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Abstract: The main objective of this study was to evaluate the effectiveness of adding 

feature variables, such as forest type information and topographic- and climatic-environmental 

factors to satellite image data, on the accuracy of stand volume estimates made with the  

k-nearest neighbor (k-NN) technique in southwestern Japan. Data from the Forest Resources 

Monitoring Survey—a national plot sampling survey in Japan—was used as in situ data in 

this study. The estimates obtained from three Landsat Enhanced Thematic Mapper Plus 

(ETM+) datasets acquired in different seasons with various combinations of additional 

feature variables were compared. The results showed that although the addition of 

environmental factors to satellite image data did not always help improve estimation 
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accuracy, the use of summer rainfall (SRF) data had a consistent positive effect on accuracy 

improvement. Therefore, SRF may be a useful feature variable to consider in stand volume 

estimation in this study area. Moreover, the use of forest type information is very effective 

at reducing k-NN estimation errors when using an optimum combination of satellite image 

data and environmental factors. All of the results indicated that the k-NN technique 

combined with appropriate feature variables is applicable to nationwide stand volume 

estimation in Japan. 

Keywords: environmental factors; forest type; k-nearest neighbor; Landsat 7 ETM+;  

stand volume 

 

1. Introduction 

National forest inventories (NFIs) have been implemented to obtain forest information in many 

countries [1]. An NFI is generally based on a plot sampling method (hereafter, we define it as a  

sample-based approach), meaning that only spatially discontinuous information can be obtained within 

a country. Remote sensing is a unique technique for expanding plot level information to large area 

continuous information (hereafter, we use the term “multisource inventory” [2] to describe the approach 

of combining field plot and satellite image data). The use of the latter is the most cost-effective and realistic 

way to obtain nationwide, wall-to-wall estimates of forest resources [3]. Meanwhile, the integration of  

in situ surveys and satellite image data has the potential to become the most appropriate forest observation 

method for the Global Earth Observation System of Systems (GEOSS) [4]. McRoberts and Tomppo 

(2007) [5] summarized four primary ways to enhance an NFI using satellite image data: (1) providing 

faster and less expensive observations or measurements of forest attributes; (2) increasing the precision 

of large area inventory estimates; (3) providing inventory estimates with acceptable bias and precision 

for small areas where sufficient field data are not available; and (4) producing forest thematic maps 

usable for timber production, procurement and ecological studies. 

In Finland and Sweden, nationwide forest databases, including various kinds of information, e.g., 

stand volume, stand basal area and stand age, have been created by combining NFI field plot data, 

medium resolution satellite image data and other digital maps using the non-parametric k-nearest 

neighbor (k-NN) technique [3,6]. In China [7,8], Ireland [9] and Norway [10], the technique was tested 

in parts of the country to estimate forest information. Some previous studies revealed that the k-NN 

technique has the potential to increase the precision of NFI estimates by the post-stratification  

technique [5,11–13]. Due to its ready availability, the k-NN technique has received considerable 

attention and merited special discussion in recent years [5]. 

Since the first implementation of the multisource inventory based on the k-NN technique by the 

Finnish Forest Research Institute in 1989 [14], many studies have proposed various methods based on 

the k-NN technique to improve the accuracy of stand volume estimates. For example, soil type (peat land 

and mineral soil) [14], forest site quality [15], the age of each stand and the year of the last thinning 

operation [16], geographical distance [17] and large-area variation of forest variables [18] were used as 

a priori information to stratify forests and/or as explanatory variables of the k-NN technique, in 
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combination with satellite image data, to estimate stand volume. All of these studies revealed that adding 

and/or using some spatial information alongside satellite image data have the potential to improve the 

accuracy of the estimates in the k-NN technique. These additional feature variables have also been used 

in combination with Moderate Resolution Imaging Spectroradiometer (MODIS) data to improve the 

accuracy of estimates in a k-NN framework (the k-NN, the most similar neighbors (MSN or  

k-MSN [19,20]) and the phenological gradient nearest neighbor (PGNN)) [21,22]. 

In Japan, a national, sample-based forest inventory, named the “Forest Resources Monitoring Survey” 

(FRMS), was initiated in 1999 to contribute and promote sustainable forest management [23,24]. The 

FRMS plots were geo-referenced, i.e., the plot data could also be used for estimating forest attributes via 

the k-NN technique, combined with satellite image data. For example, Kajisa et al. [25] estimated the 

stand volume in the Kyushu region of Japan using FRMS plots and satellite image data, and concluded 

that the k-NN technique was suitable for this purpose in their study area. Kajisa et al. [25] proposed a 

simple method using only satellite image data as an explanatory variable. They estimated the stand 

volume of coniferous and broad-leaved forests simultaneously without stratifying forests according to  

a priori information. Therefore, there is still the potential to improve their method by using additional 

feature variables in the same region. The topographic and climatic characteristics within the study area 

varied; hence, we assumed that adding environmental factors, derived from a digital elevation model 

(DEM), and climatic data to satellite image data could improve estimation accuracy, because these 

environmental factors affect stand structure and tree growth [26–32]. We also considered the utility of 

forest type information, because the reflective properties of light and the ranges of stand volume differ 

among various forest types. As the effectiveness of additional feature variables would differ depending 

on the scene or the season, we also needed to compare the estimates obtained from different seasonal 

satellite image data. 

The main objective of this study was to evaluate the effectiveness of adding feature variables, such 

as forest type information and topographic- and climatic-environmental factors, to satellite image data 

on the accuracy of stand volume estimates using the k-NN technique in southwestern Japan. FRMS data, 

which is a systematically sampled set of forest inventory data in Japan, was used as in situ data in the 

analysis, as with Kajisa et al. [25]. We compared the stand volume estimates obtained using three 

Landsat 7 Enhanced Thematic Mapper Plus (ETM+) datasets acquired in different seasons. 

