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Abstract: Accurate estimation of evapotranspiration (ET) and its components is critical 
to developing a better understanding of climate, hydrology, and vegetation coverage 
conditions for areas of interest. A hybrid dual-source (H-D) model incorporating the 
strengths of the two-layer and two-patch schemes was proposed to estimate actual ET 
processes by considering varying vegetation coverage patterns and soil moisture 
conditions. The proposed model was tested in four different ecosystems, including 
deciduous broadleaf forest, woody savannas, grassland, and cropland. Performance of the 
H-D model was compared with that of the Penman-Monteith (P-M) model, the 
Shuttleworth-Wallace (S-W) model, as well as the Two-Patch (T-P) model, with ET 
and/or its components (i.e., transpiration and evaporation) being evaluated against eddy 
covariance measurements. Overall, ET estimates from the developed H-D model agreed 
reasonably well with the ground-based measurements at all sites, with mean absolute 
errors ranging from 16.3 W/m2 to 38.6 W/m2, indicating good performance of the H-D 
model in all ecosystems being tested. In addition, the H-D model provides a more 
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reasonable partitioning of evaporation and transpiration than other models in the 
ecosystems tested. 

Keywords: evapotranspiration; comparison; hybrid dual-source model; shuttleworth-wallace 
model; penman-monteith model; two-patch model 

 

1. Introduction 

Land surface evapotranspiration (ET) is a key component that controls the water and energy balance 
in terrestrial ecosystems [1], and is also an important boundary condition for understanding 
atmospheric processes [2–7]. The quantification of actual ET (ETa) is the linchpin to climatic, 
hydrologic, agricultural and ecological studies. Because in situ ETa observations are often made at 
limited temporal and spatial scales [8,9], mathematical modeling in combination with more or less 
meteorological and/or remote sensing data becomes a powerful tool to quantify ETa over larger areas 
and longer periods [10–15]. 

Amongst different types of ETa models, the Penman-Monteith (P-M) model [16] has been widely 
used over the past decades. The P-M model treats the land surface as a uniform layer, where the 
vegetation covers the land surface fully and uniformly as a “big leaf”. This simplification of vegetation 
treatment makes the P-M model unable to distinguish evaporation from soil (E) and transpiration from 
canopy (T), and therefore may not be appropriate for use in partially vegetated areas [17–19]. 

Considering contributions of energy fluxes from different components (soil vs. vegetation),  
dual-source ETa models have been proposed to more precisely depict water and heat transfers from 
sparse or heterogeneous canopies. Lhomme and Chehbouni [20] distinguished two approaches that had 
been used in dual-source models. One is the “layer” (or coupled) approach in which each source of 
water and heat flux is superimposed and coupled, such as the Shuttleworth-Wallace dual-source model 
(S-W model) [21]. The other is the “patch” (or uncoupled) approach, where water and heat fluxes from 
each source interact independently with the above atmosphere, such as the model in Blyth and  
Harding [22]. Although both approaches are able to partition ETa into E and T, they have different 
modeling logics as well as applicability. As indicated by Lhomme and Chehbouni [20], the layer 
approach has a more complicated model structure and performs better over uniformly vegetated 
surfaces. However, it may not work properly for clumped or patchy vegetation where each component 
does not indeed interact between each other. In addition, the layer approach cannot distinguish the 
difference between evaporation from the soil under and between vegetation canopies, which may lead 
to significant errors when applied to surfaces with large heterogeneity in soil wetness, such as partially 
irrigated croplands [23]. In contrast, the patch approach performs better for more clumped vegetation. 
It assumes that each component receives full radiation loading but neglects evaporation from  
under-canopy soil surfaces. Nevertheless, as reported by Breshears and Ludwig [24], the assumption of 
full radiation loading on the substrate soil surface is rarely met under natural conditions, especially 
when tall vegetation exists. 

Both two-layer and two-patch models are limited somehow within a certain range of vegetated 
surfaces. Use of either to estimate ETa over larger areas with different characteristics of vegetation 
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distribution may result in considerable errors [25]. To obtain a more detailed representation of 
vegetation distribution in different ecosystems, efforts have been made to extend the dual-source 
model into multi-sources [8,26–28]. However, these multi-source models usually have complicated 
model structures and require more parameters that are often difficult to determine. Thus, it is critical to 
develop an ETa model showing the balance between applicability and complexity.  

