels. As a consequence, 

the temporal scaling behavior can be interpreted as the internal self-similarity of the NDVI time series 

or as the “memory” within the series at these pixels. 
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Figure 4. The root-mean-square series and DFA results of fitting for the NDVI time series 

(red) and shuffled series (blue) at the individual pixel scale. 

To confirm whether the temporal scaling behavior of the raw NDVI time series is indicative of  

long-range correlations or a broad probability density function, DFA was applied to the shuffled NDVI 

series based on all of the selected pixels. As expected, the exponents of the shuffled series are 

approximately 0.5 for all of the selected pixels (see Figure 4). According to the computed exponents, all 

of the shuffled series exhibit approximately random characteristics. Although the raw time series (xi) 

and the shuffled series have the same population distributions, the different temporal ordering of the two 

series leads to different scaling behavior. This finding confirms that the temporal scaling behavior of the 

NDVI time series results from long-range correlation. 

3.2. Spatial Patterns of the Temporal Scaling Behavior of the NDVI Time Series 

Because the temporal scaling behavior was found to vary at the pixel scale, we were interested in the 

regional scale characteristics of the NDVI time series. Therefore, DFA was applied to the entire country 

of China. Figure 5 shows the results. The exponents of the NDVI time series range from 0.4843 to 1.2215 

for all of China. The spatially averaged exponent is 0.7786 with a standard deviation of 0.0819.  

Figure 5 reveals well-defined variability in the spatial patterns of the exponent during the period studied. 

These spatial patterns demonstrate that the temporal scaling behavior of the NDVI time series exists over 

broad scales in China. 

As shown in Figure 5, the exponent exhibits complex and fragmented patterns. Values below 0.8 are 

most frequently observed south of the geographical border of the Qinling Mountains-Huaihe River 

(0.7283), the southern Qinghai-Tibet Plateau (0.7506), most of northeastern China and the central Tarim 

Basin (0.7649). In contrast, the remaining regions in China, i.e., most parts of northwestern China, the 

central Songliao Plain (0.8234) and the North China Plain (0.8135), have exponents exceeding 0.8, 

which is above the spatial average. The highest exponents, i.e., α > 1, are primarily distributed over the 
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middle of the Hexi Corridor, the Hetao Region, and the central Inner Mongolian Plateau. Based on the 

above analysis, there is no universal exponent at the regional scale. The temporal scaling behavior of the 

NDVI time series exhibits well-defined heterogeneity that corresponds to individual geographical 

regions. For a better understanding of the spatial pattern of temporal scaling behavior, we produced a 

box-plot of exponents based on latitude (Figure 6). Figure 6 shows that entire pixels of NDVI time series 

show power-law long-range correlations in the < 25° latitude zone. The range of standard deviation of 

exponents α is extended from the < 25° to 40°~45° latitude zone. The exponent α values of higher latitude 

zones display more diverse characteristics, especially within the 40°~45° latitude zone. 

We analyzed all of the pixels in China over the range of the exponent α values which are as shown in 

Figure 7. DFA was performed to process 148,183 pixels in the study. The exponent values were found 

to range from 0.5 to 1, which is indicative of power-law behavior and is representative of 99.30% of the 

pixels. Therefore, long-range correlation behavior in the NDVI time series is common throughout China. 

Additionally, only two pixels have exponent values of below 0.5; these pixels are located in the extreme 

north of Xinjiang Uygur Autonomous Region and covered by meadow. The two pixels exhibit  

short-range correlation, whereas several other pixels exhibit 1/f noise or non-power-law long-range 

correlation (1 to 1.22). 

 

Figure 5. Spatial patterns of the exponent α for the GIMMS NDVI time series calculated via 

DFA for all of China. 
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Figure 6. The range of DFA exponent α values at various latitudinal zones. The bottom and 

top of the box are 1st and 3rd quartile, respectively; the band inside the box is median value 

(2nd quartile); the square inside the box is mean value; the lower and upper crosses are 1st 

and 99th percentile, respectively; the lower and upper dashes are 1.5 interquartile range of 

lower and upper quartiles, respectively; and the bottom and top circles are the minimum and 

maximum values, respectively. 