2. Materials and Methods 

2.1. Study Area 

A large area located in southwestern Japan, which covered all or part of nine prefectures (Ehime, 

Shimane, Hiroshima, Yamaguchi, Fukuoka, Oita, Kumamoto, Miyazaki and Kagoshima), was selected 

for the study (Figure 1). The study area included several tree species, such as Japanese cedar  

(Cryptomeria japonica), Japanese cypress (Chamaecyparis obtusa), Japanese red pine (Pinus densiflora), 

evergreen broad-leaved species (e.g., Quercus glauca, Castanopsis cuspidate and Machilus thunbergii) 

and deciduous broad-leaved species (e.g., Quercus serrata and Quercus acutissima). The climatic 

conditions differed significantly within the study area, because it extended more than 600 km in  
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a latitudinal direction and encompassed a range of elevations exceeding 1700 m. Due to the climatic 

differences, the phenology of the vegetation within the study area varied considerably. 

 

Figure 1. Location of the study area. 

2.2. Satellite Image Data 

Three sets of Landsat 7 ETM+ data acquired in three different seasons were used to estimate the stand 

volume (Table 1). The ETM+ data on three data tiles (three rows) between Row 36 and Row 38 on Path 

112 of the World Reference System 2 (Figure 1) were downloaded via the Internet from the Earth 

Resources Observation and Science Center, United States Geological Survey. These data were acquired 

before the function of the scan line corrector built in the sensor of Landsat 7 failed. Because the  

thermal-infrared Band 6 has coarse spatial resolution (60 m), only visible, near-infrared and  

mid-infrared spectral bands (1–5 and 7) of ETM+ data, with a 30-m spatial resolution, were analyzed. 

The product types of all ETM+ data were Level 1T (standard terrain correction; L1T). The L1T products 

have been orthorectified using a DEM derived from the Shuttle Radar Topography Mission and 

resampled by the cubic convolution method. 

Table 1. Information of the original ETM+ data used in this study. 

Date Sun Elevation Angle * (°) Cloud Coverage ** (%) 

4 April 2001 54.1 0 
25 May 2002 65.7 0 
12 July 2002 64.5 20.3 

* The average of Rows 36 to 38. The values of each scene were obtained from the scene header files.  
** The average of Rows 36 to 38. The cloud cover information was obtained from scene information provided 

by the USGS Global Visualization Viewer. 
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We mosaicked ETM+ data tiles separately for each observation date. The mosaicked ETM+ data were 

re-registered to a mosaicked and orthorectified aerial photograph (acquired in about 1990;  

black-and-white; 1-m spatial resolution), because the ETM+ data had minor geometric errors. We 

employed the nearest-neighbor resampling method with a first-order polynomial equation with less than 

0.5 pixels total RMSE. Following the geometric correction, we calculated the at-sensor spectral radiance 

from the digital numbers (DN) of the ETM+ data by the following equation: ܮ = ൬ ܺܣܯܮ − ୡୟ୪୫ୟ୶ܳܰܫܯܮ − ܳୡୟ୪୫୧୬൰ × (ܳୡୟ୪ − ܳୡୟ୪୫୧୬) + (1) ܰܫܯܮ

where L is the spectral radiance at the sensor’s aperture (W·m−2·sr−1·μm−1), Qcal is the quantized 

calibrated pixel value (DN), Qcalmin is the minimum quantized calibrated pixel value corresponding to 

LMIN, Qcalmax is the maximum quantized calibrated pixel value corresponding to LMAX, LMIN is the 

spectral at-sensor radiance that is scaled to Qcalmin (W·m−2·sr−1·μm−1) and LMAX is the at-sensor spectral 

radiance scaled to Qcalmax (W·m−2·sr−1·μm−1). 

We did not perform any atmospheric correction via radiative transfer software due to the difficulty of 

ensuring a constant atmospheric condition under a single parameter setting for large areas. A dark object 

subtraction method [33,34] was used to make radiometric corrections to exclude path radiance, and then, 

a corrected radiance (Lcor) was obtained. Dark objects were selected from a single pixel in a clear water 

body via trial-and-error. Cloudy and hazy areas were visually identified and masked out manually. For 

the remaining areas, a constant atmospheric condition was assumed. In addition, we assumed that there 

were no atmospheric transmittance loss and no diffuse downward radiation at the surface and that the 

dark object in the remaining study area would remain absolutely dark, whereupon the reflectance (R) 

value was obtained from the Lcor with the following formula: ܴ = ߨ × ௖௢௥ܮ × ݀ଶܷܰܵܧ × θ௦ (2)ݏ݋ܿ

where π is a mathematical constant equal to ~3.14159 (unitless), d is the Earth-Sun distance 

(astronomical units), ESUN is the mean exoatmospheric solar irradiance (W·m−2·μm−1) and θs is the solar 

zenith angle (degrees). In this study, the Earth-Sun distance values obtained from Chander et al. [35] 

were employed. This preprocessing is important, because most of the remote sensing applications are based 

on spectral reflectance; however, it should be noted that the standardization of DN would give the same 

results from spectral reflectance, since the processing of Equations (1) and (2) is a linear transformation 

(see Section 2.5). Because some previous studies reported that topographic normalization did not give 

clear results in k-NN estimation for satellite images with a high Sun elevation angle [36,37], we assumed 

there would be only minor topographic effects on the ETM+ data and did not perform topographic 

normalization in this study. 

2.3. In Situ Data 

We used plot-level stand volume data (m3/ha) derived from the first term of the FRMS as in situ data. 

The FRMS plots were set up at systematic 4-km grid intervals covering all forests in Japan. The first 

term of the FRMS was completed between April 1999, and March 2004. All plots are scheduled to be 

measured every five years, and about one-fifth of the plots are measured each year. Each plot is composed 
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of three concentric circles with radii of 5.64 m (0.01 ha; S), 11.28 m (0.04 ha; M) and 17.84 m (0.10 ha; L), 

within which a total of 40 variables (nine for trees and understory vegetation and 31 for topography and 

other information) was measured by field crews. The size of trees to be measured was different for each 

circle; trees >1 cm, 5 cm and >18 cm in diameter at breast height (DBH) were measured in the S, M and 

L circles, respectively. In each plot, the tree height was measured for at least 20 trees, which were 

expected to be selected from a wide range of tree sizes to construct a DBH-height curve for the  

plot [23,25,31,38,39]. We used the information of species, DBH and tree height from the 40 measurement 

variables to calculate the plot-level stand volume. The individual stem volume was calculated from 

general two-way volume equations for each tree species; then, the summation of volume per 0.10 ha was 

defined as the observed stand volume in the field in this study. 

