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Abstract: Detection of damages caused by natural disasters is a delicate and difficult task 

due to the time constraints imposed by emergency situations. Therefore, an automatic 

Change Detection (CD) algorithm, with less user interaction, is always very interesting and 

helpful. So far, there is no existing CD approach that is optimal and applicable in the case of 

(a) labeled samples not existing in the study area; (b) multi-temporal images being corrupted 

by either noise or non-normalized radiometric differences; (c) difference images having 

overlapped change and no-change classes that are non-linearly separable from each other. 

Also, a low degree of automation is not optimal for real-time CD applications and also  

one-dimensional representations of classical CD methods hide the useful information in 

multi-temporal images. In order to resolve these problems, two automatic kernel-based CD 

algorithms (KCD) were proposed based on kernel clustering and support vector data 

description (SVDD) algorithms in high dimensional Hilbert space. In this paper (a) a new 

similarity space was proposed in order to increase the separation between change and  

no-change classes, and also to decrease the processing time, (b) three kernel-based approaches 

were proposed for transferring the multi-temporal images from spectral space into high 

dimensional Hilbert space, (c) automatic approach was proposed to extract the precise 

labeled samples; (d) kernel parameter w a s  selected automatically by optimizing an 

improved cost function and (e) initial value of the kernel parameter was estimated by a 

statistical method based on the L2-norm distance. Two different datasets including 
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Quickbird and Landsat TM/ETM+ imageries were used for the accuracy of analysis of 

proposed methods. The comparative analysis showed the accuracy improvements of kernel 

clustering based CD and SVDD based CD methods with respect to the conventional CD 

techniques such as Minimum Noise Fraction, Independent Component Analysis, Spectral 

Angle Mapper, Simple Image differencing and Image Rationing, and also the computational 

cost analysis showed that implementation of the proposed CD method in similarity space 

decreases the processing runtime. 

Keywords: kernel-based CD; similarity space; Hilbert space; remotely sensed data; 

clustering; One-class classifiers 

 

1. Introduction 

The analysis of multi-temporal Earth observations is essential for change detection (CD) applications [1]. 

This process is for identifying the differences in spatial, spectral, and radiometric states of phenomenon 

by observing it at different times [2]. CD is a useful technique for various applications such as  

land-cover/land-use change analysis, assessment of deforestation, damage assessment, disaster 

monitoring, and other environmental changes [1]. For this purpose, several CD methods have been 

developed for analyzing and detecting the changed areas from multi-temporal images [3,4]. It has been 

generally agreed that change detection is a complicated and integrated process. So far, there is no existing 

approach that is optimal and applicable in the case of (a) labeled samples not existing in the study area; 

(b) existence of different environmental factors such as atmospheric and light conditions in multi-temporal 

images; (c) multi-temporal images corrupted by either noise or radiometric differences that cannot be 

normalized and (d) difference images have overlapped change and no-change classes that are non-linearly 

separable from each other. Furthermore, for the time being, the degree of automation is far too low for 

real-time CD applications. Hence this paper aims to resolve the issues mentioned above.  

Change detection methods are divided into six categories in the literature: (a) Images algebra  

(b) Change Vector Analysis (CVA); (c) Image transformation; (d) Post-classification comparison (e) Direct 

classification; and (f) Hybrid CD [5–7]. In images algebra method, mathematical operations such as 

subtraction or division applied to multi-temporal imagery; providing the difference or ratio images [8,9]. 

In CVA approach by computing the difference vectors between multi-temporal images, providing both 

the magnitude and direction of the change [10,11]. In both images algebra and CVA change detection 

methods digital values of difference pixels or magnitude pixels are numerically compared with a pre-defined 

threshold to generate the change map. These two methods are non-automatic and ineffective, because 

determining the appropriate threshold becomes a difficult and time-consuming task and can fail in real 

time applications such as disaster management [12,13]. However, image transformation methods are 

based on mathematical transformation to highlight the variance between images and provide a  

well-designed approach to handle high dimensional data. There is no defined thematic meaning the 

output of this method and changed area may be difficult to locate and interpret [14]. 

Post-classification comparison technique is based on the comparison of multiple classification maps 

to detect the class transitions between multi-temporal images [15]. In direct classification method,  
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multi-temporal images are stacked together and then classified directly in order to detect the land cover 

transition [16]. In both classification based methods, labeled samples are essential for training the 

supervised classifiers. Nevertheless, preparing of samples for training the classifiers can be a difficult 

task, especially for a time series of images. All classifiers are, in general, sensitive to the noise of pixels 

in multi-temporal images. On the other hand, multi-temporal classification methods are based on linear 

representations, and do not consider the non-linear cross-information among the pixels in different  

time [17,18]. As a result, the classifier trained with samples coming from different distributions due to 

differences in atmospheric and light conditions. So, classification errors in each of the input maps are 

directly transformed to the generated change map. Therefore, they can be inefficient for images corrupted 

by either noise or radiometric differences that cannot be normalized or, in the case of multi-temporal 

images, which have spectrally overlapped classes [1,19,20].  

To address these problems, several strategies have been presented and the approaches considered 

knowledgeable threshold-based image differencing or ratioing. Bruzzone and Prieto [21] propose two 

unsupervised CD techniques based on the Bayes theorem. The first method is based on an automatic 

threshold selection that minimizes the overall change detection error probability. The second method 

analyzes the difference image by considering the spatial-contextual information included in the 

neighborhood of each pixel. The accuracy of the analysis of proposed methods was carried out on two 

different data sets including Landsat 5 TM sensor and the synthetic data. The experimental results 

certified the effectiveness of both proposed methods. Molina et al. [22] suggested a multisource CD 

approach for multi resolution data sets. After extraction of various change indices, different thresholding 

algorithms were applied to these indices. The indices are then integrated into a change detection 

multisource fusion procedure, for generating a final CD map. This method has been applied to airborne 

and spaceborne optical imageries with different spectral and spatial resolutions. The proposed CD 

algorithm has proven to be efficient with respect to using various spatial resolutions of sensors. In some 

studies, the methods based on a similarity measure extraction and determining a proper threshold are 

used for automatic change detection. Inglada and Mercier [23] presented a new similarity measure for 

automatic change detection in multi-temporal SAR images. Tests on the simulated and real data showed 

that this detector performs better than all the other methods. Mercier et al. [24] showed how to obtain a 

binary change map from the similarity measures of the local statistics of images before and after a 

disaster. The decision process is achieved by the use of a Support Vector Machines (SVM) approach in 

which a stochastic kernel has been defined. The results have shown the efficiency of the methods since 

it yields an appropriate binary change map for multi-sensor change detection. However, this was 

demonstrated to be inefficient based on the reasons stated earlier in the case real-time CD problems. 

On the other hand, change detection can be viewed as a particular case of the multi-temporal image 

classification problem. Pajares [25] proposed an automatic method based on the Hopfield Neural 

Network (HNN) for image change detection. Each pixel in the difference image is a node in the HNN. 

This method, unlike classical methods [21,26], uses the performance of contextual and self-data 

information by integrating the data and contextual information under the form of an energy function. 

The self-data information minimizes the errors derived from incorrect decisions taken by the neighbors 

of a pixel. The experimental results showed that the proposed method has proven to be robust against 

noise as compared with the classical methods. Nevertheless, the main disadvantage of the HNN method 
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originates from its high time consuming process. This approach, however, inherits all the aforementioned 

problems of the classification-based CD scenario. 