 

Figure 7. Histogram of the values of the DFA exponent α for China. 

3.3. Characteristics of the Temporal Scaling Behavior for Different Vegetation Types 

The NDVI can be used to indicate the activity of vegetation because it exhibits a nearly linear 

relationship with the fraction of photosynthetically active radiation absorbed by the vegetation canopy 

and net primary production [56]. We inferred that the temporal scaling behavior of the NDVI time series 

may be affected by the vegetation type. To confirm this hypothesis, the exponent α values were 

determined for various vegetation types. The minimum, maximum, and average value, and the standard 

deviation of exponent α were calculated based on the vegetation map of China. As shown in Table 1, the 

minimum and maximum exponents are found for meadow and desert, respectively. The average 
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exponent values for all of the vegetation types range from 0.7189 to 0.8436. All of the vegetation types 

exhibit long-range correlation behavior. The steppe, desert, no vegetation, alpine vegetation, and 

meadow exponents exceed the spatial average for China (0.7786); the other vegetation types are below 

the average. Steppe and needleleaf and broadleaf mixed forest exhibit the highest and lowest average 

exponents for the NDVI time series, respectively. 

Table 1. The DFA results of the minimum, maximum, and average exponent α values for all 

vegetation types. 

No. Vegetation Type  Minimum Maximum Average ± SD 

1 Steppe 0.5541 1.1643 0.8436 ± 0.0779 

2 Desert 0.5143 1.2216 0.8321 ± 0.0790 

3 No Vegetation 0.5224 1.1569 0.7918 ± 0.0745 

4 Alpine Vegetation 0.5461 1.0924 0.7897 ± 0.0748 

5 Meadow 0.4843 1.1722 0.7805 ± 0.0772 

6 Cultivated Vegetation 0.5187 1.1269 0.7651 ± 0.0728 

7 Marsh 0.5654 0.9730 0.7436 ± 0.0557 

8 Needleleaf Forest 0.5143 0.9635 0.7377 ± 0.0583 

9 Grassland 0.5208 1.0173 0.7357 ± 0.0549 

10 Scrub 0.5065 1.1263 0.7338 ± 0.0616 

11 Broadleaf Forest 0.5253 1.0795 0.7302 ± 0.0577 

12 Needleleaf and Broadleaf Mixed Forest 0.5482 0.8891 0.7189 ± 0.0502 

 

Figure 8. Scatter plot of exponent α and annual maximum NDVI for all of China. 

To further analyze the temporal scaling behaviors for all of China, the annual maximum NDVI was 

calculated based on the MVC method for the period 1982 to 2006. Figure 8 shows a scatter plot of the 

exponent α and annual maximum NDVI for all of the pixels in China. As shown in the figure, there is a 

non-significant trend between annual maximum NDVI and exponent α. 

Additionally, the relationships between annual maximum NDVI and the temporal scaling behavior 

were explored for each vegetation type. The annual maximum NDVI value approximately indicates the 

green leaf density of the land surface. Figure 9 shows the correlations between the average annual 

maximum NDVI and the minimum, maximum, and average value, and the standard deviation of the 
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computed exponents for each vegetation type. As indicated in Figure 9, the maximum and average value 

and standard deviation, but not the minimum value, of the exponent α decrease as the annual maximum 

NDVI values increase. The correlation coefficients between the maximum and average value, and 

standard deviation of the exponents and the annual maximum NDVI are −0.7650, −0.8825, and −0.8968, 

respectively; these correlations are highly significant (p < 0.05). 

 

Figure 9. Relationships between the minimum, maximum, average value and standard 

deviation of the exponent α and the annual maximum NDVI for each vegetation type. 

4. Discussion 

In the present study, we applied DFA to investigate the temporal scaling behavior of the NDVI time 

series. Most pixels, which exhibited exponents from 0.5 to 1, revealed long-range temporal correlation. 

