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Abstract: Air temperature (Ta) is a key input in a wide range of agroclimatic applications. 

Moderate Resolution Imaging Spectroradiometer (MODIS) Ts (Land Surface Temperature 

(LST)) products are widely used to estimate daily Ta. However, only daytime LST  

(Ts-day) or nighttime LST (Ts-night) data have been used to estimate Tmax/Tmin (daily 

maximum or minimum air temperature), respectively. The relationship between Tmax and 

Ts-night, and the one between Tmin and Ts-day has not been studied. In this study, both the 

ability of Ts-night data to estimate Tmax and the ability of Ts-day data to estimate Tmin 

were tested and studied in the Corn Belt during the growing season (May–September) from 

2008 to 2012, using MODIS daily LST products from both Terra and Aqua. The results show 

that using Ts-night for estimating Tmax could result in a higher accuracy than using Ts-day 
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for a similar estimate. Combining Ts-day and Ts-night, the estimation of Tmax was 

improved by 0.19–1.85, 0.37–1.12 and 0.26–0.93 °C for crops, deciduous forest and 

developed areas, respectively, when compared with using only Ts-day or Ts-night data. The 

main factors influencing the Ta estimation errors spatially and temporally were analyzed and 

discussed, such as satellite overpassing time, air masses, irrigation, etc. 

Keywords: air temperature; land surface temperature; remote sensing; MODIS 

 

1. Introduction 

Air temperature (Ta) plays an important role in energy balance and is a key input in various 

environmental models and applications, such as crop evapotranspiration estimation [1], distributed 

hydrology [2] and climate change models [3]. Ta is typically measured at meteorological stations 2 m 

above the ground. Meteorological measurements provide accurate discrete Ta information for specific 

locations but have limited ability to describe its spatial heterogeneity over large areas [4,5]. The  

non-uniform spatial distribution of weather station locations within most networks and the complexity 

of the land surface conditions and patterns make it a challenge to get spatial-continuous Ta data. 

Satellite remote sensing observations from global imaging sensors, such as the Advanced Very High 

Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradiometer (MODIS), 

represent a potentially valuable alternative to characterize spatially-detailed Ta patterns across large 

areas. A split window technique was applied to AVHRR [6], MODIS [7], and Meteosat [8] thermal data 

to estimate Land Surface Temperature (LST). The science-grade quality of the LST data collected by 

MODIS has proven valuable for monitoring land surface dynamics over large areas [4,9,10]. 

The earth’s surface is heated by solar radiation, while the atmosphere is mainly heated from  

the ground up through longwave infrared radiation [11]. The relationship between Ts (Land Surface 

Temperature) and Ta may vary with time and location, because the land surface energy balance is  

a complex phenomenon that depends on multiple factors (e.g., cloud cover, surface roughness,  

wind speed and soil moisture), whereas some of them (e.g., wind speed) are usually not available from 

satellite [12–14]. Zakšek and Schroedter-Homscheidt [15] and Benali et al. [4] reviewed the types of 

methods commonly used to estimate Ta from satellite-based LST products. These can be divided into 

three distinct types of approaches. 

The first type are statistical approaches based on a simple linear regression between Ts and Ta,  

or advanced statistical models with consideration of more than one independent variable, such as solar 

zenith angle (SZA), elevation, altitude, Julian day among others [10,16,17]. Lin et al. [10] used stepwise 

linear regression method to estimate daily maximum air temperature (Tmax) and daily minimum air 

temperature (Tmin) with MAE = 1.9, agreement index = 0.79 and MAE = 1.9 °C, agreement index = 0.92, 

respectively, over east Africa. Fu et al. [18] used linear regression between MODIS Ts and Tmax from 

stations on the northern Tibetan Plateau. In general, these methods perform well within the spatial and 

time frame they were developed, but the accuracy might decrease when extended in time and space [14]. 

The second category is index-based methods such as the Temperature-Vegetation index (TVX). It is 

a contextual method based on the hypothesis that for thick vegetation canopy temperature approximates 
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Ta [19,20]. The negative relationship between the Normalized Difference Vegetation Index (NDVI), 

which serves as a general indicator of vegetation greenness, and Ts in the study area is the foundation 

for the application of this method. Zhu et al. [21] used the TVX method to estimate daily Tmax with 

RMSE (the root mean square error) =3.709 °C, MAE (the mean absolute error) = 3.03 °C and  

r (correlation coefficient) =0.83 in Xiangride River Basin of China. However, Vancutsem et al. [22] 

found that TVX method did not adapt to different ecosystems over Africa because non-significant 

relationship between Ts and NDVI in their study. Karnieli et al. [23] found that the approaches based on 

this negative NDVI/Ts relationship have minimal utility in energy-limited environments (e.g., high 

latitude and elevations) compared to moisture-limited environments because vegetation-expressed NDVI 

response is more related to available solar radiation than land surface conditions (e.g., soil moisture). 