It is only recently that authors have turned to kernel-based CD methods for change detection 

applications [12]. Guorui et al. [27] proposed a Distance-based Kernel Change Detection algorithm 

(DKCD). The multi-temporal images are mapped into a feature space via nonlinear mapping. Then, a 

simple distance measure between two feature vectors defined in feature space. Their results proved a 

reliable performance with respect to the speed and accuracy of change detection mapping.  

Camps-Valls et al. [28] present a kernel-based method based on Support Vector Domain Description 

(SVDD) classifier for change detection of remote sensing images. Good performance of the proposed 

method illustrates the generality of the algorithms. Volpi et al. [17] have presented an unsupervised 

clustering method based on an SVM classifier to find the changes in multi-temporal co-registered 

images. Two change detection schemes were adapted for very high resolution optical imagery (VHR): 

multi-date classification and difference image analysis. Experiments on VHR images proved the 

reliability of the proposed approach. In kernel-based methodologies kernel-based discrimination 

amongst the classes of interest can be enhanced by using the nonlinear decision function and better 

results will be achieved. These types of decision functions are locally linear, but in general have a 

complex shape that is not equivalent to a line in 2D or a hyperplane in higher dimensions [29].  

The main idea of kernel methods is based on the fact that the nonlinear decision function can be 

obtained by running a linear algorithm in a higher dimensional reproducing kernel Hilbert space 

(RKHS). In classification of multi-temporal remotely-sensed data, a linear decision function is clearly 

not sophisticated. The traditional classification approaches solve these problems by using more 

sophisticated distributions in modelling the optimal Bayes classifier. But, these methods are 

computationally more expensive. An efficient method in this field is the kernel concept which was 

originally applied in support vector machines technique. The linear decision function in the kernel space 

corresponds to a forceful nonlinear decision function in the spectral space [12]. The mapping to that 

space is implicitly defined by kernel functions replacing dot products in the original formulation in 

spectral space [2]. In the change detection problem, these kernel methods allow modeling the nonlinear 

nature of the change [30]. However, none of these methods considers the cross relations between  

multi-temporal images in the classifier. Also, these non-automatic kernel-based methods require labeled 

samples for training a classifier, and as a result, they are still inefficient in real-time CD applications. 

In Hybrid CD method, multiple comparison methods within a framework were used. The most 

commonly used strategy is a combination of images algebra and direct classification methods for the 

detection and classifying the changes [31,32]. This strategy was used in this paper for developing the 

proposed CD method. Due to attending to the previously identified problems, in this paper, a hybrid 

kernel-based change detection method was proposed in a similarity space which has demonstrated good 

results in image change detection problems with few labeled training samples in high dimensional 

spaces. This proposed method used all single and cross information between the multi-temporal images 

bands and presents a nonlinear solution in Hilbert space for the change detection problem. This leads to 

a strong decrease in the false alarm rate (classifying a background pixel as a change class), and a slight 

accuracy improvement in the generated change map. Meanwhile, the initialization of proposed algorithm 

was addressed automatically by finding a threshold on change vector magnitude distribution. 
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In parallel with the proposed kernel-based CD algorithm, an SVDD-based change detection method 

was presented and analyzed. These methods were applied on Landsat TM/ETM+ and Quickbird  

multi-spectral imageries for mapping and estimating the deforestation and damaged areas caused by 

human activity and natural disasters, respectively. This proposed kernel-based CD method uses three 

approaches for mapping the data from the spectral space into higher dimensional Hilbert space. The first 

is based on the difference image in the spectral space, which is named as DFSS (Differential in Spectral 

Space). In the second approach, to provide the most discriminative information, a mapping function is 

developed to compute the difference image in Hilbert space, i.e., Differential in Hilbert Space (DFHS). 

Finally, in the third approach, multi-temporal images are stacked together in spectral space and then 

transformed into Hilbert space, namely as Heaped in Spectral Space (Heap-SPC). In Hilbert space, the 

complicated and nonlinear relationship between the data could be modeled linearly. By using a similarity space, 

the separation between change and no-change classes increased and time of the process decreased. In a 

particular case, the multi-temporal data are transformed into a Spectral Distance-Angle-Correlation-Spectral 

Value (SDACV) space [33]. In order to determine the threshold and extract the precise training samples, 

a method based on integration of a Change Vector Analysis (CVA) technique and kernel-based K-means 

clustering algorithm was proposed. On the other hand, proper kernel parameters of the proposed kernel-based 

methods were determined by using a developed cost function based on geometric and spectral similarity 

criteria. This precise training set was used for training the Kernel-based Minimum Distance (KMD) and 

the Support Vector Data Description (SVDD) classifiers. 

2. Methodology 

2.1. Proposed Framework 

Proposed kernel-based CD framework refers to several proposed stages, including: (a) Pre-processing 

step; (b) similarity space and Hilbert space transformations; (c) pseudo training samples extraction;  

(d) parameter estimation of kernel-based CD methods; (e) kernel-based CD method and (f) SVDD based 

CD method. The flowchart of proposed method for automatic detection of changes is presented in Figure 1. 

As it can be seen, our focus in this paper illustrated as highlighted stages in block diagram. 

In the first step of implementation, the geometric and the radiometric preprocessing are performed on 

the multi-temporal images. Then the multi-temporal images are co-registered manually to each other. 

Cloudiness of the study area in the Quickbird dataset is symmetrically masked. In the second step, the  

multi-temporal images are transformed into a similarity space. To this end, a reference vector is needed 

to measure the similarity of all the pixels in the multi-temporal images. Since the objective of proposed 

algorithm is mapping the changes, the reference vector of change class was used. After extracting the 

precise training data, the mean of precise changed training samples was calculated in order to achieve 

the reference change vector. Then, using the Equations (13)–(16) and the reference vector from the 

previous step, all pixels of the image are transformed into the similarity space. In this paper, the  

multi-spectral data are transformed to similarity spaces using Spectral Distance-Angle-Correlation-Spectral 

Value (SDACV) features [34]. 
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Figure 1. Block diagram of proposed hybrid kernel-based change detection algorithm. 

In the next step, for transferring the multi-temporal images into Hilbert space, three approaches 

between the corresponding bands were performed in Hilbert space. The first approach accounts for the 

difference image in the similarity space, which is named as DFSS-SIM (Differential in Similarity Space). 
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In this method, the multi-temporal images are first transferred into similarity space and then subtracted 

in a pixel-by-pixel method to obtain the difference image, i.e., . The difference pixels are then 

mapped to the Hilbert space as φ(x) = φ(xd), resulting in the kernel function K(xi
d, xj

d) = φ(xi
d), φ(xj

d). In 

the second approach, to provide the most discriminative information, a mapping function is developed 

to compute the difference image in Hilbert space which is named DFHS. For a given pixel, the RKHS 

feature map φ(.) corresponding to the difference pixel can be defined as: 

           2 2 1 1t t t t
i i iφ x Η φ x Η φ x .   Expanding the dot product and exploiting Mercer’s conditions, the 

corresponding kernel function is obtained [12,35]: 

                         2 2 1 1 2 1 1 2t t t t t t t t
i j i j i j i j i j i jk x , x φ x ,φ x k x , x k x , x k x , x k x , x      (1)

In the third approach, before and after images are stacked together before and after in spectral space 

and then transformed into Hilbert space, which is named as Heap-SPC. The main issue of the automatic 

change detection algorithms is to find a proper initialization allowing the method to converge to a global 

minimum. For this reason, in the next step, by analyzing the components of a change vector and setting 

an appropriate threshold, pseudo training samples are created for the change and no-change classes. 