During the first survey term, all FRMS plots were established by field crews with the help of Global 

Positioning System (GPS) navigation. According to the previous study [38], the location of FRMS plots 

had some positional errors. For example, some of the plots were subject to considerable positional errors 

(exceeding 20 m in RMSE). To avoid modeling errors due to positional inaccuracy between ETM+ data 

and field plot data, efforts to eliminate or to replace potentially erroneous data (e.g., sample plots falling 

near the forest/non-forest boundary) were employed in some previous studies [6,15,40–42]. In this study, 

we eliminated potentially erroneous data by the following steps: (1) we generated circular areas (radius 

of 50 m, corresponding to approximately 3 × 3 pixels of ETM+ data) based on the position coordinates 

of FRMS plots on the geographic information system (GIS) software; (2) the forest cover of the circular 

area was visually checked using the mosaicked aerial photograph and ETM+ data; (3) plots whose forest 

cover ratio for the circular area was less than 50% were eliminated; and (4) plots that were seemingly 

subject to dramatic changes by clear-cutting or other disturbance were excluded from the analysis [3,40]. 

In order to evaluate the accuracy of stand volume estimates appropriately for the three sets of Landsat 7 

ETM+ data, we only selected the FRMS plots within cloudless areas on all ETM+ data. Consequently, 

a total of 891 FRMS plot data was used in this study. 

2.4. Additional Feature Variables 

As previously mentioned, we considered the use of forest type information for stand volume 

estimation. Because we did not have any accurate wall-to-wall digital maps of the forest types for this 

study area, we used forest type information (FTYPE; categorical variable), which was determined by the 

FRMS plot data itself. The FRMS plots were grouped into two classes (evergreen coniferous forest, 

ECF; broad-leaved forest, BF) by the dominant analysis [31,43] and the following procedures: (1) To 

obtain the dominant tree species group in all plots, first, all species of trees within each FRMS plot were 

classified into five tree species groups (evergreen coniferous, deciduous coniferous, evergreen  

broad-leaved, deciduous broad-leaved and bamboo); then, the dominant tree species group was 

determined based on the maximum basal area (m2) within each plot. (2) Plots that were dominated by 

bamboo trees were excluded from the analysis. Deciduous coniferous trees were not found in this study 

area, that is to say, the ECF class was only found for coniferous trees. (3) Two broad-leaved forest types 

(i.e., evergreen broad-leaved forest and deciduous broad-leaved forest) were aggregated and defined as 

BF, because of insufficient FRMS plots in these classes (for more detailed information on this procedure, 
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see [31]). The sample sizes for the ECF and BF classes were 501 and 390, respectively. A summary of 

plot data concerning the stand volume is shown in Table 2. 

Table 2. Summary of the plot stand volume data used in the present study following  

the removal of potentially erroneous data. ECF, evergreen coniferous forest; BF,  

broad-leaved forest. 

Data n Mean (m3/ha) SD (m3/ha) Min (m3/ha) Max (m3/ha) 

All data 891 254.1 175.2 1.1 1,007.7 
ECF 501 330.7 184.9 1.1 1,007.7 
BF 390 155.7 95.1 2.5 665.0 

A 10-m grid DEM derived from topographic maps at a 1:25,000 scale developed by photogrammetric 

interpretation, published by the Geospatial Information Authority of Japan, was used for the calculation 

of topographic-environmental factors. First, the grid size of the DEM was converted to 30 m by a bilinear 

interpolation resampling method; then, we computed the elevation (Elev), terrain slope angle (Slope), and 

solar radiation index (SRI [44]). We employed a 3 × 3 (i.e., 90 m × 90 m) moving window to calculate 

Slope in this study. Slope and SRI are calculated by the following formulae: ݈ܵ݁݌݋ = tanିଵ ൭ඥ(∆ݔ)ଶ + ଶ2(ݕ∆) ൱ × 180π  (3)

where ∆ݔ and ∆ݕ are the average elevation changes per unit of distance in the x and y directions. ܴܵܫ = cos(ݐܽܮ) cos(݈ܵ݁݌݋) + sin(ݐܽܮ) sin(݈ܵ݁݌݋) cos(ݐܿ݁݌ݏܣ∗) (4)

where Lat is the latitude (degrees; north positive, south negative) and Aspect* is 180°-Aspect. Aspect 

was also computed by a 3 × 3 moving window. 

The 1-km Mesh Climatic Data of Japan published by the Japan Meteorological Agency [45] was used 

for the calculation of climatic-environmental factors. We calculated Kira’s warmth index (WI) and 

coldness index (CI) [46], summer rainfall (SRF) (from June to September) and winter rainfall (WRF) 

(from November to February). The WI was calculated from the equation WI = ∑(MT − 5), where the 

summation is made for the months in which the monthly mean temperature (MT) is higher than 5 °C, 

and the CI was calculated from the equation CI = − ∑(5 − MT), where the summation is made for the 

winter months in which the MT is lower than 5 °C [47]. 

The mesh climatic data were calculated from meteorological observation data between 1971 and 2000 

and interpolated with a 1-km mesh. Following computation, these four climatic-environmental factors 

were rasterized and converted from a grid size of 1 km to 30 m. 

Although the use of explanatory variables that directly relate to the stand volume is very effective, it 

is extremely difficult to obtain such spatial data in wide ranges. Therefore, we used the above-mentioned 

seven environmental factors in the stand volume estimation. 