By combining the layer with the patch approaches, Guan and Wilson [29] proposed a hybrid  
dual-source model (TVET model) to estimate potential evaporation (PE) and potential transpiration 
(PT). The TVET model adopts the layer approach to allocate available energy between components and 
to estimate aerodynamic resistances, but uses the patch approach to calculate PE and PT. As a result, 
both the evaporation from both under- and inter- canopy soil surfaces are considered and distinguished. 
Guan and Wilson [29] demonstrated that the simple combination of the layer and patch approaches could 
provide better PE and PT estimates over a wide range of vegetated surfaces. 

It should be emphasized that the hybrid dual-source model was intended to partition PE and PT for 
hydrologic modeling; it does not consider environmental stresses (e.g., soil moisture) on ETa. 
Numerous studies have shown that soil moisture is the prominent controlling factor of actual ET 
processes in arid and semiarid regions; limited soil moisture is responsible largely for the recent decline 
in global land surface evapotranspiration [30,31]. The TVET model is not able to simulate actual E and T 
processes. Furthermore, soil moisture conditions could also affect applicability of ETa models. Existing 
studies have indicated that the P-M model with variable canopy resistance can be directly applied to 
estimate ETa over sparsely vegetated canopies under different soil moisture conditions [32,33]. 
Massman [34] suggested that the layer and patch approaches can be interchangeably used under the 
extremely arid environment, as the surface resistance becomes a prominent factor of ETa whereas the 
interactions between components are relatively small.  

The objectives of this study were therefore to (1) develop a hybrid dual-source (H-D) model to 
estimate ETa processes over four different ecosystems, including deciduous broadleaf forest, woody 
savannas, grassland, and cropland, by combining canopy and soil surface resistances with the original 
H-D model developed by Guan and Wilson [29]; (2) evaluate ETa estimates from the developed H-D 
model with eddy covariance measurements and compare with those from three other ETa models  
(the P-M model, the S-W model, and the two-patch (T-P) model); and (3) provide implications for 
satellite-based ETa modeling at regional scales. Since surface conditions (both the vegetation and soil 
moisture) are the primary factors that determine applicability of different ETa models, it is of great 
value to compare different ETa models under varying surface conditions. The comprehensive 
comparison could also provide important implications for combining satellite data into these modeling 
approaches for regional analyses and applications. 

2. Methods 

Four ETa models are compared in this study, including the one single-source model  
(Penman-Monteith model) and three dual-source models (Shuttleworth-Wallace model, two-patch 
model, and the hybrid dual source model). 
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2.1. Existing Models 

2.1.1. Penman-Monteith Model 

The description of the Penman-Monteith (P-M) model is given in Equation (1), and the model 
structure is shown in Figure 1a. 
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[1 ( / )]
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where λ is the latent heat of vaporization; Rn and G are net radiation and soil heat flux, respectively 
(W/m2); Δ is the slope of saturation vapor pressure—temperature curve (kPa/K), ρ is the air density 
(kg/m3), Cp is the specific heat of air at constant pressure (J/(kg K)), D is the vapor pressure deficit 
(kPa), γ is the psychrometric constant (kPa/K), ra is aerodynamic resistance (s/m), and rc is bulk 
surface resistance (s/m). 

Figure 1. Structure of the Penman-Monteith model (a); Shuttleworth-Wallace model (b); 
Two-Patch model (c); and Hybrid dual-source model (d). The nomenclature used is given 
in Section 2.1. 