This finding indicates that the temporal scaling behavior of the NDVI time series exhibits a ubiquitous 

power-law distribution over most of China. The characteristics do not obey the classical Markov random 

process (exponential decrease with time), but instead decay slowly as a function of time. Power-law 

relationships are simple rules that provide the dynamical foundation of the NDVI time series. 

Meanwhile, the NDVI time series showed a persistent feature that indicates that a positive fluctuation at 

a particular instant in time is more likely to be followed by a positive fluctuation at the next moment in 

time. Telesca et al. noted that persistence implied that positive temporal feedback mechanisms drive the 

dynamics of the NDVI time series [28]. Positive feedback mechanisms tend to destabilize the system 

under external forces for most of China; these include phenomena such as climate change, fire, and 

human-caused disturbance. The exponents of two pixels are lower than 0.5, which is regarded as  

anti-correlation. Thus, the dynamic trends of the NDVI time series in the future will be in direct 

opposition to those of the present. The 1/f noise, corresponding to exponent values of approximately 1, 

is considered to be indicative of a self-organizing critical status. This status means that the vegetation is 

vulnerable; even small changes can produce large variability. Additionally, there are a fraction of pixels 

of the NDVI time series that show long-range correlation as well as a non-power-law distribution. 
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From the range of exponents, i.e., 0.5~1, we found that the NDVI time series were consistent with 

other natural series based on DFA. For example, the exponents of daily mean temperature and relative 

humidity series are between 0.52 and 0.82 and between 0.60 and 0.95, respectively, for China [25,27], 

and the exponents for fire sequences range from 0.52 to 0.98 [31]. From the spatial patterns, the temporal 

scaling behavior of the NDVI time series was found to exhibit common interesting spatial distributions; 

namely, the exponent α values are higher in most of northern China than in southern China (Figure 5). 

This feature agrees with the long-range correlation observed in weather and climatology, which are 

closely related to the dynamics of the NDVI time series. Yuan et al. found that the DFA exponents for 

temperature decrease with decreasing latitude in China [27]. Moreover, the DFA exponents for relative 

humidity are higher in northern China than in southern China [25]. Comparing these results and  

Figure 5, climatology and the NDVI time series have similar geographical patterns. The fundamental 

mechanisms governing vegetation and climatology may be similar. In addition, a crossover point has 

been identified for the temperature, fire, and groundwater time series [11,13,22]. We are not clear as to 

whether such a crossover point exists in the NDVI time series because the bi-weekly NDVI dataset of l, 

where F(l) can be calculated, is between two months and five years in length in this study. A longer 

NDVI time series dataset may be required to understand the behavior at longer time scales. 

Among the 12 different vegetation types analyzed in this study, strong negative relationships were 

identified between three types of exponent α values and the annual maximum NDVI (Figure 9). A similar 

finding has been reported in Mediterranean ecosystems, where the exponents of shrub-land, transitional 

cover, and forest cover were found to be 1.03, 0.87, and 0.73, respectively [28]. In general, the annual 

maximum NDVI increases from shrub to forest at the appropriate scales. This characteristic may reflect 

the fact that these types that showing higher exponent values tend to be more sensitive to external  

factors [28]. It is well known that climatic variables (e.g., temperature and precipitation) play important 

roles in NDVI trends [21]. According to the vegetation map of China, the vegetation types with low 

NDVI, such as steppe, desert, and alpine vegetation, are mainly distributed in northwestern China where 

there are arid areas. These vegetation types showed significant positive correlations between NDVI and 

precipitation [57], which suggests that variation in precipitation is the main external factor influencing 

NDVI dynamics. All of the forest types showed weaker correlations between the NDVI and temperature 

and precipitation than the other types [57], indicating that forests are not sensitive to climatic variables. 