2.5. Stand Volume Estimation and Accuracy Assessment 

The reflectance data of six spectral bands (referred to simply as spectral data) on each seasonal ETM+ 

data, FTYPE and seven environmental factors were all stacked, and they are referred to as D0404, D0525 
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and D0712, respectively. Each dataset includes 14 variables (i.e., spectral data, FTYPE, Elev, Slope, 

SRI, WI, CI, SRF and WRF), and their ranges are different by each explanatory variable; so, all of the 

variables, except that of FTYPE, were standardized to avoid scale effects [21,48]. 

Using the k-NN technique, the stand volume can be estimated based on the simple assumption that 

the pixel to be estimated has a stand volume similar to the reference pixels. The stand volume for each 

pixel was calculated as the weighted mean stand volume of the reference pixel of the k-nearest samples 
in the feature space (explanatory variable space). The pixel weights, ݓ௣೔,௣ , and estimates, ŷp, were 

calculated using the following equations: 

w௣೔,௣ = 1݀௣೔,௣௧ ෍ 1݀௣ೕ,௣௧௞
௝ୀଵ൘  (5)

ŷ௣ = ෍ ௣೔,௣ݓ ×௞
௜ୀଵ ௣೔ݕ (6)

where i is an arbitrary field plot, p is an arbitrary pixel, pj is the pixel corresponding to the field plot j, d 
is the distance metric defined in the feature space, k is the number of reference plots, ݕ௣೔ is the observed 

stand volume of the reference pixel ݌௜ and t ≥ 0 [14,49]. As the importance of each variable is different, 

some algorithms, such as k-MSN, PGNN and others, including the weighting of the distance  

metric [3,18], may be adequate when using different types of information. In addition, although fixed 

values of t = 0, 1 and 2 are usually used in the k-NN technique, the optimum value of t increases as k 

increases [49]. However, given its interpretive advantages [21] and the ease of comparing its results with 

those of previous studies [7,10,25,40,42,50–52], we used a simple k-NN technique with a fixed value of 

t = 2 in order to investigate the effectiveness of additional feature variables in this study. 

First, we created prediction models without FTYPE and then created prediction models using FTYPE 

as a dummy variable. Hereafter, we define the former estimation as Analysis 1 and the latter as  

Analysis 2. 

The selection of explanatory variables is a key procedure to remove uninformative or noisy variables 

for accurate stand volume estimation. We tested all possible variable combinations for the estimation of 

stand volume to find the best k-NN estimator (i.e., the optimum combination model). During this study, 

we examined the effectiveness of adding environmental factors to spectral data; therefore, the basic models 

(spectral data alone for Analysis 1, spectral data and FTYPE for Analysis 2) were fixed, and the variable 

selection was conducted only for the seven environmental factors. In each variable combination of each 

dataset and analysis, we selected the smallest value of k where the RMSE is not more than 1% greater than 

the smallest value of RMSE, as the optimum value of k [49,53]. 

We used the RMSE for accuracy assessment. To facilitate a comparison with previous studies  

(e.g., [7,10,25,40,42,50–52]), we also used relative RMSE (rRMSE, %). The RMSE and rRMSE were 

calculated using a leave-one-out cross-validation procedure with the following equations: 

RMSE = ඩ1݊ × ෍(ݕ௜ − ŷ௜)ଶ௡
௜ୀଵ (7)
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rRMSE = ට1݊ × ∑ ௜ݕ) − ŷ௜)ଶ௡௜ୀଵݕത × 100 (8)

where yi is the observed volume of the validation data i, ŷi is the estimated volume of i, n is the number 

of validation data and ݕത  is the mean of the observed stand volume. In accordance with  

McRoberts [49,54], another accuracy assessment was also performed graphically, taking the relationship 

between observed stand volume and estimated stand volume by a binned group of n = 30 samples by 

arranging estimated values in ascending order. 

3. Results 

Figure 2 shows the relationships between the RMSEs of the stand volume estimates and the number 

of explanatory variables used in Analysis 1. The results indicated that the addition of explanatory 

variables did not always contribute to error reduction. The numbers of additional feature variables used 

in the optimum combination models were one or three, suggesting that the relatively simple model 

performed well for stand volume estimation in our study area. The patterns of the relationships between 

the RMSEs of the stand volume estimates and the number of explanatory variables in Analysis 2 were 

the same as those in Analysis 1 (results are not shown). 

 

Figure 2. Relationships between RMSEs of stand volume estimates and the number of 

explanatory variables for Analysis 1: (a) D0404; (b) D0525; (c) D0712. The RMSEs for six 

variables indicate the results from the basic models (spectral data alone), and the RMSEs for 

13 variables indicate the results from all spectral data and environmental factors; the 

horizontal lines show the RMSEs of the estimates using basic models. 

When adding FTYPE to spectral data, the RMSE and the rRMSE of all datasets decreased (Table 3). 

The rRMSE of BF decreased from 73.9%–75.0% to 60.6%–62.7%, and the rRMSE of ECF decreased 

from 55.2%–56.7% to 53.2%–55.0%. The addition of FTYP had a greater positive effect on accuracy 

improvement for BF. 
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Table 3. Summary of RMSE and rRMSE for the stand volume estimates of the basic models 

for each dataset. 

Error 
D0404 D0525 D0712 

All ECF BF All ECF BF All ECF BF 

Analysis 1 
RMSE (m3/ha) 160.3 187.4 116.7 157.1 182.5 116.7 158.5 185.5 115.0

rRMSE (%) 63.1 56.7 75.0 61.8 55.2 75.0 62.4 56.1 73.9 

Analysis 2 
RMSE (m3/ha) 150.2 181.9 94.8 146.9 176.0 97.6 149.8 181.6 94.4 

rRMSE (%) 59.1 55.0 60.9 57.8 53.2 62.7 59.0 54.9 60.6 

The RMSEs of the estimates decreased with the addition of some variables, but increased with the 

addition of others (Table 4). For example, the addition of most environmental factors to the spectral data 

effectively improved the accuracy of D0404 and D0712, and the addition of most environmental factors 

negatively affected D0525. The addition of one specific environmental factor to the basic models 

revealed that the addition of SRF had a consistent positive effect on accuracy improvement. In  

Analysis 1, the addition of SRF reduced the RMSE by 2.5, 2.0 and 1.5 m3/ha for D0404, D0525 and 

D0712, respectively. Similarly, in Analysis 2, the addition of SRF reduced the RMSE by 2.3, 0.7 and 

1.6 m3/ha for D0404, D0525 and D0712, respectively. Although there were some exceptions (especially 

for D0525), WI and CI had positive effects on accuracy improvement. In contrast, Slope and SRI 

negatively affected the stand volume estimation in most cases. 