These sample data are being used for determining the imprecise initial set of kernel K-means clustering 

parameters and training the SVDD-based change detection method [17]. Then, the precise training 

samples and kernel K-means parameters are automatically estimated by optimizing a cost function with 

the nature of geometrical and spectral similarity in kernel space. These samples are used as training data 

for training of KMD classifiers. After the training stage of KMD classifier and SVDD-based change 

detection method and optimization of its parameters, each pixel entered into a proposed methods and the 

class of each pixel is determined. The output of this step is the change map.  
In DFHS approach, the difference kernel needs the estimation of the corresponding kernel parameters, 

e.g., two bandwidths when using two RBF kernels corresponding to two kernels in Equation (17). In this 

paper, a search among two parameters θ = {σsingle, σcross} with respect to and  is 

performed [35]. To solve this problem, a new method to estimate the initial value of the RBF kernel 

parameter in the change detection problem was employed. This method is based on a statistical technique 

and uses the L2 distance norm. In this new method, in the first step, two sets of spectral vectors within 

the first image are elected randomly. In the next step, Euclidean distance between two spectral vectors 

in the first image is computed and the median of this distance is selected [33]. The same process is 

performed for the second image. Finally, the average of the two distances, obtained from multi-temporal 

images, is considered as the initial estimation of RBF kernel parameter. In the next step, a change interval 

is considered with respect to the initial value, so that this value is in the center of a change interval. These 

ranges can be used in the grid search method to select the precise RBF kernel parameter [33,36]. This 

new method leads to a faster convergence of grid-searching technique for selecting the global optimum 

RBF kernel parameter. 

2.2. Thresholding Scheme 

The main issue of proposed kernel-based CD algorithms is to find a proper threshold allowing the 

method to extract two pseudo training samples with high probability rate, belonging to change and no-change 

classes. In order to estimate the change and no-change class distributions, the magnitude of spectral 

d D

 K ,i it t
i jx x  K , ji tt

i jx x
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change vector was calculated. This distribution can be seen as a mixture of two Gaussian models 

regarding change and no-change pixels. In the next step, by analyzing the magnitude of a change vector 

and setting an appropriate threshold, the pseudo training samples were created for change and no-change 

classes [17]. In this paper, the proper threshold was determined by fitting a Gaussian function to change 

the vector magnitude’s distribution of multi-temporal images. The mean and variance values of Gaussian 

function were estimated and used as a threshold. The extracted pseudo training samples were then used 

for determining the imprecise initial set of kernel clustering algorithm parameters such as cluster center. 

2.3. Kernel K-Means Clustering  

The kernel K-means clustering algorithm (KKMC) rewriting the linear K-means in RKHS 

(Reproducing Kernel Hilbert Space) by means of mapping functions φ(.). The mapping to that space is 

implicitly defined by the kernel functions replacing the dot products in the original formulation, which 

only needs input samples in their spectral space. Since the K-means formulation can be expressed solely 

in the terms of dot products, kernel functions can replace these expressions. This helps the value of the 

dot product to return directly to the RKHS [35]. Let X = {a1, a2, a3, ..., an} be the set of data points and 

“c” the number of clusters. In the first step “c” cluster centers are randomly initialized. The kernel k-means 

algorithm is formulated as the minimization of the sum of the squares of distances between mapped 

samples and their mean: 

    
q

k 2

i q
q 1 i π

d φ x ,μ φ x μ


  


 (2)

where μq denotes the mean of the cluster q and is the mapped samples in the RKHS. By 

replacing  and applying the kernel substitution, Equation (2) becomes: 

        
q q

i i i j j l2
j π j,l πq q

2 1
d φ x ,μ k x , x k x , x k x , x

n n
   

 

 (3)

where nq is the number of samples is assigned to the cluster q. The position of cluster centers, are 

approximated by considering the closest samples to the center   arg min ,
ic x i qx d x   . After 

determining the clustering parameters, each data point assign to that cluster center whose distance is 

minimum [37]. 

2.4. Support Vector Data Description 

In parallel with the proposed algorithm, another method based on Support Vector Data Description 

(SVDD) was presented and analyzed. After extracting the pseudo training samples of change and  

no-change regions, these samples are used to train the SVDD classifier. Now assuming a dataset  N

i i 1
x


 

belongs to a given class of interest. The objective here is to find a hyper-sphere in a high dimensional 

Hilbert space of radius R > 0 and center a, with a minimum volume containing most of these data  

points [28,38] (See Figure 2).  

  qx 

 1

q
q q jj

n x


 


 



Remote Sens. 2015, 7 12837 

 

Figure 2. Schematic diagram of support vector data description. The hyper-sphere is 

described by the center a and radius R [39]. 

Therefore one has to minimize R2 constrained to 
2 2( ) , 1,...,ix a R i n      . However, since the 

training distribution may contain outliers; one introduces a set of slack variables 0i   and the problem 

then becomes [28]: 

2

,
min i

R a
i

R C
 

  
 

  (4)

Constrained to 
2 2( ) , 0, 1,...,i i ix a R i n          (5)

Where the parameter C controls the trade-off between the volume of the hyper-sphere and the acceptable 

errors (penalty parameter).The dual functional now becomes [28,38]: 

,

max ( ), ( ) ( ), ( )
i

i i i i j i j
i i j

x x x x


 
        

 
   (6)

Subject again to 0 i C  this constitutes a quadratic programming problem that yields a set of i  

fulfilling that (i) if 
2 2( )ix a R    then 0i   (ii) if 

2 2( )ix a R    then 0 i C  , and (iii) if 
2 2( )ix a R   then i C   As a result, Support Vectors (SV) are those satisfying 0i  , while 

samples whose associated i C   are considered outliers. An equivalent formulation was proposed, in 

which one places a hyper-plane that separates the data from the origin with maximum margin (Figure 2). 

In this case the problem reduces to [28,38]: 

2

, ,

1 1
min 1,..., n

2 i
w

i

w i
 

 
     

  (7)

Constrained to ξi ≥ 0 and where ν ∈	(0,1] is a regularization parameter (C) controlling the trade-off 

between accepting data into the class and having w  small. Introducing again Lagrange multipliers we 

reach the (equivalent) dual problem [28,38]: 

, ,

1 1
min ( ), ( ) min ( , )

2 2i
i j i j i j i j

i j i j

x x K x x
 

   
         

   
   

(8)

Subject to 
1

0 i 


 and 1i
i

  , which, once again is a quadratic programming problem. 
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2.5. Kernel Minimum Distance Classifier 

After determining the cluster centers and optimizing the algorithm parameters, accurate training 

samples of change and no-change classes can be extracted. At this stage, training samples are used to 

train a Kernel-based Minimum Distance classifier (KMD) for separating the two classes of interest. 