 

The aerodynamic resistance determines the transfer of heat and water vapor from evaporation 
surface into the air above the canopy, which is calculated from [35] 
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where k is von Karman’s constant (=0.41), d is zero plane displacement height (m), zm and zh are 
height of wind measurement and humidity measurement, respectively (m). u(zm) is wind speed at 
height zm (m/s), zom is the roughness length governing momentum transfer, and zoh is the roughness 
length governing heat and vapor transfer. Both roughness lengths (zom, zoh) and zero plane 
displacement height (d) are defined as functions of vegetation height (h), given in Campbell 
and Norman [36]. φM and φH represent atmospheric diabatic correction factors for momentum and heat 
(or vapor) respectively and can be found in [37].  
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The bulk surface resistance is estimated from [38]: 
ST_min
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  (3) 

where rST_min is the minimum stomatal resistance (s/m). f1, f2 and f3 are factors accounting for the 
influence of shortwave radiation, air vapor deficit, and air temperature on stomatal resistance, 
respectively, and are estimated following Noilhan and Planton [39]. Parameter f4 accounts for the 
influence of root zone soil moisture on stomatal resistance, which is calculated from 
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where θ is the soil water content within the root-zone (cm3/cm3), θF and θW are the soil water content at 
the field capacity and wilting point, respectively. 

2.1.2. Shuttleworth-Wallace Model 

The Shuttleworth-Wallace (S-W) model is a typical two-layer model, which is also the basis of 
other multi-layer models. The model structure is shown in Figure 1b. In the S-W model, ETa is 
calculated from, 

aET s s c cE T C PM C PM       (5) 

where λE is the latent heat from soil and λT is the latent heat from canopy (W/m2). Subscript s and  
c represent soil and canopy component, respectively. The expressions of PM and C are given by 
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where ݎ௔௔	is the aerodynamic resistance between mean canopy surface and the reference height (s/m); 
 is the	௔௖ݎ ;is the aerodynamic resistance between soil surface and mean canopy surface (s/m)	௔௦ݎ
aerodynamic resistance between mean leaf surface and mean canopy surface (s/m); ݎ௦௖	is the canopy 
surface resistance, and ݎ௦௦	 is the soil surface resistance (s/m). A and As are the total available energy 
and the available energy for the soil component (W/m2), respectively, which can be estimated from 
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nA R G   (13) 

exp( )s n cA R k LAI G    (14) 

where kc is the extinction coefficient of radiation attenuation, and is set to be 0.7 for deciduous 
broadleaf forests, 0.5 for evergreen needle-leaf forests, and 0.4 for herbs [20,40]. 

The aerodynamic resistance ݎ௔௔	 and ݎ௔௦	in the S-W model were assumed to change linearly between 
those for the surface with full vegetation cover (assumed equal to LAI = 4) and for bare soil, weighted 
by leaf area index [21]: 
when 0 < LAI < 4 
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when LAI ≥ 4 
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where α and 0 in the bracket indicate full vegetation cover and bare soil, respectively.  
Above the fully developed canopy, where the wind speed profile is logarithmic, the aerodynamic 

resistance ݎ௔௔	(ߙ)is calculated using Equation (2). For aerodynamic resistance within the canopy, 
  is obtained by performing an integration of eddy diffusion coefficient (K) over the height from (ߙ)	௔௦ݎ
0 to d + Zom, i.e., 
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where n is the extinction coefficient of the eddy diffusion, which is estimated by linear interpolation 
between the value for h < 1 m (=2.5) and h > 10 m (=4.25); u(z) is the wind speed at height z.  
The eddy diffusion coefficient K(z) is determined by  
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For surface without canopy, ݎ௔௔	(0) and ݎ௔௦	(0) are estimated from the following equations without 
the consideration of the zero plane displacement height, 
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where zom
′ and zoh

′ are the roughness length of bare surface governing momentum transfer and heat and 
vapor transfer (=0.01 m) [41], respectively; u(h) is the wind speed at canopy height h 
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The intra-canopy aerodynamic resistance ݎ௔௖	 is calculated from [42] 
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where lw is the characteristic length of leaf width (m) (Table 1). 
The canopy surface resistance in the S-W model (ݎ௦௖	) is similar with the bulk surface resistance in 

P-M model (rc). Thus, ݎ௦௖	 can be computed from Equations (3) and (4). The soil surface resistance is 
computed using an empirical equation given by [43] 

2.3
13.5( / ) 33.5s

s sr     (25) 
where θ1 is the soil water content within the surface soil layer.  