The final class of methods uses surface energy balance parameterizations based on physically-based 

models [24]. The sum of incoming net radiation is considered equal to the sum of the soil heat flux, 

sensible flux and latent heat flux [15,24]. However these methods require large amounts of information 

that are usually not only from remote sensing (e.g., roughness, soil physical properties) [4,9,13]. 

Benali et al. [4] used both weekly daytime LST data (Ts-day) and nighttime LST data (Ts-night) to 

estimate the average, maximum and minimum weekly temperature. They found that there was a higher 

correlation between average weekly temperature and averaged weekly Ts-night, which indicates the 

potential of Ts-night in estimating averaged weekly temperature. However the relationships between 

daily Tmax and Ts-night have not been investigated in previous studies. 

The main objective of this study was to estimate daily Tmax (hereafter Tmax) and daily Tmin 

(hereafter Tmin) across the U.S. Corn Belt region based on both Ts-day and Ts-night observations 

acquired from MODIS and auxiliary variables. Previous studies aimed at estimating Tmax have been 

based on Ts-day data only and generally applied to small areas and/or a small number of meteorological 

stations [14,16,25,26]. In this study, the work was extended to include Ts-night data and applied for a 

five-year period (2008–2012) over the U.S. Corn Belt, which represents a large, agriculturally-significant 

region that covers six states. Ta plays an important role in understanding regional variations in crop 

phenology via growing degree days (GDD) [27] and environmental stress, such as drought, which are 

important in assessing potential crop production. The ability to monitor Ta over this area has enormous 

economic and strategic significance given its role as a major producer of corn and soybeans. This study 

analyzed the spatial and temporal relationship between daily Ta and Ts at both the local weather station 

scale and the regional scale using satellite-derived gridded Ts data sets. The main factors influencing the 

Ta estimation errors spatially and temporally were also analyzed and discussed. 

2. Study Area 

The Corn Belt region of the Midwestern United States is considered to be the breadbasket of the 

country because of extensive corn and soybean production. The study area includes six states  

(Iowa, Illinois, Indiana, parts of Minnesota, Nebraska, and Ohio) that comprise 52 Agricultural Statistics 

Districts (ASDs) (Figure 1). There are geographic variations in temperature, precipitation, elevation 

across this sizable study area. The elevation is increasing from east-to-west with elevations ranging from 

87 to 666 m. Precipitation increases in a west-to-east direction ranging from the lowest annual 

precipitation of about 500 mm in Nebraska to about 1300 mm in eastern locations. Temperature 
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generally decreases with latitude across the study area with subtle local-scale variations because of 

topographic elevation differences. Corn and soybeans are the major crops planted across the Corn Belt 

with most of the U.S. top production states (Illinois, Iowa, Nebraska, Minnesota) being located within this 

region [28]. Usually, they were planted in May or before and harvested in September or later. 

Accordingly, the period from May to September was included as the growing season in this study. The 

majority of the Corn Belt produces corn and soybeans under rainfed conditions because in normal 

climatic years most of the region receives ample precipitation to sustain high crop production levels. The 

exception is the state of Nebraska, where irrigated systems have been implemented because of lower 

annual rainfall rates. 

 

Figure 1. Map of the U.S. Corn Belt study area with the main land-cover types (from 

Cropland data layer data (CDL) of 2012) and spatial distribution of the meteorological 

stations used in this study presented. 

3. Data Description and Processing 

3.1. MODIS Data 

Daily 1000 m LST data (MOD11A1 and MYD11A1, Collection 5, from MODIS sensors on board 

Terra and Aqua satellites, respectively) for the period of 2008–2012 during the growing season (May  

to September) over the Corn Belt were used. The study area covers four MODIS tiles (i.e., h10v04, 

h10v05, h11v04, and h11v05). The data were downloaded from NASA’s Earth Observing System Data 

and Information System [29]. The nominal equatorial passing time of Terra is around 10:30 a.m. and 

10:30 p.m. local solar time, while Aqua passes in the opposite direction at about 1:30 a.m. and 1:30 p.m. 

As a result, the Aqua and Terra MODIS instruments collectively provide four daily LST observations, 

which enabled analysis of those four selected times and day, night, and day/night LST differences in this 
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study. A 13 by 13 pixel window centered by the station was used to get average Ts, as Prihodko and 

Goward (1997) [19] stated that Ta deviations of approximately 0.6 °C occur at horizontal distances of 6 km. 

3.2. Weather Station Data 

Daily Tmax and Tmin measured in weather stations from 2008 to 2012 were downloaded from the 

GHCN (Global Historical Climatology Network) daily database from NOAA’s National Climatic Data 

Center [30]. This database is a composite of climate records from numerous data sources that were 

merged and then checked for quality assurance. For analysis, the stations were divided into three  

sub-datasets according to the dominant land cover surrounding each station location: crops (corn and 

soybeans), developed areas and deciduous forest. These three classes were selected because they 

represent the primary land-cover types in the study area. 