KMD classifier discrimination functions are defined based on a kernel-based distance measure. Given a 

data set  1 l S x , ,x   sampled from the input space X, a kernel K(x,y) and a function Φ in a feature 

space satisfy      T
K x,y φ x φ y . The main advantage of the kernels is that they can be directly created 

in the original input space without knowing the actual form of Φ [40]. There are several typical kernels, 

e.g. the Radial Base Function (RBF) kernel  
2

2

x y
K x,y exp( )

2σ


 , the polynomial kernel

   dTK x , y x y 1  , etc. The kernel-based distance measure between two points defined by a kernel K, 

can be estimated using Equation (9) [40]: 

           22d x, y φ x φ y K x, x 2K x, y K y, y      (9)

Suppose the training data set S contains c different classes, i.e., 21, ,.S S ..,Sc and each class of iS  has 

il  samples, satisfying the 
c

i
i 1

l l


 . Let     i j j iφ S φ x |x S   be the image of class iS  under the map 

Φ, and denote the center of  iφ S  as [40]: 

i

j i

s j
x Si

1
φ φ(x )

l 

   (10)

Then, the distance between the transferred point x in RKHS  φ x and the center of class  iφ s  can 

be computed as [40]: 

              

 
i i i

j k i j i

22 T T T
i i S S S

j k j2
x ,x S x Si i

d φ x ,φ S φ x φ S φ x φ x φ φ 2φ x φ

1 2
K x, x K(x , x ) K(x, x )

l l 

     

  
 (11)

According to Equation (11), the classification rule in KMD is to assign the new point x to the class 

with the smallest distance [40]: 

    
i

2
1 i c Sh x arg min d (φ x ,φ )    (12)

2.6. Similarity Space Transformation 

The spectral pattern recognition techniques could characterize the properties of any phenomenon by 

using inter-band information and defining the spectral similarity measures [33,34]. Deterministic 

similarity measures were used to project the multispectral data into a new similarity space with minimum 

knowledge (e.g., the spectral mean vector) about classes of interest [41]. In this new space, the pixels 

corresponding to any class will obtain similar values [42]. In addition to low computational 

requirements, they could minimize some undesirable physical effects including noises, illumination, and 
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topographic variation on intra-band spectral data [34,43]. Spectral Angle, Distance, and Correlation 

values have been used for material mapping by using spectral matching techniques [44]. The spectral 

similarity functions map the original reflectance or radiance data into a new space for a specific class of 

interest [33]. In this paper, the multi-spectral data are transformed into the similarity spaces using several 

measures such as Spectral Distance-Angl-Correlatio-Value (SDACV) (Figure 3) [34]. 

 

Figure 3. Spectral angle (θ) and distance similarity measures (d). Vector di and q represent 

the value of bi-temporal pair of images and reference change vector respectively. 
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Where dist and angle are the spectral distance and angle between any multi-temporal pixel x and the 

mean vector μch of change classes [33,34]. 
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Where corr and spec_value are the correlation and spectral value between any multi-temporal pixel x 

and the mean vector uch of change classes. In Equations (13) and (15), L is number of multi-temporal 

image bands. 

2.7. Improved Kernel Parameter Selection 

For almost all kernel-based algorithms, the selection of the parameters plays an essential role in the 

efficiency of algorithm. In this paper, the kernel K-means clustering the kernel parameters are tuned 

automatically by optimizing a criterion with the nature of geometrical and similarity in Hilbert space. 

The geometrical part of this criterion, tries to cluster the multi-temporal image with an optimal 

geometrical configuration. To achieve this purpose, the difference between the average cluster distance 

and the centers in the feature space is minimized and used as a geometrical criterion [17,45]. Moreover, 
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the similarity part of the criterion is minimizing the resemblance between the clusters. Both of these 

geometrical and similarity parts of the criterion are combined linearly with C1 and C2 coefficients. These 

parameters are determined during the optimization process. These developed criterion lead to an optimal 

selection of kernel parameters. The set of retained kernel parameters θ°pt is: 

 opt
1 2θ argmin C G C S     (17)
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In Equation (17), G and S are the geometrical and similarity parts of proposed cost function. To 

estimate this quantity; the kernel K-means is wrapped on the given pseudo-training set by varying C1; C2; θ. 

The parameters minimizing the Equation (17); are used as optimum kernel parameter in kernel clustering 

algorithm; by assigning an unknown pixel x’ to the cluster whose centroid satisfies

   c arg min d(φ x ,φ x )
cx  . This can be seen as a nonlinear minimum distance classification [45]. A great 

number of kernel functions exist and it is difficult to explain their individual characteristics. As shown 

in [46] two kinds of kernels may be defined: 

(1) Local kernels. In this kernel type, only the data that are close or in the proximity of each others have 

an influence on the kernel values. Basically, all kernels that are based on a distance function are local 

kernels. Examples of typical local kernels are: Radial Basis, KMOD, and Inverse Multi-quadric. 

(20)
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(2) Global kernels. In this kernel type, samples that are far away from each other still have an 

influence on the kernel value. All kernels based on the dot-product are global: 

(20)
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In this paper we used linear, polynomial, RBF, and sigmoid functions as kernels in proposed kernel-based 

change detection methods. Different kernels can be used to accommodate the wide-range of nonlinearities 

that may occur in the various datasets. Therefore, according to the complexity of the remote sensing 

datasets, an optimal kernel selection process must be carried out. Typically, this selection process could be 

done by optimizing a certain cost function related to an issue that must be resolved in remote sensing 

applications. As stated earlier, in this paper we used an improved cost function with the nature of 

geometrical and similarity in Hilbert space for extracting the optimum kernel types and kernel parameters. 

3. Experiments 

3.1. Remote Sensing Data 

In order to assess the effectiveness of the proposed approach, we considered two different data sets 

made up of multi-temporal-multispectral images acquired by the Landsat TM/ETM+ and Quickbird 

imageries. The first dataset refers to an area in Prince George area in Northern British Columbia, Canada, 

whereas the second one concerns a coastal area of Sumatra, Indonesia. 

Figure 4. True color images acquired by Landsat satellite over the Prince George area in 

Northern British Columbia (a), before (b) and after (c) the logging activities on 1990 and 

1999, respectively [47]. 
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In the first dataset, the logging activities in 1990 occurred in Prince George area in Northern British 

Columbia, Canada causing environmental damage in this region. In order to perform our change 

detection process and extract the deforestation areas, the Landsat imagery are used in two time periods; 

before and after the logging. The images have been acquired in 1990 and 1999 by Landsat-5 TM and 

Landsat-7 ETM+, respectively. This multi-date images have 30 m spatial resolution and seven spectral 

bands. The true color images of before and after the logging activities are shown in Figure 4. 

In the second dataset, the 2004 Indian Ocean earthquake was an undersea mega thrust earthquake that 

occurred at 00:58:53 UTC on Sunday, 26 December 2004, with an epicentre off the west coast of 

Sumatra, Indonesia [48]. It was one of the deadliest natural disasters recorded in history [14]. To extract 

the destroyed areas affected by tsunami in coastal area, the Quickbird imagery are used in two time 

periods; before and after the tsunami. The images have been acquired in December 2004 and January 2005 

respectively. This multi-date images have 2.5 m spatial resolution and four spectral bands of red, blue, green, 

and near-infrared. The true color images of before and after the tsunami are shown in Figure 5. 

Figure 5. True color images acquired by Quickbird satellite over Indonesia (a), before and 

after the tsunami on April 2004 (b) and January 2005 (c) [49]. 
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One of the main reasons for using these two data sets is that, in both of them, due to the occurrence 

of natural or planned disaster, a change has been created in the natural environment. Also, the purpose 

of this paper is to provide an efficient and accurate method to monitor the environmental changes using 

each type of remotely-sensed data. 