However, there was an exception. Typically, the persistence of forest types, i.e., broadleaf forest and 

needleleaf and broadleaf mixed forest, is weaker than persistence of other types. The average exponent 

α of needleleaf forest is higher than those of grassland and scrub (see Table 1). Telesca and Lasaponara 

investigated pre- and post-forest fire temporal scaling behavior based on the SPOT-VGT dataset in 

Mediterranean ecosystems [29]. Their analysis showed that the post-fire exponent (α = 1.46 ± 0.03) was 

larger than the pre-fire exponent (α = 1.04 ± 0.06), indicating that fires contribute to increased persistence 

in temporal vegetation dynamics. Liu et al. reported that needleleaf forest was frequently disturbed by 

lightning and human-caused fire in the northern Greater Khingan Mountains [58], which was dominated 

by coniferous species. Therefore, fire is an important factor that causes a relatively strong persistence in 

needleleaf forest in China. These results indicate that there are different mechanisms driving the various 
vegetation types. The high exponent values of NDVI time series are caused by more unstable factors. 

Few studies have quantified the temporal scaling behavior for vegetation dynamics. Previous studies 

have been primarily based on spatial power-law relationships. Taylor et al. reported that power-law 
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scaling exponents between the variance of populations and their mean abundances are between 1 and 2, 

which may explain an underlying fundamental concept in general ecological processes [59]. In another 

study, it was estimated that the scaling exponents of tree canopies and cluster size distributions range 

from 0.89 to 2.86 based on IKONOS images for six Kalahari vegetation sites [60]. Here, the calculated 

exponents based on DFA are between 0.4843 and 1.2215. Because α = (1 + β)/2 [34], where β is the 

scaling exponent, the temporal scaling exponents of the NDVI time series are between −0.0314 and 

1.4430. Compared with previous studies that focused on the spatial scaling behavior, the temporal 

scaling exponents presented herein are markedly lower than general spatial scaling exponents, 

suggesting substantial differences in scaling behavior between temporal and spatial ecological processes. 

For 1982~2003, the results of Hurst (H) exponent-based R/S analysis were consistent with the 

GIMMS NDVI dynamics trends in most of the Qinghai-Tibet Plateau basin [3]. However, the spatial 

pattern of the H exponent was inconsistent with α in the present study for the same area. R/S and DFA 

analyses have been used as estimators of long-range correlations. Weron noted that DFA analysis 

outperforms R/S analysis for Gaussian white noise [61] because DFA analysis avoids the spurious 

correlation of non-stationary series. Moreover, differences in the time period of the NDVI dataset under 

study could affect the results. 

5. Conclusions 

DFA was performed to quantify the temporal scaling behavior of the bi-weekly GIMMS NDVI time 

series for a 25-year period at individual pixel and regional scales. We also discussed variation among 

vegetation types based on the vegetation map of China. DFA provided a good understanding of the 

temporal scaling behavior of the NDVI time series in China. We found that the NDVI time series showed 

a long-range correlation in most of China as suggested by the values of the exponents, which were 

between 0.5 and 1. However, the DFA exponent was not universal and depended on the geographic 

location. All of the vegetation types exhibited similar persistent power-law correlations with exponents 

ranging from 0.7189 to 0.8436. Steppe and broadleaf mixed forest had the strongest and weakest 

persistence, respectively. Furthermore, there was a general tendency for persistence to increase with 

decreasing annual maximum NDVI values for different vegetation types, although there were a  

few exceptions. 

The power-law behavior in the temporal evolution of the NDVI time series might reflect short- and 

long-term vegetation characteristics. Our results suggest that there is a positive temporal feedback in the 

NDVI time series in China. A positive circularity leads to a growth-generating phenomenon. 

Furthermore, the vegetation in China departs equilibrium and continuously evolves to self-organizing 

critical status under this positive temporal feedback. 

The results of this study should be relevant to future vegetation and climatic models. However, a more 

comprehensive understanding of the temporal scaling behavior must be attained in future studies. This 

study was limited by the availability of NDVI time series data. Finer temporal resolutions and longer 

temporal spans may lead to a deeper understanding of the processes underlying the temporal scaling 

behavior of vegetation in the future. 