3.3. Auxiliary Data 

Additional auxiliary data were used to refine the analysis that included: The NASS Cropland Data 

Layers [31]; irrigation data from the MODIS Irrigated Agriculture Dataset (MIrAD) [32]; elevation; 

Julian day; and SZA. The NASS CDLs from 2008 to 2012 for the Corn Belt states were used to select 

crops, deciduous forest and developed area pixels around the stations. The weather stations were selected 

by three steps based on CDL data. Firstly, the original 30-m CDL data were resampled to 25-m spatial 

resolution by nearest neighbor resampling. Then the 25-m spatial resolution CDL data was resampled to 

1-km spatial resolution to be consistent with the MODIS LST datasets by calculating the 25-m spatial 

resolution pixels of each land-cover types within the 1-km by 1-km pixel window. The 1-km pixel was 

marked as one of the three targeted land-cover types when the 1 km by 1 km pixel window was covered 

by more than 75% of 25-m pixels of such land cover type, or it was marked as other types. Finally, 

station locations were considered to be surrounded by a dominant land cover type when one of the three 

targeted land cover classes comprised more than 50% of the 1-km pixels within a 13-by-13 pixel window 

centered on each station. Only station locations with a dominate land cover type were retained for 

analysis and Ts values in the MODIS LST were extracted from only the pixels of the dominant land 

cover type to calculate the Ts of the station location. Both Julian day and solar zenith angle data were 

used as proxies for the fraction of solar energy absorption during the day. Solar zenith angle was 

calculated based on both latitude and Julian day [33]. 

3.4. Data Processing 

It is important to eliminate low quality data in the MODIS LST data because remote sensing based 

Ta estimates are strongly influenced by errors (e.g., error caused by cloud cover and large sensor viewing 

angles, uncertainties in surface emissivity [34]) of the LST retrievals [4]. Validation studies of MODIS 

Ts show that under clear-sky conditions the precision is approximately 1 K or less, but higher errors 

would be observed at large viewing angles and in semiarid regions [35]. So only the pixels of the targeted 

land-cover types that were flagged in the MODIS quality assurance data as cloud-free and of high quality 

were retained. However, there is still undetected cloud-contaminated LST outliers occurring at cloud 

edges and these typically have negative °C temperature values [36]. In order to minimize these  
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cloud-contaminated pixels, only Ts value of the station which has larger than 90% cloud-free pixels in 

the 13-by-13 window were selected [14]. In addition, pixels were eliminated if they were outside the  

0–120 °C and 11–130 °C sensor zenith angle ranges, for day and night products, respectively [4]. 

4. Methodology 

Model design and assessment was based on linear regression analysis. Other factors, such as the  

Julian day, solar zenith angle, latitude, and elevation, which may affect the Ts-Ta relations as described 

in previous papers [10,16,17], were also taken into consideration. The refined dataset was divided into 

two groups: calibration and validation datasets with a 70%/30% split into these groups using a simple 

random sampling. It is an efficient way to obtain unbiased results. 

The statistical relationship between MODIS Ts products and station-based daily Ta was analyzed  

in this study. Four statistical performance measures were used including the common correlation 

coefficient (R), the mean bias (the difference between the estimated and observed values), MAE,  

and RMSE. The RMSE is particularly sensitive to outliers on an individual level [37]. Collectively,  

these performance statistics were analyzed to characterize model performance and the impact of 

seasonality and spatial location on estimation accuracy of Ta from MODIS Ts data. 

In addition, ground-air temperature difference (GATD) and diurnal temperature range of Ts  

(Ts-DTR), which were defined as Equations (1) and (2), respectively, were introduced to analyze Tmax 

estimation. GATD is usually referred to the difference of Ts and Ta value of the same time. However, 

in this study, the time when Ts-day was acquired and the time when Tmax reached were not exactly the 

same (about 0~3 h difference). We assume that the difference of the acquired time of Ts-day and Tmax 

had little impact on GATD. 

day maxGATD Ts  T   (1)

 day nightTs-DTR=Ts- Ts-  (2)

Inter-diurnal variability (IDV) of Ta was introduced to analyze the spatial and temporal patterns  

of Ta estimation accuracy. It refers to the day-to-day changes of Ta (Tmax/Tmin) in a given 

meteorological element [38]. It can be taken as the numerical difference between successive daily 

extremes (Tmax/Tmin) [38] (Equation (3)). When IDV is averaged over the entire study period  

(e.g., for a particular month), the resulting quantity is referred to as the mean inter-diurnal variability of 

temperature (MIDV) [39] (Equation (4)):  

1IDV t t tTa Ta    (3)