3.2. Experimental Results 

To evaluate the efficiency of the proposed method, various assessments are carried out: (1) Accuracy 

analysis of Heap-SPC approach using the proposed kernel-based algorithm in spectral space; (2) a 

comparative evaluation of two methods for calculating the difference image such as DFSS-SIM and 

DFHS-SIM approaches in similarity space; (3) sensitivity analysis of proposed kernel-based method 

with respect to kernels’ types and their parameters; (4) a comparative analysis between the proposed 

kernel-based change detection method and SVDD-based change detection method; (5) evaluation of 

usefulness of the similarity space versus spectral space for implementing the proposed kernel-based change 

detection algorithm; and (6) computational cost and accuracy analysis of proposed methods against the 

conventional change detection methods, namely, the MNF (Minimum Noise Fraction) change detection 

method, the ICA (Independent Component Analysis) based change detection method, SAM (Spectral 

Angle Mapper), Image Subtraction change detection, and Image Rationing change detection methods. 

In proposed kernel-based change detection algorithm and SVDD-based change detection method, the 

range of kernel parameters is as follows: (1) RBF kernel and sigmoid kernel bandwidth variation ranges 

are (0.1, 5) with the rate of change 0.1; (2) the degree of polynomial kernel variation range is (0, 5) with 

the rate of change 1 and (3) single-time and cross-time kernel parameters variation interval used in DFHS 

approach, are considered (0, 5) with a change rate value of 0.1 at each step. All the change intervals used 

in the grid search method done by automatic statistical method using L2-norm distance to estimate the 

optimal parameters for this interval. 

To evaluate the proposed algorithm, the test data have been extracted from the images by visually 

comparing the multi-temporal images. In Quickbird and Landsat data sets, the number of test samples for 

change class was 4959 and 4727 pixels and for no-change class was 3343 and 4575 pixels, respectively. 

These samples are selected such that they spread over the entire area that the effects of sun angle and 

topography should be carefully considered in the analysis. Two criteria based on kappa coefficient of 

agreement and Overall Accuracy (OA) were used for quantitative accuracy analysis of the results.  

3.2.1. Proposed Kernel-Based CD Method 

In this section, the proposed kernel-based CD method with two differencing approaches (DFSS-SIM 

and DFHS-SIM) are implemented and analyzed on Quickbird and Landsat data sets. In the first step, all 

pixels of the images are transferred into the similarity space. Then, difference images were calculated 

via DFSS-SIM and DFHS-SIM approach. In the next step, the difference images are used as input to the 

kernel K-means clustering algorithm. Then, after the selection of optimum parameters, a clustering 

algorithm is used to extract the precise training set. These samples are used for training the KMD 

classifier. The KMD classifier is then employed to separate the change and no-change pixels. The 

accuracy evaluation of proposed CD method in both data sets using DFSS-SIM and DFHS-SIM 

differencing approach are presented in Table 1. 
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Table 1. The accuracy analysis of proposed CD method using DFSS-SIM and  

DFHS-SIM approaches. 

Classifier 

Input Bands 
Kernel 

Type 

DFSS-SIM DFHS-SIM 

Quickbird  Landsat 
Quickbird Landsat Quickbird Landsat 

Kappa OA Kappa OA Kappa OA Kappa OA 

KMD  SDACV SDACV Linear 0.85 90.47 0.89 95.38 0.86 90.62 0.90 96.74 

KMD  SDACV SDACV Polynomial 0.68 71.44 0.71 76.49 0.70 73.63 0.73 78.29 

KMD  SDACV SDACV RBF 0.90 94.39 0.89 95.67 0.74 78.21 0.82 87.64 

KMD  SDACV SDACV Sigmoid 0.87 91.81 0.79 85.27 0.68 71.60 0.88 94.58 

For Quickbird dataset, the accuracy analysis of DFSS-SIM approach showed that, the best results 

were obtained by using the DFSS-SIM–RBF scenario (average improvement of ~4% in Kappa 

coefficient), which is closely followed by the DFSS-SIM-Linear and DFSS-SIM-Sigmoid scenarios. 

However, the DFSS-SIM-Polynomial scenario did not provide sufficient accuracy. For Landsat dataset, 

DFSS-SIM-Linear and DFSS-SIM-RBF approaches indicated the same result with a higher accuracy 

(average improvement of ~14% in Kappa coefficient) than DFSS-SIM-Polynomial and DFSS-SIM-Sigmoid 

approaches (Table 1). Once again, the RBF kernel yielded higher accuracy than the linear, polynomial 

and sigmoid kernels. It seems that, when the DFSS-SIM approach is used to calculate the differential 

image, the separation function between change and no-change classes is similar to a Gaussian function. 

So in this case, it is convenient to use an RBF kernel. 

The accuracy analysis of DFHS-SIM approach showed that, for Quickbird dataset, the best results 

were obtained by using the DFHS-SIM-Linear approach (average improvement of ~15% in Kappa 

coefficient) with respect to DFHS-SIM-RBF, DFHS-SIM-Polynomial, and DFHS-SIM-Sigmoid 

approaches. Also, for Landsat dataset, the best results were obtained by using the DFHS-SIM-Linear 

approach (average improvement of ~15% in Kappa coefficient) which is closely followed by the  

DFHS-SIM-Sigmoid and DFHS-SIM-RBF approaches. However, DFHS-SIM–Polynomial scenario did 

not provide sufficient accuracy. The results showed that, Linear kernel yielded higher accuracy than the 

RBF, polynomial, and sigmoid kernels. It seems that, when the DFHS-SIM method is used to calculate 

the differential image, the separation function between change and no-change classes is similar to a 

linear function. Thus in this case, it is convenient to use a linear kernel. 

However, for Quickbird dataset, it can be noted that, the DFHS-SIM scenario (average improvement 

of ~1.5% in Kappa coefficient) performed slightly better than the DFSS-SIM scenario in the case of 

linear and polynomial kernels, but in the case of RBF and sigmoid kernel, DFSS-SIM scenario has a higher 

accuracy (average improvement of ~17.5% in Kappa coefficient) than DFHS-SIM scenario. For Landsat 

dataset, it can be noted that, the DFHS-SIM scenario (average improvement of ~4% in Kappa 

coefficient) performed slightly better than the DFSS-SIM scenario in almost all the cases except RBF 

kernel. Although, OA and Kappa measurements were unbalanced, suggesting that high values of false 

detections were produced. Consequently, for Quickbird dataset and in the case of using polynomial 

kernel, it is better that first, multi-temporal images are transferred to the Hilbert space, then these images 

are subtracted pixel-by-pixel from each other, in order to obtain the difference image. But in the case of 

using sigmoid kernel, it is better to use the DFSS-SIM approach to obtain the final difference image. 

But, for Landsat dataset and in the case of using polynomial and sigmoid kernels, it is better that,  
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multi-temporal images are first transferred into the Hilbert space. These images, are then subtracted 

pixel-by-pixel in order to obtain the difference image. But in the case of using RBF kernel, it is better to 

use the DFSS-SIM approach for obtaining the final difference image. 