 



Remote Sens. 2015, 7 12956 

 

 

Acknowledgments 

This work was supported by the “State Key Laboratory of Resources and Environmental Information 

System,” the “Fundamental Research Funds for the Central Universities” (Project No. 14QIVJJ025 and 

11SSXT134), and the National Natural Science Foundation of China (No. 41201082). We would like to 

thank Hongshi He, Eckart Dege, Kay Dege, the China Scholarship Council, and the  

anonymous reviewers. 

Author Contributions 

Xiaoyi Guo and Hongyan Zhang conceived and designed the experiments. Xiaoyi Guo and  

Jianjun Zhao performed the experiments. Hongyan Zhang, Tao Yuan, and Zhenshan Xue analyzed the 

data. Xiaoyi Guo, Tao Yuan, and Jianjun Zhao contributed the materials and analysis tools. Xiaoyi Guo 

and Hongyan Zhang wrote the paper. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Godínez-Alvarez, H.; Herrick, J.E.; Mattocks, M.; Toledo, D.; van Zee, J. Comparison of three 

vegetation monitoring methods: Their relative utility for ecological assessment and monitoring. 

Ecol. Indic. 2009, 9, 1001–1008. 

2. Du, J.; Shu, J.; Yin, J.; Yuan, X.; Jiaerheng, A.; Xiong, S.; He, P.; Liu, W. Analysis on  

spatio-temporal trends and drivers in vegetation growth during recent decades in Xinjiang, China. 

Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 216–228. 

3. Peng, J.; Liu, Z.; Liu, Y.; Wu, J.; Han, Y. Trend analysis of vegetation dynamics in Qinghai–Tibet 

Plateau using Hurst Exponent. Ecol. Indic. 2012, 14, 28–39. 

4. Herrmann, S.M.; Anyamba, A.; Tucker, C.J. Recent trends in vegetation dynamics in the African 

Sahel and their relationship to climate. Glob. Environ. Change 2005, 15, 394–404. 

5. Dubovyk, O.; Landmann, T.; Erasmus, B.F.N.; Tewes, A.; Schellberg, J. Monitoring vegetation 

dynamics with medium resolution MODIS-EVI time series at sub-regional scale in southern Africa. 

Int. J. Appl. Earth Obs. Geoinf. 2015, 38, 175–183. 

6. De Jong, R.; de Bruin, S.; de Wit, A.; Schaepman, M.E.; Dent, D.L. Analysis of monotonic greening 

and browning trends from global NDVI time-series. Remote Sens. Environ. 2011, 115, 692–702. 

7. Barichivich, J.; Briffa, K.R.; Myneni, R.B.; Osborn, T.J.; Melvin, T.M.; Ciais, P.; Piao, S.; Tucker, C. 

Large-scale variations in the vegetation growing season and annual cycle of atmospheric CO2 at 

high northern latitudes from 1950 to 2011. Glob. Change Biol. 2013, 19, 3167–3183. 

8. Suzuki, R.; Masuda, K.; Dye, D.G. Interannual covariability between actual evapotranspiration and 

PAL and GIMMS NDVIs of Northern Asia. Remote Sens. Environ. 2007, 106, 387–398. 
  



Remote Sens. 2015, 7 12957 

 

 

9. Fu, B.; Li, S.; Yu, X.; Yang, P.; Yu, G.; Feng, R.; Zhuang, X. Chinese ecosystem research network: 

Progress and perspectives. Ecol. Complex. 2010, 7, 225–233. 

10. Lanorte, A.; Lasaponara, R.; Lovallo, M.; Telesca, L. Fisher–Shannon information plane analysis 

of SPOT/VEGETATION Normalized Difference Vegetation Index (NDVI) time series to 

characterize vegetation recovery after fire disturbance. Int. J. Appl. Earth Obs. Geoinf. 2014, 26, 

441–446. 

11. Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote 

Sens. Environ. 1979, 8, 127–150. 