Table 4. RMSE (m3/ha) of each variable combination in each dataset and analysis. Elev, 

elevation; SRI, solar radiation index; WI, warmth index; CI, coldness index; SRF, summer 

rainfall; WRF, winter rainfall. 

Model 
Analysis 1 Analysis 2 

D0404 D0525 D0712 D0404 D0525 D0712

Basic model 160.3 157.1 158.5 150.2 146.9 149.8 
Basic model + Elev 159.1 157.9 158.0 149.4 148.7 148.9 
Basic model + Slope 160.6 159.0 158.6 151.5 148.6 150.2 
Basic model + SRI 161.8 158.3 159.3 152.1 148.2 149.8 
Basic model + WI 159.9 157.4 157.8 149.5 147.4 148.7 
Basic model + CI 159.7 157.4 157.0 148.8 147.6 148.1 

Basic model + SRF 157.8 155.2 157.0 147.9 146.2 148.3 
Basic model + WRF 160.3 156.8 158.3 150.7 146.5 149.3 

Optimum combination model 157.8 a 155.2 b 155.1 c 147.2 d 146.2 e 145.8 f

Values with an underline indicate cases where the RMSE was reduced compared with basic models. 

Explanatory variables of optimum combination models are: a spectral data and SRF; b spectral data and SRF;  
c spectral data, Elev, WI and SRF; d spectral data, FTYPE (forest type information), CI and SRF; e spectral 

data, FTYPE and SRF; f spectral data, FTYPE, CI and SRF. 
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Figure 3 shows the estimated stand volume from the optimum combination model of D0525 in 

Analysis 2. The estimated stand volume was overestimated for smaller volumes and underestimated for 

larger volumes (Figure 3a). However, the graph of the binned observations versus the binned estimates 

revealed that there was no bias in the results (Figure 3b). Similarly, all of the other models that included 

the basic models of Analysis 1 showed no biases in the results (results not shown). 

 

Figure 3. Scatter plot of the observed stand volume versus the estimated stand volume using 

the optimum combination model of D0525 in Analysis 2. (a) Pixel-level observed stand 

volume versus estimated stand volume. (b) Binned pixel-level observed stand volume versus 

binned pixel-level estimated stand volume (group size = 30). The explanatory variables of 

the optimum combination model of D0525 were spectral data, FTYPE and SRF. The optimum 

value of k = 20 (the smallest value of k for which the RMSE was not greater than 1% of the 

smallest RMSE value) was used. 

Finally, we created a spatial distribution map of stand volume in the study area. Figure 4 shows a map 

of stand volume estimated by the optimum combination model for D0525 from Analysis 1. This map 

clearly shows the differences in stand volume among municipal units, as well as the differences in stand 

volume within a municipal unit. The map shows that there are many “hot spots” of high stand volume 

values (displayed with orange and red colors) in Kyushu Island (e.g., stand volume ≥ 400 m3/ha), and the 

northern region of the study area shows relatively low stand volume. 

4. Discussion 

When we used spectral data alone, the rRMSEs of the estimates ranged from 62.0% to 63.2% in 

Analysis 1 and from 58.2% to 59.9% in Analysis 2, respectively (Table 3). Although the RMSEs of our 

results at the pixel level were larger than those reported by some previous studies, they were moderate 

compared with those reported by previous studies, e.g., 44.2% (China [7]), 47.6% (Finland [50]), 58%–80% 

(Sweden [42]), 59.0% (Sweden [52]), 66.2% (Japan [25]), 66.6% (Sweden [40]), 79.3% (Finland [51]) 

and 91% (Norway [10]). Accordingly, the stand volume in Japan could be estimated by the k-NN 

technique with accuracies similar to earlier studies in terms of the rRMSE. 
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Figure 4. Map of the estimated stand volume. Estimates made by the optimum combination 

model of D0525 from Analysis 1 are shown as an example. The explanatory variables of the 

model were spectral data and SRF. The optimum value of k = 21 was used. Non-forest mask was 

generated from GIS data (“National Land numerical information (Forest Region Version 3.1), 

Ministry of Land, Infrastructure, Transport and Tourism”). 

There are many reasons for the large RMSEs of pixel-level results, including outliers due to the spatial 

mismatch between the satellite image pixels and the field plots, within the scene variation of the atmospheric 

effect, and so on [3,49]. In particular, the high value and wide range of stand volume of the ECF class 

of Japanese forests is one of the main reasons for large RMSEs [25], because the pattern of small-value 

overestimation and high-value underestimation (Figure 3a) is typical for the k-NN technique [21,25,40,42]. 

Moreover, if we did not remove the FRMS plot data falling near the forest/non-forest boundary in this 

study, the RMSEs of the estimates might have been much larger. 

When we used the combination models in addition to the basic models, the RMSEs of the estimates 

decreased for some variable combinations and increased for others (Figure 2 and Table 4). In other 

words, the positive effects of the environmental factors were not always as expected. As the inclusion 

of unrelated variables used to calculate distances would cause detrimental effects on accuracy [49,53], 

careful variable selection should be performed to avoid negative effects on estimation accuracy when 

using environmental factors as explanatory variables in the k-NN technique. 

Compared with the six other environmental factors, SRF had a consistent positive effect on error 

reduction (Table 4). This consistency is important to apply this approach to operational tasks, such as 

the creation of nationwide stand volume maps. The combination of spectral data with SRF may be useful 

to estimate stand volume more accurately than in the case of spectral data alone. Compared with 

topographic-environmental factors, such as Slope and SRI, climatic-environmental factors, such as SRF, 

have a more significant spatial autocorrelation. Therefore, when adding SRF to the basic model, the 
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nearest neighbors are selected from geographically closer plots. A previous study in Finland reported that 

the consideration of the geographic distance of nearest neighbor plots was useful for stand volume 

estimation, because of the gradual changes in vegetation structure in satellite images [17]. Therefore, we 

assumed that the plots geographically close to the target pixel tend to be selected as nearest neighbors 

using SRF, and this may lead to improvements in the accuracy of stand volume estimations; however, this 

approach is different from that used by Katila and Tomppo [17]. 