In Heap-SPC approach, before and after images are stacked together and transformed into Hilbert 

space. To increase the accuracy of the final change maps, in addition to the original bands, some features 

and spectral indexes were extracted from Quickbird and Landsat data sets. In the case of Quickbird 

dataset, some features based on the co-occurrence matrix of all the bands in each of the multi-temporal 

images are extracted. Since, both study areas include vegetation cover, the NDVI index is therefore 

helpful for separation of two classes of interest. Then, a filter-based feature selection method (correlation 

analysis between bands) is used to select the optimal features. Finally, the best selected features for 

Quickbird data sets are bands 1, 2, 3, and 4, the mean and variance of band 1 and NDVI. In the case of 

Landsat dataset, the best selected features are bands 1, 3, 4, 5, 7, and NDVI. The accuracy evaluation of 

the proposed CD method in both data sets using Heap-SPC approach are presented in Table 2. 

Table 2. The accuracy analysis of proposed CD method using Heap-SPC approach. 

Classifier 

Input Bands 

Kernel Type 

Heap-SPC 

Quickbird Landsat 
Quickbird Landsat 

Kappa  O.A. Kappa  O.A. 

KMD  
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7  

NDVI 
Linear 0.90 94.89 0.78 83.63 

KMD  
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7  

NDVI 
Polynomial 0.83 87.32 0.80 86.12 

KMD  
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7  

NDVI 
RBF 0.92 96.73 0.77 83.14 

KMD  
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7  

NDVI 
Sigmoid 0.81 85.47 0.70 75.40 

The accuracy analysis of Heap-SPC approach showed that, for Quickbird dataset, the best results 

were obtained by using the Heap-SPC–RBF scenario (average improvement of ~7% in Kappa coefficient), 

which is closely followed by the Heap-SPC-Linear, Heap-SPC-Polynomial and Heap-SPC-Sigmoid 

approaches. Therefore, RBF kernel yielded higher accuracy than the linear, polynomial, and sigmoid 

kernels. It seems that, in this case, when the Heap-SPC approach is used to transfer the multi-temporal 

image to Hilbert space, the separation function between change and no-change classes is similar to a 

Gaussian function. So in this case, it is convenient to use an RBF kernel. But, For Landsat dataset, the 

best results were achieved by using the Heap-SPC-Polynomial scenario (average improvement of ~5% 

in Kappa coefficient), which is closely followed by the Heap-SPC-Linear, Heap-SPC-RBF and  

Heap-SPC-Sigmoid approaches. So, polynomial kernel yielded higher accuracy than the linear, RBF, 

and sigmoid kernels. It seems that, in this case, when the Heap-SPC approach used to transfer the  

multi-temporal image to Hilbert space, the separation function between change and no-change classes is 

similar to a Gaussian function. So in this case, it is convenient to use a RBF kernel. 

By comparing the results showed in Tables 1 and 2, it can be noted that, for Quickbird datasets,  

Heap-SPC approach (average improvement of ~7% in Kappa coefficient) performed slightly better than 

the DFSS-SIM scenario in almost all the cases except the sigmoid kernel. But, Heap-SPC approach 

(average improvement of ~12% in Kappa coefficient) performed better than the DFHS-SIM scenario in 
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the case of all kernel types. For Landsat dataset, DFSS-SIM and DFHS-SIM approaches (average 

improvement of ~11% and 12% in Kappa coefficient) performed better than the Heap-SPC scenario in 

almost all the cases except the polynomial kernel, respectively. It can be concluded that, for Landsat 

datasets, implementation of proposed CD method in similarity space has provided better results than 

spectral space. 

3.2.2. Proposed SVDD-Based CD Method 

In this method, each of the multi-temporal images are transferred to the Hilbert space by using kernel 

functions. Then these transferred multi-temporal images stacked together in a higher dimensional space 

and used as input to the SVDD-based CD algorithm. By using the pseudo training samples obtained from 

clustering algorithm, the SVDD-based CD method was trained. In the next step, grid-searching and cross 

validation method was used for selecting the best SVDD parameters. Finally, SVDD-based 

discrimination function is used to separate the change and no-change pixels. The accuracy evaluation of 

the proposed SVDD-based CD method is presented in Table 3. 

Table 3. The accuracy analysis of proposed SVDD-based CD method. 

CD Method 

Input Bands 

Kernel Type 
Quickbird Landsat 

Quickbird Landsat 
Kappa  O.A. Kappa  O.A. 

SVDD-based  
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7 

NDVI 
Linear 0.86 90.28 0.84 90.54 

SVDD-based  
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7 

NDVI 
Polynomial 0.88 92.07 0.82 88.41 

SVDD-based  
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7 

NDVI 
RBF 0.91 95.28 0.90 96.22 

SVDD-based  
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7 

NDVI 
Sigmoid 0.80 84.11 0.74 79.35 

The accuracy assessment of SVDD-based CD method showed that, for Quickbird and Landsat 

datasets, using the RBF kernel function gives a higher accuracy than using other kernel types. Once 

again, the RBF kernel function perform better than other kernel types. It seems that, in proposed  

SVDD-based CD method, the separation function between change and no-change classes is similar to a 

Gaussian function. So, it can be concluded that, for both datasets, the RBF kernel is the best choice for 

the proposed SVDD-based CD method and has a higher accuracy than other kernel types (Table 3). 

By comparing the results showed in Tables 1–3, it can be noted that: for Quickbird dataset,  

Heap-SPC approach (average improvement of ~2% in Kappa coefficient) performed slightly better than 

the SVDD-based CD method in almost all the cases except the polynomial kernel. The SVDD-based CD 

method (average improvement of ~7% in Kappa coefficient) performed better than the DFSS-SIM 

approach in almost all the cases except the sigmoid kernel. SVDD-based CD and DFHS-SIM approaches 

indicated the same result in the case of RBF kernel. But, SVDD-based CD method (average improvement 

of ~16% in Kappa coefficient) performed better than the DFHS-SIM approach in other kernel types.  

For Landsat dataset, SVDD-based CD method (average improvement of ~6% in Kappa coefficient) 

performed better than the Heap-SPC approach for all kernel types. In the case of linear and sigmoid 
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kernels, DFSS-SIM and DFHS-SIM approaches (average improvement of ~5% and 10% in Kappa 

coefficient) performed better than the SVDD-based CD method, respectively. The SVDD-based CD and 

DFSS-SIM approaches indicated the same result in the case of RBF kernel. But, SVDD-based CD 

method (improvement of ~11% and 9% in Kappa coefficient) performed better than the DFSS-SIM and 

DFHS-SIM approaches for polynomial kernel. Finally, in the case of RBF kernel, SVDD-based CD 

method (improvement of ~8% in Kappa coefficient) performed better than the DFHS-SIM approach. 

Several discussions can be deduced from the accuracy assessment of proposed CD methods on both 

datasets. In most cases, the proposed kernel-based CD framework has better results when compared 

with SVDD-based CD method. We can, consequently, conclude that in the proposed hybrid CD 

method based on CVA, KKMC, and KMD approaches, each part of the algorithms initialized the other 

part. So, this algorithm converges quickly and more accurate results are obtained. The initial values, 

calculated at each stage of the algorithm, increased the convergence and accuracy of the results. In the 

proposed kernel-based algorithm, the training procedure of KMD classifier performed by precise 

training samples. While the SVDD-based CD method could not extract accurate training samples from 

initial samples and trained directly with pseudo-training samples.  

In Figure 6, for Quickbird dataset, the change maps obtained from DFSS-SIM-Linear (a),  

DFSS-SIM-RBF (b), DFSS-SIM-Sigmoid (c), DFHS-SIM-Linear (d), Heap-SPC-Linear (e),  

Heap-SPC-Polynomial (f), Heap-SPC-RBF (g), Heap-SPC-Sigmoid (h), SVDD-Linear (i),  

SVDD-Polynomial (j), SVDD-RBF (k), SVDD-Sigmoid (l) approaches are shown, respectively. The 

black color indicates the no-change class while the red color indicates the no-change class. 