12. Xu, G.; Zhang, H.; Chen, B.; Zhang, H.; Innes, J.; Wang, G.; Yan, J.; Zheng, Y.; Zhu, Z.; Myneni, R. 

Changes in vegetation growth dynamics and relations with climate over China’s landmass from 

1982 to 2011. Remote Sens. 2014, 6, 3263–3283. 

13. Zhao, J.; Wang, Y.; Hashimoto, H.; Melton, F.S.; Hiatt, S.H.; Zhang, H.; Nemani, R.R. The 

variation of land surface phenology from 1982 to 2006 along the Appalachian trail. IEEE Trans. 

Geosci. Remote Sens. 2013, 51, 2087–2095. 

14. Hou, G.; Zhang, H.; Wang, Y. Vegetation dynamics and its relationship with climatic factors in the 

Changbai Mountain Natural Reserve. J. Mt. Sci. 2011, 8, 865–875. 

15. Lu, L.; Kuenzer, C.; Wang, C.; Guo, H.; Li, Q. Evaluation of three MODIS-derived vegetation 

index time series for dryland vegetation dynamics monitoring. Remote Sens. 2015, 7, 7597–7614. 

16. Jeong, S.J.; Ho, C.H.; Choi, S.D.; Kim, J.; Lee, E.J.; Gim, H.J. Satellite data-based phenological 

evaluation of the nationwide reforestation of South Korea. PLoS ONE 2013, 8, e58900. 

17. Fensholt, R.; Langanke, T.; Rasmussen, K.; Reenberg, A.; Prince, S.D.; Tucker, C.; Scholes, R.J.; 

Le, Q.B.; Bondeau, A.; Eastman, R.; et al. Greenness in semi-arid areas across the globe  

1981–2007—An earth observing satellite based analysis of trends and drivers. Remote Sens. 

Environ. 2012, 121, 144–158. 

18. Martínez, B.; Gilabert, M.A. Vegetation dynamics from NDVI time series analysis using the 

wavelet transform. Remote Sens. Environ. 2009, 113, 1823–1842. 

19. Schucknecht, A. Assessing vegetation variability and trends in north-eastern Brazil using AVHRR 

and MODIS NDVI time series. Eur. J. Remote Sens. 2013, 40–59. 

20. Sobrino, J.A.; Julien, Y. Global trends in NDVI-derived parameters obtained from GIMMS data. 

Int. J. Remote Sens. 2011, 32, 4267–4279. 

21. Piao, S.; Fang, J.; Zhou, L.; Guo, Q.; Henderson, M.; Ji, W.; Li, Y.; Tao, S. Interannual variations 

of monthly and seasonal normalized difference vegetation index (NDVI) in China from 1982 to 

1999. J. Geophys. Res. 2003, 108, 1–12. 

22. Chuai, X.W.; Huang, X.J.; Wang, W.J.; Bao, G. NDVI, temperature and precipitation changes and 

their relationships with different vegetation types during 1998–2007 in Inner Mongolia, China.  

Int. J. Climatol. 2013, 33, 1696–1706. 

23. Sun, Y.; Yan, X.; Xie, D. Study on the relationship between vegetation and climate in China using 

factor analysis. J. Mt. Sci. 2007, 25, 54–63. 

24. Wu, D.H.; Zhao, X.; Zhao, W.Q.; Tang, B.J.; Xu, W.F. Response of vegetation to temperature, 

precipitation and solar radiation time-scales: A case study over mainland Australia. In Proceedings 

of 2014 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), QC, Canada, 

13–18 July 2014. 



Remote Sens. 2015, 7 12958 

 

 

25. Lin, G.; Chen, X.; Fu, Z. Temporal-spatial diversities of long-range correlation for relative humidity 

over China. Phys. Stat. Mech. Appl. 2007, 383, 585–594. 

26. Osokin, A.R.; Podlazov, A.V.; Chernetsky, V.A.; Livshits, M.A. Solar flares: Self-organization of 

active region to the critical state. Proc. Int. Astron. Union 2004, 2004, 477–478. 