2.1.3. Two-Patch Model 

In the two-patch (T-P) model (Figure 1c), both soil and vegetation components are assumed to 
receive full radiation loading, and the total flux of latent heat per unit area is calculated as the mean of 
fluxes from each component (canopy or soil) weighted by their relative areas [20] 
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where Fr is the fractional vegetation coverage. The value of Fr can be either determined by in situ 
measurements or estimated from remote sensing images (Table 1), in which Fr is calculated from [44] 

min max minr (EVI EVI ) /(EVI EVI )F     (29) 

where EVI is the enhanced vegetation index [45]; EVImax and EVImin are the maximum and minimum 
EVI values, respectively [46]. 

Aerodynamic resistances in the T-P model are similar with those in the S-W model. However,  
when calculating λE and λT, the T-P model assumes that transpiration occurs from a closed canopy 
surface while evaporation happens over bare soil. As a result, aerodynamic resistances ݎ௔௔	 and ݎ௔௖	 in  
Equation (27) are estimated by Equations (2) and (23), while those in Equation (28) are computed from 
Equations (21) and (22), respectively. 

Lhomme and Chehbouni [20] suggested that for patchy or clumped vegetation, it is better to use the 
clumped leaf area index (Lc), which is defined as the LAI per unit vegetated area (Lc = LAI/Fr). 
Therefore, the bulk canopy surface resistance ݎ௦௖	is estimated from 
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where rST_min, f1, f2, f3, and f4 keep the same meanings as those in P-M and S-W model. 
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Soil surface resistance of the T-P model is calculated from Equation (25). 

2.2. Development of a Hybrid-Dual Source Model 

The H-D model is a mixture of the layer approach and the patch approach (Figure 1d). It adopts the 
layer approach to allocate available energy between canopy and soil (Equation (14)) and to calculate 
aerodynamic resistances, and uses the patch approach to partition energy into latent heat (E or T), 
sensible heat (H), and ground heat flux (G). The energy balance equations are, 

= ( + )c cA Fr T H  (31) 

=(1 ) ( + )s sA Fr E H   (32) 

For each component, fluxes of sensible and latent heat are calculated following the classical Ohm’s 
law type formulations. To account for environmental stresses on ET, the canopy and soil surface 
resistances were incorporated into the original hybrid dual-source potential ET model of Guan and 
Wilson [29], 
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where t and e are the air temperature and humidity, respectively. Subscript v represents the bulk leaf 
stomata and zh is the reference height where temperature and humidity are measured.  

Assuming that vapor within the leaf stomata is always saturated under tv, Equation (35) can be 
rewritten as 
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The term es in Equation (36) represents the equilibrium vapor pressure within the surface layer of 
soil, and can be calculated by the thermal equilibrium equation [47]. As a result, Equation (36) is 
rewritten as 
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where parameter hu is the relative humidity within the surface soil, and is estimated based on the 
assumption that water in the liquid and vapor phases are in local thermodynamic equilibrium [47]: 
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where R is the gas constant for water vapor (=461.5 J/(kg∙K)); g is the gravitational acceleration  
(=9.8 m/s2); hs and ts are the water potential (m) and temperature (K) of the surface soil, respectively. 

The Penman linear relationship [48] is employed to convert saturated vapor pressure at the 
reference height to that on the surface: 

( )= ( )+ ( )sat v sat zh v zhe t e t t t   (40) 

( )= ( )+ ( )sat s sat zh s zhe t e t t t   (41) 

Substituting Equations (31), (33), (37) and (40), and convert fluxes into the total surface area, 
the canopy transpiration is calculated as: 
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Similarly, substituting Equations (32), (34), (38) and (41), one can get the expression for estimating 
soil evaporation, 
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Aerodynamic resistances (ݎ௔௔	,	ݎ௔௖	 and ݎ௔௦	) and soil surface resistance of the H-D model are 
calculated using the same equations as those of the S-W model. However, since the H-D model was 
originally proposed to estimate latent heat flux from non-uniform vegetation, the clumped leaf area 
index is used in the H-D model to upscale stomatal resistance into bulk canopy surface resistance (ݎ௦௖	), 
as given in Equation (30). 