1( )
MIDV

End

t t

Start

Ta Ta

N





 
(4)

where ܦܫ ௧ܸ	refers to the IDV of the t day (t = 1, 2, 3, …). ܶܽ௧	and ܶܽ௧ିଵ refers to the Ta (Tmax/Tmin) 

of the t day and t − 1 day (the day before the t day). Start and End are the first and last day of the study 

period for MIDV, respectively. N is the number of days during the study period for MIDV. 
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5. Results and Discussion 

5.1. The Relationship between Observed Ta and Ts from MODIS Terra and Aqua 

The influence of the time-of-observation on estimation of Ta has been studied and discussed in several 

previous studies that resulted different conclusions. For example, Benali et al. [4] stated that the use of 

both Aqua Ts-day and Ts-night could improve the estimation of Tmax and Tmin, respectively, due to 

the fact that the MODIS Aqua overpass time is closer to the time of both Tmax and Tmin than Terra’s. 

In contrast, Zhu et al. [21] showed that both Terra Ts-day and Ts-night were better than Aqua Ts-day 

and Ts-night for Ta estimations in Xiangride River basin of China. In another study, Mostovoy et al. [9] 

found that the difference between satellite overpass (Terra and Aqua) had little impact on the estimation 

accuracy of Ta. 

The comparison between MODIS Ts data and Ta observations shows that Ts-day from both Terra 

and Aqua, with the mean relative bias above zero, tended to overestimate Tmax (Table 1). The Ts value 

of daytime Aqua LST is higher than that of daytime Terra LST, which might be expected given the fact 

that more solar radiation has been received at the time of the Aqua MODIS overpass later in the day. As 

a result, a higher relative bias was observed for the Aqua Ts-day than Terra Ts-day, though the time 

when Aqua Ts-day was acquired was closer to the time when Tmax was reached. Both Aqua Ts-night 

and Terra Ts-night overestimated Tmin as well. As both minimum Ts and Ta usually occur near or after 

sunrise [40]. The nighttime overpasses of MODIS occurs before the both minimum Ts and Ta is reached, 

which led to this observed higher Ts values from both MODIS sensors relative to the observed Tmin. 

This is supported by the fact that the Ts from Terra MODIS, which has an overpass time ~3 h before the 

MODIS Aqua overpass, consistently had higher Ts values reflecting the cooling of the land’s surface as 

the night progresses. Compared to the value of Terra Ts-night, that of Aqua Ts-night was closer to  

Tmin value. 

Table 1. Statistics with direct using of daily MODIS Ts products as estimators of Ta 

observations (°C). 

Datasets Meanbias RMSE MAE R 

MODday & Tmax 1.39 4.96 3.66 0.46 

MODnight & Tmin 2.26 3.06 2.54 0.93 

MYDday & Tmax 3.82 6.39 4.74 0.46 

MYDnight & Tmin 0.51 2.04 1.48 0.95 

MODday: MOD11A1 Ts-day from Terra; MODnight: MOD11A1 Ts-night from Terra; MYDday: MYD11A1 Ts-day from 

Aqua; MYDnight: MYD11A1 Ts-night from Aqua. 

5.2. Ta Estimation from MODIS Ts 

Several models using the variables in Table 2 to estimate Ta from the MODIS Ts observations by 

multiple linear regression were developed and tested. Having similar results for the calibration and 

validation samples, means that the Ts and Ta relationships were consistent throughout the dataset, i.e., 

independently of the subset. Similar to previous studies, better performance of Tmin estimation than 

Tmax estimation was observed. For Tmax, the models with only Ts-night have significantly higher 
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accuracy than the models with only Ts-day. This was consistent across all three land-cover types with 

the most notable result over crop areas, which had a decrease in RMSE and MAE by 1.66 °C and  

1.29 °C for Terra Ts and 1.53 °C and 1.23 °C for Aqua Ts, respectively (Table 2, Models 1–4). The 

combination of both Ts-day and Ts-night improved the estimation accuracy for both Terra and Aqua 

(Table 2, Models 5 and 6). There were smaller differences between Terra-day and Aqua-day, however 

Terra-night was a better explanatory variable of Tmax than Aqua-night (Table 2, Models 1–6). When 

Julian day and SZA were used as a seasonal correction effect in Tmax estimation, model performance 

increased slightly when compared with using only Ts variables in all three land-cover types. When 

latitude and elevation were considered, the accuracy of models was relatively unchanged. 

Table 2. Model variables and validation accuracy for Tmax and Tmin (°C). 