Meanwhile, the positive effects of the addition of FTYPE were obvious in cases of both the spectral 

data alone (RMSE reduced by 8.7–10.2 m3/ha) and the optimum combination model (RMSE reduced by 

8.9–10.7 m3/ha) (Table 4). The accuracy improvement was large for the BF class, because the predictive 

ability of the models derived from the spectral data alone was insufficient (rRMSE ranging 73.9%–75.0%, 

Table 3). When adopting the k-NN technique in Japan and other countries with both coniferous and 

broad-leaved forests similar to our study area, the use of FTYPE would be useful for mapping stand 

volume more accurately. 

As shown in Figure 4, there are clear differences in stand volume estimates among municipal units. 

Although the stand volume estimates made in this study showed overestimations for smaller volumes 

and underestimations for larger volumes, the binned assessment showed that there was no bias in the 

estimations made with the k-NN technique (Figure 3), as there was in some previous studies [49,54].  

The accuracy of estimates is improved when the aggregated pixels are evaluated [3,21]. Therefore, 

although the pixel-level estimates made using the k-NN technique presented here have insufficient 

accuracy for forestry operations, they are useful for assessing the total or average stand volume at 

regional and national scales for strategic forest planning. 

In this study, we used FTYPE, which was determined by the field plot data itself; however, in order 

to estimate stand volume accurately for unknown pixels, it is necessary to use additional digital maps 

concerning the forest type for the whole area being analyzed. Therefore, to efficiently use the method 

presented in this study, an accurate forest type map must be prepared, either manually or via an automatic 

image classification of remotely-sensed data. 

The mapping of forest type is an ongoing project [55]. Additional investigations should be conducted 

on mapping stand volumes and their uncertainties when using wall-to-wall digital forest type maps in 

accordance with some previous studies [21,22]. These analyses and map products are expected to improve 

forest statistics at the regional and national scale and to support sustainable forest management in Japan. 

5. Conclusions 

To evaluate the effectiveness of adding feature variables to satellite image data on the accuracy of 

stand volume estimates using the k-NN technique, the estimates from three Landsat ETM+ datasets 

acquired in different seasons with various combinations of additional feature variables were compared. 

The results showed that the addition of environmental factors to satellite image data did not always 

help to improve estimation accuracy. To avoid negative effects on the accuracy of stand volume estimates, 

careful variable selection should be performed. Among the environmental factors tested in this study, 

summer rainfall data had a consistent positive effect on accuracy improvement. Therefore, summer 

rainfall data may be a useful feature variable in stand volume estimations in this study area. The use of 

forest type information improved the estimation accuracy, particularly for broad-leaved forests. When 
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adopting the k-NN technique in Japan and other countries with both coniferous and broad-leaved forests 

similar to our study area, the use of forest type information would be useful for mapping stand volume 

accurately. The binned assessment of stand volume estimates showed that there were no biases in the 

estimations made with the k-NN technique. Thus, such a map of estimated stand volume would be useful 

for assessing the total or average stand volume at regional and national scales for strategic forest planning. 

All of these results indicated that the k-NN technique combined with appropriate feature variables is 

applicable to nationwide stand volume estimation in Japan. To ensure our results and to accurately 

estimate the stand volume for unknown pixels, additional investigations should be conducted on mapping 

stand volumes and their uncertainties when using wall-to-wall digital forest type maps. In the same 

manner, the effectiveness of summer rainfall data should be tested in other regions where the climatic 

characteristics differ from those of our study area. 

Acknowledgments 

All ETM+ data were provided by the United States Geological Survey, USA. GIS data of the shoreline 

and forest region were provided by the National and Regional Planning Bureau, the Ministry of Land, 

Infrastructure, Transport and Tourism, Japan. The DEM was provided by the Geospatial Information 

Authority of Japan. The authors are grateful to these organizations. Comments from the anonymous 

reviewers greatly improved the early draft of this manuscript. 

This work was carried out under the funded research program, “Development of Mitigation and 

Adaptation Techniques to Global Warming in the Sectors of Agriculture, Forestry and Fisheries” by the 

Ministry of Agriculture, Forestry and Fisheries, Japan. 

Author Contributions 

Shinya Tanaka designed the research and performed the image processing and statistical analysis, 

with co-authors providing mentorship throughout the research. Shinya Tanaka and Tomoaki Takahashi 

wrote the manuscript. Tomohiro Nishizono, Fumiaki Kitahara and Toshiro Iehara contributed to 

preparing the field plot data used in this study. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. Tomppo, E.; Schadauer, K.; McRoberts, R.E.; Gschwantner, T.; Gabler, K.; Ståhl, G. Introduction. 

In National Forest Inventories: Pathways for Common Reporting; Tomppo, E., Gschwantner, Th., 

Lawrence, M., McRoberts, R.E., Eds.; Springer-Verlag: New York, NY, USA, 2010; pp. 1–18. 

2. Tomppo, E.; Haakana, M.; Katila, M.; Peräsaari, J. Multi-Source National Forest Inventory: 

Methods and Applications; Springer: New York, NY, USA, 2008. 

3. Tomppo, E.; Olsson, H.; Ståhl, G.; Nilsson, M.; Hagner, O.; Katila, M. Combining national forest 

inventory field plots and remote sensing data for forest databases. Remote Sens. Environ. 2008, 112, 

1982–1999. 



Remote Sens. 2015, 7 392 

 

 

4. Olsson, H.; Nilsson, M.; Persson, A. GEOSS possibilities and challenges related to nation wide 

forest monitoring. In Proceedings of the ISPRS Commission VII Term Symposium, Enschede,  

The Netherlands, 8–11 May 2006. 