3. Data and Evaluation Statistics for Models Being Examined 

3.1. Study Site and Data 

Four sites within the AmeriFlux network were used in this study to validate the model performance, 
including one deciduous broadleaf forest site (Morgan Monroe State Forest, US_MMS) [49],  
one woody savannas site (Flagstaff Managed Forest, US_Fmf) [50], one grassland site (Vaira Ranch, 
US_Var) [51], and one cropland site (Bondville, US_Bo1) [52]. For each site, continuous records of 
half-hourly meteorological and latent heat flux measurements from eddy covariance (EC) towers were 
obtained from the AmeriFlux Web site [53]. Ancillary and biological data include soil moisture and 
temperature, leaf area index (LAI) and vegetation height (h) were also acquired. A summary of the 
sites including locations, climate conditions, vegetation types, vegetation and soil parameters as well 
as study periods is listed in Table 1 [49–52,54–57], and soil moisture conditions during the study 
period for each site are shown in Figure 2. 

Moderate Resolution Imaging Spectroradiometer (MODIS) images were used to estimate the EVI 
and then to calculate Fr (Equation (29)) for each site due to the lack of in situ Fr observations. EVI 
was calculated following the method given by [45] using MODIS surface reflectance dataset 
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(MOD09GA) downloaded from the NASA Data Center [58]. The original MODIS images in the 
sinusoidal projection were re-projected into the UTM projection and resampled into 1 km spatial 
resolution. For days without measurements, the values of LAI, h and Fr were estimated by linearly 
interpolating those parameters between the two bounding observations. 

Table 1. General information of sites and selected model parameters used in this study. 

Sites Location a Climate b Vegetation 
Vegetation c and Soil d  

Parameters 
Study Period Reference 

US_MMS 

W86.4131° 

N39.3232° 

a.s.l. 275 m 

P = 1094 mm 

T = 10.8 °C 

Deciduous 

Broad-leaf 

Forest 

H = 27m, LAI = 0.84–4.72,  

Fr = 0.67–0.73, 

rST_min = 180 s/m, lw = 0.15 m, 

θF = 0.39, θW = 0.21 

8 February 2003 

to 

13 November 2003 

[49] 

US_Fmf 

W111.7273° 

N35.1426° 

a.s.l. 2160 m 

P = 613 mm 

T = 11.4 °C 

Woody 

Savannas 

h = 18 m, LAI = 1.5, Fr = 0.3, 

rST_min = 180 s/m, lw = 0.02 m, 

θF = 0.41, θW = 0.086 

1 February 2006 

to 

10 September 2006 

[50] 

US_Var 

W120.9507° 

N38.4067° 

a.s.l. 129 m 

P = 565 mm 

T = 16.9 °C 
Grasslands 

h = 0.2–0.55 m,  

LAI = 0.18–1.4, 

Fr = 1, rST_min = 130 s/m, 

lw = 0.03 m, θF = 0.28,  

θW = 0.07 

10 January 2006 

to 

27 May 2006 

[51] 

US_Bo1 

W88.2904° 

N40.0062° 

a.s.l. 219 m 

P = 756 mm 

T = 11.4 °C 

Croplands 

(Maize) 

h = 0.22–2.32 m,  

LAI = 0.18–4.38,  

Fr = 0.1–0.9, rST_min = 130 s/m,  

lw = 0.03 m, θF = 0.33, θF = 0.1 

24 May 2001 

to 

10 September 2001 

[52] 