Model (Tmax)  Crops Forest Developed Model (Tmin)  Crops Forest Developed 

(1)  

MODday 

RMSE 4.24 3.32 3.32 
(11)  

MODday 

RMSE 5.08 4.43 4.06 

MAE 3.29 2.61 2.55 MAE 4.02 3.51 3.27 

R2 0.21 0.61 0.53 R2 0.12 0.44 0.42 

(2)  

MODnight 

RMSE 2.58 2.57 2.65 
(12)  

MODnight 

RMSE 1.97 2.03 2.06 

MAE 2.00 2.04 2.04 MAE 1.51 1.58 1.58 

R2 0.71 0.77 0.69 R2 0.86 0.88 0.85 

(3)  

MYDday 

RMSE 4.27 3.40 3.56 
(13)  

MYDday 

RMSE 5.13 4.48 4.12 

MAE 3.35 2.66 2.93 MAE 4.06 3.54 3.37 

R2 0.20 0.59 0.55 R2 0.10 0.42 0.40 

(4)  

MYDnight 

RMSE 2.74 2.70 2.69 
(14)  

MYDnight 

RMSE 1.84 1.83 1.82 

MAE 2.12 2.11 2.10 MAE 1.36 1.36 1.36 

R2 0.67 0.74 0.67 R2 0.88 0.90 0.88 

(5) MODday + 

MODnight 

RMSE 2.39 2.20 2.39 
(15)  

MODday + MODnight 

RMSE 1.95 2.03 2.04 

MAE 1.85 1.77 1.89 MAE 1.49 1.59 1.59 

R2 0.75 0.83 0.74 R2 0.86 0.88 0.85 

(6) MYDday + 

MYDnight 

RMSE 2.51 2.31 2.34 
(16)  

MYDday + MYDnight 

RMSE 1.81 1.82 1.81 

MAE 1.92 1.84 1.83 MAE 1.33 1.36 1.35 

R2 0.72 0.81 0.76 R2 0.88 0.90 0.88 

(7) MODday + 

MODnight + 

DOY 

RMSE 2.27 2.17 2.33 
(17)  

MYDnight + DOY 

RMSE 1.76 1.82 2.14 

MAE 1.74 1.75 1.86 MAE 1.30 1.34 1.69 

R2 0.77 0.83 0.76 R2 0.88 0.90 0.88 

(8) MODday + 

MODnight + 

SZA 

RMSE 2.31 2.19 2.28 
(18)  

MYDnight + SZA 

RMSE 1.75 1.82 2.36 

MAE 1.77 1.75 1.80 MAE 1.30 1.36 1.91 

R2 0.77 0.83 0.77 R2 0.88 0.90 0.88 

(9) MODday + 

MODnight + 

Lat 

RMSE 2.39 2.15 2.38 
(19)  

MYDnight + Lat 

RMSE 1.84 1.82 1.81 

MAE 1.85 1.71 1.89 MAE 1.35 1.35 1.34 

R2 0.75 0.83 0.74 R2 0.88 0.90 0.88 

(10) MODday 

+ MODnight + 

Elev 

RMSE 2.31 2.20 2.32 
(20)  

MYDnight + Elev 

RMSE 1.84 1.84 2.00 

MAE 1.77 1.76 1.82 MAE 1.36 1.38 1.49 

R2 0.77 0.83 0.76 R2 0.88 0.90 0.88 

DOY: Day of year (e.g., 1–365); SZA: Solar zenith angle; Lat: Latitude; Elev: Elevation. 
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For Tmin estimation, models with only Ts-day had the lowest accuracy and when daytime and 

nighttime LST were combined, no significant improvement in accuracy was found compared to the 

results with Ts-night only (Table 2, Models 11–16). This indicates that Ts-day is not relevant for Tmin 

estimation. Aqua Ts-night provided a better estimation of Tmin than Terra Ts-night. The inclusion of 

Julian day and SZA in both of these models only yielded slight accuracy increase when compared with 

using only Ts-night over crop and forest areas, while over developed areas, no increase in Ta estimation 

accuracy was found. Models 7 and 17 including DOY were found to have the highest accuracy in 

estimating Tmax and Tmin for crop and forest areas, respectively. Thus, these models were selected for 

further study in crop and forest areas. For developed areas, given the fact that its accuracy was only 

slightly lower than the highest one (RMSE greater than the one with highest accuracy by 0.05), Model 

7 was selected for Tmax estimation to be consistent with crop and forest areas for comparison. For Tmin 

estimation, it is noticed that Model 17 had an obvious lower accuracy compared to Model 14 (RMSE of 

Model 17 greater than that of Model 14 by 0.32). Moreover, combining other variables (MODday, 

latitude) only decreased the RMSE by 0.01–0.03. Having cost and complexity of models taken into 

consideration, Model 14 that included only Aqua Ts-night was used for further analysis for developed areas. 

Using the selected models, the frequency distribution of the relative bias between estimated Ta and 

observed Ta for all three land-cover types is close to the normal distribution curves and almost 

symmetrical with the mean bias centered in zero (0.01 for Tmax estimation and 0.06 for Tmin estimation). 

The temperature error ranged between −8 °C and 8 °C (Figure 2). For Tmax, approximately 38%, 66%, 

and 83% of all estimations were within 1 °C, 2 °C, and 3 °C absolute bias, respectively. For Tmin, 

approximately 50%, 79%, and 92% of all estimations were within 1 °C, 2 °C, and 3 °C absolute  

bias, respectively. 