5. McRoberts, R.E.; Tomppo, E.O. Remote sensing support for national forest inventories.  

Remote Sens. Environ. 2007, 110, 412–419. 

6. Reese, H.; Nilsson, M.; Granqvist Pahlén, T.; Hagner, O.; Joyce, S.; Tingelöf, U.; Egberth, M.; 

Olsson, H. Countrywide estimates of forest variables using satellite data and field data from the 

National Forest Inventory. Ambio 2003, 32, 542–548. 

7. Gu, H.; Dai, L.; Wu, G.; Xu, D.; Wang, S.; Wang, H. Estimation of forest volumes by integrating 

Landsat TM imagery and forest inventory data. Sci. China Ser. E Technol. Sci. 2006, 49, 54–62. 

8. Tomppo, E.; Korhonen, K.T.; Heikkinen, J.; Yli-Kojola, H. Multi-source inventory of the forests of 

the Hebei forestry bureau, Heilongjiang, China. Silva Fenn. 2001, 35, 309–328. 

9. McInerney, D.O.; Nieuwenhuis, M. A comparative analysis of kNN and decision tree methods for 

the Irish National Forest Inventory. Int. J. Remote Sens. 2009, 30, 4937–4955. 

10. Gjertsen, A.K. Accuracy of forest mapping based on Landsat TM data and a kNN-based method. 

Remote Sens. Environ. 2007, 110, 420–430. 

11. McRoberts, R.E.; Holden, G.R.; Nelson, M.D.; Liknes, G.C.; Gormanson, D.D. Using satellite 

imagery as ancillary data for increasing the precision of estimates for the Forest Inventory and 

analysis program of the USDA Forest Service. Can. J. For. Res. 2006, 36, 2968–2980. 

12. Nilsson, M.; Folving, S.; Kennedy, P.; Puumalainen, J.; Chirici, G.; Corona, P.; Marchetti, M.; 

Olsson, H.; Ricotta, C.; Ringvall, A.; et al. Combining remote sensing and field data for deriving 

unbiased estimated of forest parameters over large regions. In Advances in Forest Inventory for 

Sustainable Forest Management and Biodiversity Monitoring; Corona, P., Köhl. M.,  

Marchetti, M., Eds.; Kruwer Academic Publishers: Dordrecht, The Netherlands, 2003; pp. 19–32. 

13. Nilsson, M.; Holm, S.; Reese, H.; Wallerman, J.; Engberg, J. Improved forest statistics from the Swedish 

National Inventory by combining field data and optical satellite data using post-stratification. In 

Proceedings of the ForestSat 2005, Borȧs, Sweden, 31 May–3 June 2005. 

14. Tomppo, E. Multi-source national forest inventory of Finland. In Proceedings of the IUFRO XX 

World Congress, Tampere, Finland, 6–12 August 1995; Paivinen, R., Vanclay, J., Miina S. Eds.; 

EFI: Joensuu, Finland, 1996; pp. 27–41. 

15. Tokola, T.; Heikkilä, J. Improving satellite image based forest inventory by using a priori site 

quality information. Silva Fenn. 1997, 31, 67–78. 

16. Tomppo, E.; Goulding, C.; Katila, M. Adapting finnish multi-source forest inventory techniques to 

the New Zealand preharvest inventory. Scand. J. For. Res. 1999, 14, 182–192. 

17. Katila, M.; Tomppo, E. Selecting estimation parameters for the Finnish multisource National Forest 

Inventory. Remote Sens. Environ. 2001, 76, 16–32. 

18. Tomppo, E.; Halme, M. Using coarse scale forest variables as ancillary information and weighting 

of variables in k-NN estimation: A genetic algorithm approach. Remote Sens. Environ. 2004, 92, 1–20. 

19. Moeur, M.; Stage, A.R. Most similar neighbor: An improved sampling inference procedure for 

natural resource planning. For. Sci. 1995, 41, 337–359. 

20. Packalén, P.; Maltamo, M. The k-MSN method for the prediction of species-specific stand attributes 

using airborne laser scanning and aerial photographs. Remote Sens. Environ. 2007, 109, 328–341. 



Remote Sens. 2015, 7 393 

 

 

21. Beaudoin, A.; Bernier, P.Y.; Guindon, L.; Villemaire, P.; Guo, X.J.; Stinson, G.; Bergeron, T.; 

Magnussen, S.; Hall, R.J. Mapping attributes of Canada’s forests at moderate resolution through 

kNN and MODIS imagery. Can. J. For. Res. 2014, 44, 521–532. 

22. Wilson, B.T.; Woodall, C.W.; Griffith, D.M. Imputing forest carbon stock estimates from inventory 

plots to a nationally continuous coverage. Carbon Balance Manag. 2013, 8, 1–15. 

23. Hirata, Y.; Imaizumi, Y.; Masuyama, T.; Matsumoto, Y.; Miyazono, H.; Goto, T. Japan. In National 

Forest Inventories: Pathways for Common Reporting; Tomppo, E., Gschwantner, Th., Lawrence, M., 

McRoberts, R.E., Eds.; Springer-Verlag: New York, NY, USA, 2010; pp. 333–340. 

24. Iehara, T. New Japanese forest resource monitoring system. Sanrin 1999, 1384, 54–61. 

25. Kajisa, T.; Murakami, T.; Mizoue, N.; Kitahara, F.; Yoshida, S. Estimation of stand volumes using 

the k-nearest neighbors method in Kyushu, Japan. J. For. Res. 2008, 13, 249–254. 

26. Minowa, Y.; Suzuki, N.; Tanaka, K. Estimation of site indices with a machine learning system C4.5. 

Jpn. J. For. Plan. 2005, 38, 143–156. 

27. Minowa, Y.; Suzuki, N.; Tanaka, K. Estimation of site indices with an artificial neural network. 

Jpn. J. For. Plan. 2005, 39, 23–38. 

28. Mitsuda, Y.; Yoshida, S.; Imada, M. Use of GIS-derived environmental factors in predicting site 

indices in Japanese larch plantations in Hokkaido. J. For. Res. 2001, 6, 87–93. 