a Description of the location for sites include longitude (W/E), latitude (N/S) and elevation above sea level 
(a.s.l.); b Description of climate condition for sites include annual average precipitation (P) and annual 
average air temperature (T). For US_MMS, P and T are averaged between 1971 and 2000; for US_Fmf,  
P and T are averaged between 2006 and 2010; for US_Var, P and T are averaged between 1946 and 2005; for 
US_Bo1, P is averaged between 1997 and 2006 and T is averaged between 1997 and 2007; c The value of Fr 
in the grassland site was assumed to be 100% during the main growing season (we found that Equation (29) 
is not applicable in grassland), which accords well with field survey, and the value of Fr for the forest and 
cropland sites were estimated from Equation (29). For the woody savannas site, the estimated values of Fr 
from Equation (29) were ranged from 0.26 to 0.29. However, according to the definition in the IGBP 
vegetation classification, the Fr of woody savannas should be between 0.3 and 0.6. As a result, a lower 
boundary of 0.3 was chosen for the woody savannas site; d In this study, θF was assumed to be the water 
content retained in the soil at −0.02 MPa of suction pressure, which is midway of most reported θF values 
(−0.01 to −0.033 MPa) [53]. θW was related to the suction pressure at −1.5 MPa. The VG-M model [54,55] 
was adopted to describe the soil water retention curve, and the parameters of the VG-M model for each site 
were estimated from measured soil texture and bulk density using the method given by [56]. 

It is worthwhile to mention that although EC measurements have been widely considered as the 
ground truth of energy and water exchanges between the land surface and the atmosphere, studies have 
shown that ETa from EC system suffers from uncertainties to a certain degree, i.e., the energy balance 
closure of EC system generally lies between 80% and 95% [59]. In addition, linear interpolation of 
vegetation parameters during days without in situ measurements would also result in uncertainties.  
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In this study, the EC-observed ETa at the four sites was obtained from the level-4 AmeriFlux dataset, in 
which rigorous quality control procedures were made to guaranty the accuracy of EC observations [53]. 
Thus, ETa from the EC system was regarded as ground truth of actual evapotranspiration to validate 
the four models in the following analysis. 

Figure 2. Soil moisture time series at four sites examined in this study ((a): US_MMS;  
(b): US_Fmf; (c): US_Var; and (d): US_Bo1). The upper dashed line indicates field 
capacity and the lower dashed line indicates the wilting point. 

 

3.2. Evaluation of Model Performance 

Three statistic metrics recommend by Legates and McCabe [60] were used to evaluate the model 
performance, including the mean absolute error (MAE), the modified coefficient of efficiency (E1), 
and the modified index of agreement (d1):  
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(46) 

where Oi is the observed value, Si is the modeled value, and o  is the mean observed value. For a 
perfect model, MAE should be 0, and both E1 and d1 should be 1. A model performs better if MAE is 
smaller and E1 and d1 are lager. 
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In addition, the regressions of model estimated and observed ET with zero interception were also 
used to evaluate the model performance, i.e., 

a aET _estimated= ET _observeda   (47) 
where λETa_model and λETa_observed are model-estimated and observed ETa, respectively, and a is 
the slope of regression. If a model performs well, the a value should be close to 1. 

4. Results and Discussion 

4.1. Validating the Performance of the Hybrid-Dual Source Model 

Performance of the H-D model in simulating ETa at a 30-min interval was firstly validated with 
observations from the eddy covariance system (Figure 3a–d). Overall, the estimated ETa agreed 
reasonably well with the ground-based measurements at all sites, with all fitted lines close to the 1:1 
line. The MAE ranged from 16.3 to 38.6 W/m2 (Table 2), indicating good performance of the H-D 
model in all ecosystems being tested. The highest MAE occurred at the woody savannas site (Flagstaff 
Managed Forest, US_Fmf), with E1 and d1 for this site being 0.56 and 0.77, respectively. The lowest 
MAE appeared at the grassland site (Vaira Ranch, US_Var), with E1 of 0.72 and d1 of 0.87. For the 
deciduous broadleaf forest site (Morgan Monroe State Forest, US_MMS), the MAE was 37.6 W/m2, 
E1 0.72, and d1 0.87. The cropland site (Bondville, US_Bo1) had the highest agreement between the 
estimated and observed ET, with d1 of 0.89 and E1 of 0.79. 

Figure 3. Comparisons of actual evapotranspiration (W/m2) estimates from four models to 
the eddy covariance measurements over a 30-min period in four different ecosystems ((a–d): 
the H-D model; (e–h): the S-W model; (i–l): the T-P model and (m–p): the P-M model).  
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Table 2. Statistic summary of the four models in estimating actual evapotranspiration over 
30-min period at four sites. ࢙ത is the mean estimated value. 