27. Yuan, N.; Fu, Z.; Mao, J. Different scaling behaviors in daily temperature records over China. Phys. 

Stat. Mech. Appl. 2010, 389, 4087–4095. 

28. Telesca, L.; Lasaponara, R.; Lanorte, A. Intra-annual dynamical persistent mechanisms in 

mediterranean ecosystems revealed SPOT-VEGETATION time series. Ecol. Complex. 2008, 5, 

151–156. 

29. Telesca, L.; Lasaponara, R. Pre- and post-fire behavioral trends revealed in satellite NDVI time 

series. Geophys. Res. Lett. 2006, doi:10.1029/2006GL026630. 

30. Poveda, G.; Salazar, L.F. Annual and interannual (ENSO) variability of spatial scaling properties 

of a vegetation index (NDVI) in Amazonia. Remote Sens. Environ. 2004, 93, 391–401. 

31. Zheng, H.; Song, W.; Satoh, K. Detecting long-range correlations in fire sequences with detrended 

fluctuation analysis. Phys. Stat. Mech. Appl. 2010, 389, 837–842. 

32. Alvarez-Ramirez, J.; Rodriguez, E.; Echeverria, J.C. A DFA approach for assessing asymmetric 

correlations. Phys. Stat. Mech. Appl. 2009, 388, 2263–2270. 

33. Pinzon, J.; Tucker, C. A non-stationary 1981–2012 AVHRR NDVI3g time series. Remote Sens. 

2014, 6, 6929–6960. 

34. Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic 

organization of DNA nucleotides. Phys. Rev. 1994, 49, 1685–1689. 

35. Király, A.; Jánosi, I.M. Detrended fluctuation analysis of daily temperature records: Geographic 

dependence over Australia. Meteorol. Atmos. Phys. 2004, 88, 119–128. 

36. Zhao, Z.D.; Cai, S.M.; Huang, J.; Fu, Y.; Zhou, T. Scaling behavior of online human activity. 

Europhys. Lett. 2012, 100, 48004–48009. 

37. Fang, J.; Piao, S.; Field, C.B.; Pan, Y.; Guo, Q.; Zhou, L.; Peng, C.; Tao, S. Increasing net primary 

production in China from 1982 to 1999. Front. Ecol. Environ. 2003, 1, 293–297. 

38. Fang, J.; Piao, S.; Tang, Z.; Peng, C.; Ji, W. Interannual variability in net primary production and 

precipitation. Science 2001, 293, 1723–1723. 

39. Zhao, Y.; He, C.; Zhang, Q. Monitoring vegetation dynamics by coupling linear trend analysis with 

change vector analysis: A case study in the Xilingol steppe in northern China. Int. J. Remote Sens. 

2012, 33, 287–308. 

40. Yang, J.; Ding, Y.; Chen, R. Spatial and temporal of variations of alpine vegetation cover in the 

source regions of the Yangtze and Yellow Rivers of the Tibetan Plateau from 1982 to 2001. Environ. 

Geol. 2006, 50, 313–322. 

41. Environmental and Ecological Science Data Center for West China, National Natural Science 

Foundation of China. Available online: http://westdc.westgis.ac.cn/ (accessed on 17 April 2013). 

42. Holben, B.N. Characteristics of maximum-value composite images from temporal AVHRR data. 

Int. J. Remote Sens. 1986, 7, 1417–1434. 
  



Remote Sens. 2015, 7 12959 

 

 

43. Tucker, C.; Pinzon, J.; Brown, M.; Slayback, D.; Pak, E.; Mahoney, R.; Vermote, E.; Saleous, N. 

El An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI 

data. Int. J. Remote Sens. 2005, 26, 4485–4498. 

44. Beck, H.E.; McVicar, T.R.; van Dijk, A.I.J.M.; Schellekens, J.; de Jeu, R.A.M.; Bruijnzeel, L.A. 

Global evaluation of four AVHRR–NDVI data sets: Intercomparison and assessment against 

Landsat imagery. Remote Sens. Environ. 2011, 115, 2547–2563. 