29. Mitsuda, Y.; Ito, S.; Sakamoto, S. Predicting the site index of sugi plantations from GIS-derived 

environmental factors in Miyazaki Prefecture. J. For. Res. 2007, 12, 177–186. 

30. Nabeshima, E.; Kubo, T.; Hiura, T. Variation in tree diameter growth in response to the weather 

conditions and tree size in deciduous broad-leaved trees. For. Ecol. Manag. 2010, 259, 1055–1066. 

31. Nishizono, T.; Kitahara, F.; Iehara, T.; Mitsuda, Y. Geographical variation in age—Height 

relationships for dominant trees in Japanese cedar (Cryptomeria japonica D. Don) forests in Japan. 

J. For. Res. 2014, 19, 305–316. 

32. Teraoka, Y.; Masutani, T.; Imada, M. Estimating site index of Sugi and Hinoki from topographical 

factors on maps for forest management. Sci. Bull. Fac. Agric. Kyushu Univ. 1991, 45, 125–133. 

33. Chavez, P.S., Jr. An improved dark-object subtraction technique for atmospheric scattering 

correction of multispectral data. Remote Sens. Environ. 1988, 24, 459–479. 

34. Teillet, P.M.; Fedosejevs, G. On the dark target approach to atmospheric correction of remotely 

sensed data. Can. J. Remote Sens. 1995, 24, 374–387. 

35. Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients 

for Landsat MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893–903. 

36. Chirici, G.; Barbati, A.; Corona, P.; Marchetti, M.; Travaglini, D.; Maselli, F.; Bertini, R.  

Non-parametric and parametric methods using satellite images for estimating growing stock volume 

in alpine and Mediterranean forest ecosystems. Remote Sens. Environ. 2008, 112, 2686–2700. 

37. Tanaka, S.; Takahashi, T.; Saito, H.; Nishizono, T.; Iehara, T.; Kitahara, F.; Kodani, E.; Awaya, Y. 

Stand volume estimation using Landsat ETM+ data through atmospheric and topographic 

corrections in the Tohoku region, Japan. Jpn. J. For. Plan. 2013, 47, 29–34. 

38. Kitahara, F.; Mizoue, N.; Kajisa, T.; Yoshida, S. Positional accuracy of national forest inventory 

plots in Japan. J. For. Plan. 2010, 15, 73–79. 

39. Kitahara, F.; Mizoue, N.; Yoshida, S. Evaluation of data quality in Japanese National Forest 

Inventory. Environ. Monit. Assess. 2009, 159, 331–340. 



Remote Sens. 2015, 7 394 

 

 

40. Fazakas, Z.; Nilsson, M.; Olsson, H. Regional forest biomass and wood volume estimation using 

satellite data and ancillary data. Agric. For. Meteorol. 1999, 98–99, 417–425. 

41. Hagner, O.; Reese, H. A method for calibrated maximum likelihood classification of forest types. 

Remote Sens. Environ. 2007, 110, 438–444. 

42. Reese, H.; Nilsson, M.; Sandström, P.; Olsson, H. Applications using estimates of forest parameters 

derived from satellite and forest inventory data. Comput. Electron. Agric. 2002, 37, 37–55. 

43. Ohsawa, M. Differentiation of vegetation zones and species strategies in the subalpine region of Mt. 

Fuji. Vegetatio 1984, 57, 15–52. 

44. Keating, K.A.; Gogan, P.J.P.; Vore, J.M.; Irby, L.R. A simple solar radiation index for wildlife 

habitat studies. J. Wildl. Manag. 2007, 71, 1344–1348. 

45. Japan Meteorological Agency. Mesh Climatic Data of Japan (CD-ROM); Japan Meteorological 

Business Support Center: Tokyo, Japan, 2002. 

46. Kira, T. A New Classification of Climate in Eastern Asia as the Basis for Agricultural Geography; 

Horicultural Institute, Kyoto University: Kyoto, Japan, 1945; pp. 1–23. 

47. Kira, T. Forest ecosystems of east and southeast Asia in a global perspective. Ecol. Res. 1991, 6, 

185–200. 

48. LeMay, V.; Temesgen, H. Comparison of nearest neighbor methods for estimating basal area and 

stems per hectare using aerial auxiliary variables. For. Sci. 2005, 51, 109–119. 

49. McRoberts, R.E. Estimating forest attribute parameters for small areas using nearest neighbors 

techniques. For. Ecol. Manag. 2012, 272, 3–12. 

50. Mäkelä, H.; Pekkarinen, A. Estimation of timber volume at the sample plot level by means of image 

segmentation and Landsat TM imagery. Remote Sens. Environ. 2001, 77, 66–75. 

51. Mäkelä, H.; Pekkarinen, A. Estimation of forest stand volumes by Landsat TM imagery and  

stand-level field-inventory data. For. Ecol. Manag. 2004, 196, 245–255. 

52. Tomppo, E.; Nilsson, M.; Rosengren, M.; Aalto, P.; Kennedy, P. Simultaneous use of Landsat-TM 

and IRS-1C WiFS data in estimating large area tree stem volume and aboveground biomass.  

Remote Sens. Environ. 2002, 82, 156–171. 

53. McRoberts, R.E.; Nelson, M.D.; Wendt, D.G. Stratified estimation of forest area using satellite 

imagery, inventory data, and the k-Nearest Neighbors technique. Remote Sens. Environ. 2002, 82, 

457–468. 

54. McRoberts, R.E. Diagnostic tools for nearest neighbors techniques when used with satellite imagery. 

Remote Sens. Environ. 2009, 113, 489–499. 

55. Tanaka, S.; Takahashi, T.; Saito, H.; Awaya, Y.; Iehara, T.; Matsumoto, M.; Sakai, T. Simple method 

for land-cover mapping by combining multi-temporal Landsat ETM+ images and systematically 

sampled ground truth data: A case study in Japan. J. For. Plan. 2012, 18, 77–85. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/4.0/). 