 

Figure 2. Relative bias distribution considering all Tmax (a) and Tmin (b) estimations with 

the selected models in the study area for all the three land-cover types. (The black curves are 

the normal distribution curves). 
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At the regional scale, the estimation accuracy of both Tmax and Tmin varied with phases of the 

growing season. For all the three land-cover types (i.e., crops, forest, and urban), the accuracy of 

estimated Tmax and Tmin was higher in June, July, and August) than that either in May or September 

(Figure 3). Performance was also analyzed for each meteorological station. Results showed that about 

83% of the stations had a correlation higher than 0.80, MAE lower than 1.50 °C and RMSEs lower  

than 2.5 °C for Tmax. By comparison, about 85% of the stations had a correlation higher than 0.88,  

MAE lower than 1.10 °C and RMSEs lower than 2.0 °C for Tmin. Generally, the stations located  

in deciduous forest had a better performance than those in crop and developed areas. The spatial 

distribution of RMSE shows that the majority of the stations with lower performance in Tmax estimation 

were located in the areas with higher elevation (specifically, east of Nebraska and northwest of Iowa) 

and in the northeast of Illinois (Figure 4). The spatial and temporal patterns are discussed in Section 6.2. 

 

Figure 3. Accuracy of estimated Tmax (a–c) and Tmin (d–f) (RMSE, °C) in different 

months from 2008 to 2012 over three land-cover types (forest, developed and crop). 

 

Figure 4. Spatial distribution of Tmax (a) and Tmin (b) (°C) estimation accuracy (RMSE) 

for all the meteorological stations. 
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5.3. Correlation Analysis of MODIS Ts and Tmax 

It is interesting that Tmax has stronger agreement with Ts-night than Ts-day. In addition, higher Tmax 

estimation accuracy was observed with the combination of both Ts-day and Ts-night than with either of 

them alone. As shown in Table 2, Ts-day and Tmax have similar correlation coefficient in deciduous 

forest and developed area, while it is significantly lower in cropland. Fu et al. [18] also found that 

estimation using linear regression of Tmax from MODIS Ts-day was not accurate enough in the growing 

season (p > 0.01, R2 < 0.10) compared to the non-growing season (p < 0.01, R2 > 0.40). In cropland 

areas, the Ts-day and Tmax relations can be varied and complex at different periods during the growing 

season, as the vegetation cover is changing over time and different crop types are planted in rotations 

from year to year. As shown in Figure 5e, compared with Figure 5a,c notable differences can be observed 

in Tmax and Ts-day relationship during different phases of the growing season in crop areas. While, it 

is shown from Figure 5b,d,f that both GATD and Ts-DTR have similar linear correlation relationships 

(trend) in different seasons from May to September for all three land-cover types, especially for crops 

compared to the relation between Ts-day and Tmax. 

 

Figure 5. Scatterplot of Ts-day vs. Tmax (°C) and GATD vs. Ts-DTR (°C) for: (a,b) forest; 

(c,d) developed; and (e,f) crops areas across the entire study area from 2008 to 2012. 
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As at the beginning of the growing season, vegetation fraction is low and the land’s surface is 

composed primarily of bare soil. Ts-day is usually much higher than Tmax during this period as more 

energy is partitioned into sensible heat flux from the soil as opposed to later in the year when crops have 

emerged and are transpiring (latent heat flux) [41]. During the green-up phase of crops, the spatial 

coverage of vegetation increases, leading to transpirational cooling, increased latent heat fluxes, 

decreased sensible heat fluxes, and in general a reduced daytime GATD [41]. During the senescence 

phase of crops, as maturity is reached, photosynthesis and transpiration decrease, the latent heat fluxes 

decreases, the sensible heat fluxes increase resulting in higher GATD [41]. Thus, over crop areas Ts-day 

is typically much higher than Tmax at the beginning of the growing season, slightly lower than or equal 

to Tmax in the middle stage of the growing season and slightly higher than or equal to Tmax in the end 

of the growing seasons (Figure 6c). While in deciduous forest and developed area, Tmax increases with 

Ts-day proportionally and the seasonality effect is minimal (Figure 5a,c, Figure 6a,b). 

 

Figure 6. Typical Tmax, Ts-day and Ts-night (°C) curves (a–c), Ts-DTR and GATD (°C) 

curves (d–f), of three land-cover types: (a,d) deciduous forest (in Albia 3 NNE, 2009); (b,e) 

developed (in Columbus port Columbus international airport, 2009); and (c,f) crops (in Little 

Sioux 2 NW, 2009). 