45. Fensholt, R.; Proud, S.R. Evaluation of earth observation based global long term vegetation 

trends—Comparing GIMMS and MODIS global NDVI time series. Remote Sens. Environ. 2012, 

119, 131–147. 

46. Da Silva, L.R.; Stošić, T.; Stošić, B.D. Power law correlations in time series of wild-land and forest 

fires in Brazil. Int. J. Remote Sens. 2012, 33, 2059–2067. 

47. Kantelhardt, J.W.; Koscielny-Bunde, E.; Rego, H.H. .; Havlin, S.; Bunde, A. Detecting long-range 

correlations with detrended fluctuation analysis. Phys. Stat. Mech. Appl. 2001, 295, 441–454. 

48. Theiler, J.; Eubank, S.; Longtin, A.; Galdrikian, B.; Doyne Farmer, J. Testing for nonlinearity in 

time series: The method of surrogate data. Phys. Nonlinear Phenom. 1992, 58, 77–94. 

49. Editorial Board of Vegetation Map of China. Vegetation Map of the People’s Republic of China 

(1:1,000,000) 2001. Available online: http://westdc.westgis.ac.cn/ (accessed on 30 May 2013). 

50. Telesca, L.; Lovallo, M. Long-range dependence in tree-ring width time series of Austrocedrus 

Chilensis revealed by means of the detrended fluctuation analysis. Phys. Stat. Mech. Appl. 2010, 

389, 4096–4104. 

51. Li, Z.; Zhang, Y.K. Quantifying fractal dynamics of groundwater systems with detrended 

fluctuation analysis. J. Hydrol. 2007, 336, 139–146. 

52. Varotsos, C.A.; Ondov, J.M.; Cracknell, A.P.; Efstathiou, M.N.; Assimakopoulos, M.N. Long-range 

persistence in global Aerosol Index dynamics. Int. J. Remote Sens. 2006, 27, 3593–3603. 

53. Varotsos, C. Power-law correlations in column ozone over Antarctica. Int. J. Remote Sens. 2005, 

26, 3333–3342. 

54. Hu, K.; Ivanov, P.; Chen, Z.; Carpena, P.; Eugene Stanley, H. Effect of trends on detrended 

fluctuation analysis. Phys. Rev. E 2001, 64, 1–19. 

55. Bak, P.; Tang, C.; Wiesenfeld, K. Self-organized criticality. Phys. Rev. A 1988, 38, 364–374. 

56. Gamon, J.A.; Field, C.B.; Goulden, M.L.; Griffin, K.L.; Hartley, A.E.; Joel, G.; Peñuelas, J.; 

Valentini, R. Relationships between NDVI, canopy structure, and photosynthesis in three 

Californian vegetation types. Ecol. Appl. 1995, 5, 28–41. 

57. Piao, S.; Fang, J.; Wei, J.; Guo, Q.; Ke, J.; Tao, S. Variation in a satellite-based vegetation index in 

relation to climate in China. J. Veg. Sci. 2004, 15, 219–226. 

58. Liu, Z.; Yang, J.; Chang, Y.; Weisberg, P.J.; He, H.S. Spatial patterns and drivers of fire occurrence 

and its future trend under climate change in a boreal forest of Northeast China. Glob. Change Biol. 

2012, 18, 2041–2056. 

59. Taylor, L.R.; Perry, J.N.; Woiwod, I.P.; Taylor, R.A.J. Specificity of the spatial power-law exponent 

in ecology and agriculture. Nature 1988, 332, 721–722. 
  



Remote Sens. 2015, 7 12960 

 

 

60. Scanlon, T.M.; Caylor, K.K.; Levin, S.A.; Rodriguez-Iturbe, I. Positive feedbacks promote  

power-law clustering of Kalahari vegetation. Nature 2007, 449, 209–212. 

61. Weron, R. Estimating long-range dependence: Finite sample properties and confidence intervals. 

Phys. Stat. Mech. Appl. 2002, 312, 285–299. 

© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