As it can be seen in Figure 6f and Figure 6h, in change maps obtained from Heap-SPC-Polynomial 

and Heap-SPC-Sigmoid approaches, the ocean and the forest areas are somewhat detected as the change. 

There is clear changes for ocean and forest which are related to the normal raging in ocean and 

atmospheric conditions respectively; but they are not considered as change classes. The change map 

shown in Figure 6a–d,i, obtained from DFSS-SIM–Linear, DFSS-SIM–RBF, DFSS-SIM-Sigmoid, 

DFHS-SIM-Linear approaches, the ocean areas located in the north of the study area are also detected 

as the change. These changes are only due to the raging of ocean at the tsunami struck but they are not 

considered as change classes. However, the change map shown in Figure 6e,g,j,k, in change map 

obtained from Heap-SPC-Linear, Heap-SPC-RBF, SVDD-Polynomial, and SVDD-RBF approaches got 

limited isolated pixels and they were less noisy in essence and better results have been achieved. 

In Figure 7, for Landsat dataset, the change maps obtained from DFSS-SIM-Linear (a),  

DFSS-SIM–RBF (b), DFSS-SIM-Sigmoid (c), DFHS-SIM-Linear (d), DFHS-SIM–RBF (e),  

DFHS-SIM-Sigmoid (f), Heap-SPC-Linear (g), Heap-SPC-Polynomial (h), Heap-SPC-RBF (i),  

SVDD-Linear (j), SVDD-Polynomial (k), SVDD-RBF (l) approaches are shown, respectively. 
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Figure 6. Change maps obtained from (a) DFSS-SIM-Linear, (b) DFSS-SIM-RBF, (c) 

DFSS-SIM-Sigmoid, (d) DFHS-SIM-Linear, (e) Heap-SPC-Linear, (f) Heap-SPC-Polynomial, 

(g) Heap-SPC-RBF, (h) Heap-SPC-Sigmoid, (i) SVDD-Linear, (j) SVDD-Polynomial, (k) 

SVDD-RBF, (l) SVDD-Sigmoid approaches. 
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Figure 7. Change maps obtained from (a) DFSS-SIM-Linear, (b) DFSS-SIM-RBF, (c) 

DFSS-SIM-Sigmoid, (d) DFHS-SIM-Linear, (e) DFHS-SIM-RBF, (f) DFHS-SIM-Sigmoid, (g) 

Heap-SPC-Linear, (h) Heap-SPC-Polynomial, (i) Heap-SPC-RBF, (j) SVDD-Linear, (k) 

SVDD-Polynomial, (l) SVDD-RBF approaches. 

As it can be seen in Figure 7e,g–i,k, change maps obtained from DFHS-SIM–RBF, Heap-SPC-Linear, 

Heap-SPC-Polynomial, Heap-SPC-RBF, and SVDD-Polynomial methods, the agricultural areas in the 

southwest of study area are somewhat noisy. These changes are only due to the seasonal change and 

variety of cultures but they are not considered as change classes. The change map shown in Figure 7c, 

obtained from DFSS-SIM-Sigmoid approach, the forest areas in the background of the study area are 

somewhat noisy. These changes are only due to the atmospheric condition. However, the change map 
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shown in Figure 7a,b,d,f,j,l obtained from DFSS-SIM-Linear, DFSS-SIM-RBF, DFHS-SIM-Linear, 

DFHS-SIM-Sigmoid, SVDD-Linear, and SVDD-RBF methods got limited isolated pixels and they were 

less noisy in essence and better results have been achieved. 

In order to compare our results with the respective outputs from other similar researches, the 

experimental results of kernel-based CD methods were evaluated. Gustavo Camps-Valls et al. [28,35] 

proposed two kernel-based CD methods including (1) kernel-based image differencing and image 

ratioing CD methods and (2) SVMs based and SVDD based multi-temporal image classifiers. Synthetic 

and real remote sensing data sets were used for analyzing the performance of the proposed 

methodological framework based on kernels.  

It is worth mentioning that implementation of algorithm and flowchart of this framework are quite 

different with our proposed approach. Several conclusions can be derived from accuracy assessment on 

synthetic dataset. In all cases, the RBF kernel outperformed the linear kernel. In multi-temporal image 

classification, the best kernel classifier is constituted by the cross-terms kernel because it includes the 

temporal information of image evolution. In change detection problems, the best results were obtained 

by using the difference kernel. SVMs generally works slightly better than the SVDD. In all cases and 

scenes, it becomes obvious that the use of the RBF kernel provides much better results than the linear 

kernel. SVMs classifier shows the best results; however, SVDD classifier can also produce stable and 

robust outcomes, which confirms their suitability to application scenarios in which incomplete or 

partially complete information is available [28,35]. By comparing our results illustrated in Sections 3.2.1 

and 3.2.2, it can be concluded that the outcome of these works are in agreement with our main findings. 
In optimum kernel type and kernel parameter selection of kernel clustering algorithm, these 

parameters are tuned automatically by optimizing an improved cost function with the nature of 

geometrical and spectral similarity in kernel space. This optimization process runs for all kernel types 

so that the optimized kernel parameter and the corresponding kernel type that minimize the cost function 

to be determined. The procedure of optimal single-time and cross-time RBF kernel parameters selection 

corresponding to maximum value and minimum value of cost function in the DFHS-SIM-RBF approach 

is shown in Figure 8. For this purpose, single-time and cross-time parameters of composite kernel 

defined in Equation (17), were calculated using grid searching method in such a way for the value of the 

cost function to be minimized [33,36]. This result illustrates the joint optimization of σsinger and σcross 

(DFHS-SIM-RBF). The proposed cost function showed detectable and appropriate global minima. 

As seen in Figure 8; the white marks are placed to minimize the proposed cost function and green 

marks are the location of the maximum value of the proposed cost function for Quickbird and Landsat 

data sets. Therefore; the parameters  single crossθ σ ,σ  that the cost function to be minimized for them can 

be selected. By analyzing the results it can be concluded that for both data sets; for low bandwidth values; 

the change and no-change clusters are not separable and the spectral similarity of clusters is 

overestimated. For wider bandwidths; the similarity value between change and no-change clusters is 

underestimated. The optimal separability between clusters is reached when the cross kernel parameters 

is in the range of the average Euclidean distance and average similarity value among pixels within clusters. 
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Figure 8. Optimal multi-temporal cross kernel parameters selection in DFHS-RBF approach 

for Quickbird (a) and Landsat (b) data sets. 

3.2.3. Conventional CD Method 

In order to assess the performance of the proposed hybrid CD algorithms, we compared this technique 

with well-known change detection methods, namely, the MNF (Minimum Noise Fraction) CD method [50], 

the ICA (Independent Component Analysis) based CD method [51], SAM (Spectral Angle Mapper) [52], 

Image Subtraction CD [9,53] and Image Rationing CD methods [53,54]. These methods are 

implemented and tested on the same data in spectral space.  

Table 4. The Comparative analysis of conventional CD and proposed CD methods. 

CD Method 

Input Bands 
Quickbird  Landsat 

Quickbird Landsat 
Kappa O.A. Kappa O.A. 