As expected, a strong linear relation between GATD and Ts-DTR was observed for all stations  

from 2008 to 2012 in the study area (Figure 7). It is the reason why combining Ts-day and Ts-night  

to estimate Tmax could minimize the influence of these factors and a higher accuracy could be  

achieved. In the absence of solar radiation, Ts-night is affected by fewer factors and is more stable  

than Ts-day [10,21,22]. Even with the same solar radiation, the relationship between Ts-day and Tmax 

is affected by several factors like vegetation changes, land-cover types, soil moisture, precipitation, wind 
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speed, etc. [4,20]. Similarly, with the same solar radiation, the relationship between Ts-day and Ts-night 

is affected by the abovementioned factors in the same way. Many previous studies have shown that both 

GATD and Ts-DTR increase with elevation and decrease with increased vegetation cover, cloud cover, 

soil moisture and precipitation, respectively [19,20,25,42–44]. For example, in the developed or low soil 

moisture areas (e.g., desert), both the DTR and Ts-day can be much higher than that of forest areas or 

wet areas. 

 

Figure 7. Scatterplot of Ts-DTR vs. GATD (°C) for all station from 2008 to 2012. 

5.4. Spatial and Temporal Patterns 

Spatially, relatively lower accuracy was observed in northwestern Iowa, eastern Nebraska and 

northeastern Illinois (Figure 4). The spatial and temporal patterns of Tmax agree well with the MIDV 

patterns during the study period. Similar to the result of Landsberg’s [38] study, in the Corn Belt,  

the Tmax IDV showed a spatial zonal pattern (Figure 8) of increasing with latitude. It was also higher 

in spring and autumn than summer. The stations with larger Tmax IDV (>2.6) tend to have lower Tmax 

estimation accuracy (Figures 4 and 8). In addition, the correlation coefficient between Tmax MIDV and 

Tmax RMSE in individual stations during the study period 2008 to 2012 was 0.41 (p < 0.01) (Figure 9). 

On the regional scale, the Tmax MIDV from May to September were 3.51 °C, 2.67 °C, 2.17 °C, 2.12 °C, 

and 2.99 °C, respectively. It also agrees well with the trends of Tmax estimation accuracy temporally, 

which is also highest in May and lowest in August. For Tmax estimation, there is a trend that higher 

Tmax IDV resulted in higher Tmax estimation errors (Figure 10a,c). The Ts tended to overestimate 

Tmax if the Ta of the current day was lower than that of the previous or/and next day and to 

underestimate Tmax if the Ta of the current day was higher than that of the previous or/and next day 

(Figure 10a,c). The day-to-day difference of Tmax can reflect the changes of air masses, as well as the 

sources of air masses and their sources and major paths [38]. Generally, air is mainly heated by land 

surface, however air masses usually strike the local energy balance. Cool air moving over a warm surface 

is heated from below and warm air moving over a cool surface is cooled from below [45]. There is a 

time lag for the establishment of new balance between air and land surface temperature. As a result, 

before that, with cool air and warm air, LST tends to overestimate and underestimate Ta, respectively, 

when using LST to estimate Ta. 
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Figure 8. MIDV of (a) Tmax and (b) Tmin (°C) of the individual stations during  

2008–2012 throughout the growing season. 

 

Figure 9. Scatterplot of Tmax MIDV vs. Tmax RMSE (°C), of all individual stations 

included in this study during 2008 to 2012. 

 

Figure 10. Scatterplot of estimation error (estimated Ta minus observed Ta) of Tmax (a) 

and Tmin (b) vs. the IDV of the current day (Equation (3)), and estimation error of Tmax (c) 

and Tmin (d) vs. the IDV of the next day (Equation (3)), for crop area during 2008–2012 

throughout the growing season. 
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In addition, irrigation might have contribute to the low Tmax estimation accuracy in eastern Nebraska. 

The relationship between observed and estimation Tmax in this area was examined and it was found that 

the Ts of these stations (e.g., Columbus 3 NE, Friend 3 E, and Surprise) that are dominated by irrigated 

crop land, tends to underestimate the Tmax, especially in 2012, due to irrigation. According to the 2007 

Census of Agriculture, of approximately 55 million acres under irrigation nationally, about 15% are 

located in Nebraska (8.56 million acres) [46]. About three out of eight cropland acres in Nebraska are 

under irrigation [46]. Thus, it is reasonable to expect Ts would underestimate Ta in heavily irrigated 

landscapes where targeted water applications result in significant cooling effect on the land surface as 

well as the canopy, as more energy is partitioned to the latent heat flux via evapotranspiration [41]. The 

air will be cooled after irrigation as well, but compared to the decrease of Ts value, the decrease of Ta 

is very small. 

As for Tmin estimation, there is no apparent relation spatially. In addition, there is no obvious relation 

between Tmin IDV and Tmin estimation errors (Figure 10b,d). Landsberg [38] stated that, as compared 

to changes in Tmax, changes in the Tmin are less affected by air masses but much more affected by local 

conditions such as proximity to water bodies and mountains orographic tendencies for inversion 

formation, and other environmental characteristics. This may be a possible reason for the low accuracy 

in Tmin estimation in northwestern Iowa. While at a regional scale, the trends of Tmin MIDV from May 

to September (2.75 °C, 2.24 °C, 1.87 °C, 2.10 °C, and 2.60 °C, respectively) agree well with that of 

Tmin estimation accuracy (Figure 3). 

There may also be some other possible reasons leading to the low estimation accuracy. Though 

combining both Ts-day and Ts-night to estimate Tmax reduced the impact of land-cover types and 

vegetation cover changes, vegetation variables might still have impact on the Ta estimation accuracy.  

It is shown from Table 2 that by integrating DOY information, the estimation accuracy of models for 

both Tmax and Tmin were improved, especially in crops areas and forest areas. As vegetation had been 

variously contributed to latent heat flux, canopy resistance to transpiration [19]. DOY included the 

information of vegetation cover changes with seasons. Remaining clouds (pixel and sub-pixel) negatively 

affect the model performance. Though only pixels marked as cloud-free were selected and the cloud 

cover of the 13-by-13 pixel window was less than 10%, there were still some cloud-contaminated pixels 

included. Thin or sub-pixel cloud cover detection is difficult [47] and the LST retrieved under these 

conditions often corresponds to top-of-cloud temperature [4,48]. In addition, most undetected  

cloud-contaminated LST outliers occur in cloud edges and a large proportion of the pixels with higher 

errors occurred near identified clouds [33,49]. However, cloud-edge elimination, such as considering a 

10-km buffer [48], could limit data availability significantly. Thus, some errors and uncertainty have 

been brought into this study by cloud contamination in order to collect a sufficient sample size of pixels. 

Other factors could also explain some of the errors in Ta estimation from Ts. Prihodko and Goward [19] 

observed deviations of 0.6 °C at horizontal distances of 6-km from a dense spatial ground network of 

meteorological stations. The temperature in the 13-by-13 windows is quite homogeneous in flat terrain 

conditions. However, temperature may show larger spatial variations in hilly areas (e.g., the northwest 

of Iowa) [22]. 
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6. Conclusions 

In this study, the relationships between Tmax, Tmin and both daily Ts-day and Ts-night were 

analyzed and discussed. The results of this study can be considered promising, given the simplicity of 

the statistical models employed and the high accuracy achieved with RMSE of Tmax estimation  

2.27 °C, 2.19 °C and 2.33 °C and RMSE of Tmin estimation 1.76 °C, 1.82 °C and 1.82 °C, for crops, 

deciduous forest and developed areas respectively. 

Interestingly, Ts-night had higher correlation coefficient with daily Tmax than Ts-day in all the  

three land-cover types. Combining both Ts-day and Ts-night to estimate Tmax achieved even better 

accuracy than either variable individually. Compared to using only Ts-night, combining Ts-day and  

Ts-night have little improvement on Tmin estimation accuracy, as Ts-day was not relevant for Tmin 

estimation. Taken DOY into consideration, slight improvement of both Tmax and Tmin estimation 

accuracy was observed in crops and forest areas rather than developed areas. Both Ts-day and Ts-night 

from Terra are better explanatory variables for Tmax, while Ts-night from Aqua is a slight better  

(~0.2 °C) proxy for Tmin. The models had a general tendency to have lower performance of Tmax 

estimation in stations located in irrigated land and the areas with higher IDV, but a better performance 

of Tmax estimation during the period from June to August (the middle of the growing season) than  

either May or September (the beginning or end of the growing season) due to the spatial and temporal 

difference of air masses as well as irrigation. While there was no distinct spatial distribution pattern of 

Tmin estimation across the Corn Belt. Some other factors such as cloud cover and other local conditions 

might also contribute to the difference of estimation accuracy of Tmin.  

As for the TVX method, a wide range of vegetation index (VI) variability in the window, uniform 

atmospheric forcing and moisture conditions are required to build the regression relation between Ta 

and VI [19]. But Corn Belt, mostly covered by crops, has small range of VI variability. This study 

provides a feasible and improved way to estimate Tmax and Tmin in this study area. Through the 

analysis of Ts and Ta relations over crop, deciduous forest, developed area and the spatial and temporal 

variability of Ta estimation accuracy in the Corn Belt, the Ts and Ta relations are better understood in 

this area. A wide range of applications can benefit from this study, especially in agriculture. The 

estimated Ta can be used as an input for GDD in large area based on remotely sensed data. 

Based on the spatial and temporal analysis of Ta estimation accuracy, this work highlighted future 

possible improvements of Ta based on remote sensing data such as (1) take the changes of current Ta 

compared to that of previous days and later days, and surface energy balance process into consideration; 

(2) integrate vegetation variables into Ta estimation model; (3) integrate water stress of vegetation into 

Ta estimation model. 
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