MNF Transform 
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7  

NDVI 
0.84 91.60 0.64 72.97 

ICA Transform  
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7  

NDVI 
0.68 85.48 0.66 75.54 

Spectral Angle Mapper 
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7  

NDVI 
0.60 75.38 0.77 87.80 

Image Subtraction  
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7  

NDVI 
0.69 86.57 0.61 69.40 

Image Rationing 
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7  

NDVI 
0.61 76.45 0.63 72.17 

DFSS-SIM-RBF SDACV SDACV 0.90 94.39 0.89 95.67 

DFHS-SIM-RBF SDACV SDACV 0.74 78.21 0.82 87.64 

Heap-SPC-RBF 
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7  

NDVI 
0.92 96.73 0.77 83.14 

SVDD-RBF 
Bands 1,2,3,4,  

µ_b1, σ_b1, NDVI 

Bands 1,3,4,5,7  

NDVI 
0.91 95.28 0.90 96.22 
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These results are presented in Table 4 which show that for both Landsat and Quickbird data sets, all 

proposed kernel-based methods such as DFSS-SIM-RBF, DFHS-SIM-RBF, Heap-SPC-RBF 

approaches and SVDD-based CD method have higher accuracy than all well-known CD methods. The 

classical change detection methods show intermediate level accuracies caused by both the false alarm 

rate and the weak detection rate when compared to the proposed kernel-based algorithm. Since, spectral 

difference values for change and no-change classes in the differential image obtained in the spectral 

space are close to each other, the boundary separation between change and no-change classes is not 

readily detected. Through transferring this difference image into the Hilbert space with a higher 

dimension, the separation of these two classes is increased and better results will be achieved. This 

classical method is extremely sensitive to the noise of data and error of multi-temporal data 

misregistration. The accuracy of the produced change map is greatly dependent on the selection of 

appropriate threshold.  

Two scenarios were considered in order to compare the computational cost of the proposed kernel-based 

CD methods, against the computational cost of classical algorithms. The computational runtime of each 

method presented in Table 4 was estimated. In the first scenario, the computational cost of classical CD 

methods were calculated with regard to the fact that the thresholding stage made through an operator. 

Therefore, the required time for selecting the appropriate threshold will be considered in processing time. 

But in the second scenario, it is assumed that the thresholding stage has already been done for classical 

CD methods. As a result, the computational cost analyses are only related to the computational runtime 

of processing cores of proposed and classical methods. However, in both scenarios, the required time 

for automatic threshold selection is considered in the processing runtime of proposed CD methods. For 

a fair comparison, all classical and proposed CD methods were implemented in the same programming 

environment. Since the runtime of the proposed kernel-based methods depend on the time of grid 

searching process for determining the optimized kernel parameter, therefore, it is assumed that the 

optimum kernel parameter is already known in both scenarios. The computational cost analysis of 

classical CD and proposed CD methods for both datasets when threshold is estimated by an operator 

(first scenario) was given in Figure 9. 

 

Figure 9. Computational cost analysis of classical CD and proposed CD methods for 

Quickbird and Landsat datasets when thresholding stage made through an operator in 

classical CD methods (first scenario). 



Remote Sens. 2015, 7 12853 

 

As seen in Figure 9, the computational runtime of proposed methods are less than the classical CD 

methods. In addition, DFSS-SIM and DFHS-SIM approach have the lowest computational cost 

compared to other methods. It is evident that the implementation of proposed CD method in similarity 

space decreases the processing times. Furthermore, the conventional CD methods are largely dependent 

on the user interaction and are non-automatic. Determination of the exact threshold is very time 

consuming and requires a skilled operator. The computational cost analysis of classical CD and proposed 

CD methods for both datasets with the thresholding stage pre-made in classical CD methods (second 

scenario) are presented in Figure 10. 

 

Figure 10. Computational cost analysis of classical CD and proposed CD methods for 

Quickbird and Landsat datasets when the thresholding stage was pre-made in classical CD 

methods (second scenario). 

Comparative computational cost analysis of proposed CD method against classical CD methods 

showed that (See Figure 10), for both datasets, the lowest computational cost was obtained by using the 

Subtraction method. This is closely followed by the SAM, Ratioing, DFSS-SIM and DFHS-SIM 

approaches. Although the threshold of the proposed method is selected automatically, the processing 

time does not significantly change compared to the conventional CD methods. For example, the 

processing time of DFSS-SIM, DFHS-SIM, Heap-SPC, and SVDD methods is far less than ICA and 

MNF CD methods. It can be concluded that the implementation of proposed CD method in similarity 

space decreases the processing times. Consequently, in the absence of a skilled user, the processing time 

of conventional CD methods greatly increases. 

4. Conclusions 

In this paper, a kernel-based and hybrid framework is presented for change detection from remotely 

sensed data in a similarity space. This proposed method shows great flexibility for the problem of change 

detection by finding nonlinear solutions to the problem. The main issues of the framework have been 

discussed and resolved. Firstly, the initialization was addressed by finding a threshold on change vector 

magnitude distribution. A geometrically and spectral similarity inspired cost function has been proposed 

to estimate the optimal single-time and cross-time kernel parameters. This cost function produces 

clusters that minimize the similarity and maximize the distance between them. By exploiting a proper 

initialization, the kernel K-means clustering is used to extract the precise training samples for the two 
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classes of interest. Secondly, by reformulating the simple difference CD method in the Hilbert space, the 

similarity of the difference image in feature spaces are strongly improved. This is accomplished by three 

approaches, i.e., DFSS-SIM, DFHS-SIM, and Heap-SPC approaches. Thirdly, multi-temporal images 

are transformed into the similarity space for increasing the separation between change and  

no-change classes and decreasing the time of the CD process. Lastly, a new method to estimate the initial 

value of the RBF kernel parameter in the CD problem was proposed. This method is based on a statistical 

method using the L2-norm distance and leads to a faster convergence of a grid-searching techniques for 

selecting the global optimum RBF’s kernel parameter.  

Experimental comparisons showed that when only relying on the change’s magnitude, the correct 

discrimination of the changes becomes a difficult task. This is related to the ambiguity of the measure, 

as well as to the change’s magnitude one-dimensional representation, which hides the useful information 

in multi-temporal data. Almost all the classical methods are based on the change vector magnitude 

analysis and the determination of a threshold for separating the change pixels from the no-change ones. 

Accordingly, the information between change and no-change pixels in multi-temporal images leads to a 

one-dimensional change vector. While the proposed method uses all the multi-temporal bands and the 

mutual information between them. Thus, more information can be extracted to separate the unchanged 

pixels from changed ones. In contrast, by detecting the changes in higher dimensional feature spaces, 

the multi-temporal information unfolds into clusters that are easily separable. Such an approach also 

reduces the preprocessing corrections, for the single time information is considered separately and 

regularized by the cross-similarity of the scenes.  

The proposed approach shows accuracy improvements with respect to classical change detection 

techniques. This indicates that a better illustration can be obtained by considering cross information 

between multi-temporal images. This leads to a strong decrease in the false alarm rate, and a slight 

improvement in the detection rates in produced change maps. As a result, this approach is the most 

accurate one. Finally, the computational cost analysis showed that implementation of proposed CD 

method in similarity space decrease the processing times. Further research can be done in the field of 

combining the multi-sensor data such as optic and radar imageries. Such information can be incorporated 

in the proposed CD framework by developing specific kernel functions. Types of changes and their 

change directions can also be considered to extend the use of the proposed CD framework for multi-

class change detection.  
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