Sites Models ࢕ഥ (W/m2) ࢙ത (W/m2) MAE (W/m2) E1 d1 α 

US_MMS 

H-D 115.7 113.5 37.6 0.72 0.87 0.95 
S-W 115.7 134.7 48.4 0.62 0.81 0.99 
T-P 115.7 126.3 42.9 0.64 0.82 0.98 
P-M 115.7 119.2 45.7 0.63 0.82 0.90 

US_Fmf 

H-D 131.5 125.7 38.6 0.56 0.77 0.89 
S-W 131.5 142.2 51.4 0.41 0.71 0.99 
T-P 131.5 163.1 53.2 0.38 0.72 1.15 
P-M 131.5 37.4 99.5 −0.20 0.43 0.20 

US_Var 

H-D 53.6 50.9 16.3 0.72 0.87 0.98 
S-W 53.6 76.7 33.8 0.37 0.75 1.40 
T-P 53.6 44.7 24.4 0.58 0.81 0.92 
P-M 53.6 43.4 15.7 0.73 0.86 0.93 

US_Bo1 

H-D 117.5 123.6 30.0 0.79 0.89 1.02 
S-W 117.5 137.2 34.9 0.71 0.86 1.12 
T-P 117.5 137.4 34.8 0.74 0.87 1.13 
P-M 117.5 105.9 34.4 0.74 0.86 0.87 

Figure 4. Diurnal patterns of the estimated actual evapotranspiration from the four models 
and the measurements at (a) US_MMS; (b) US_Fmf; (c) US_Var; (d) US_Bo1. Each time 
series shown is the mean of three typical clear-sky days. 

 

ETa has evident diurnal patterns as a result of combined physical (e.g., temperature and radiation 
diurnal variations) and biological (e.g., stomatal closure) factors. Generally, the H-D model 
successfully reproduced these diurnal patterns of ETa at all sites (Figure 4). However, at the US_MMS 
and US_Fmf sites, the H-D model slightly underestimated ET in the morning and overestimated ETa in 
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the afternoon (Figure 4a,b). This discrepancy is likely due to a simple canopy interception algorithm 
for net radiation used in the model (see Equation (14)), which is not able to reflect the diurnal variation 
in the sunlight incident direction. In the H-D model, LAI was used to partition net radiation between 
soil and canopy (Equation (14)). However, the LAI value used here only corresponds to that when the 
sun was directly overhead. As the solar incident angle varies with time, the shadow area and therefore 
the “effective” LAI values can vary during the daytime. As a result, the use of Equation (14) would 
result in improper radiation partitioning especially when vegetation is tall (the mean vegetation height 
in US_MMS and US_Fmf are 27 m and 18 m, respectively (Table 1)) and the canopy structure is  
non-uniform. For the remaining two sites, the H-D model slightly overestimated ETa during  
the daytime (Figure 4c,d). The overall good agreement between estimated and observed ET in  
different ecosystems indicates the potential of the H-D model to be applicable to a wide range of 
vegetated surfaces. 

4.2. Comparison of Estimated Evapotranspiration by Four Models 

To further demonstrate the advantages of the H-D model, four models with distinct treatments on 
vegetation characterization were compared in Figures 3 and 4 and Table 2. It is worthwhile to mention 
that the same set of parameters (as described in Section 2) was employed by the four models for each 
site; hence, disagreement among model performance is mainly caused by differences in model 
structures instead of different parameters. Interestingly, all statistics show that ETa estimates from the 
H-D model show closer agreement with the measurements than those from three other models at all 
sites except for the P-M model at the US_Var site, where the value of E1 of the P-M model was 
slightly higher than that of the H-D model (0.73 vs. 0.72) and the MAE of the P-M model was slightly 
lower than that of the H-D model (15.7 vs. 16.3 W/m2) (Table 2). The S-W and T-P models had similar 
performance at the US_MMS, US_Fmf and US_Bo1 sites, but the S-W model significantly 
overestimated ETa at the US_Var site (Figure 3g). The P-M model showed the worst performance in 
estimating ET among the four models at the US_MMS and US_Fmf sites. However, it performed best 
at the US_Var site and better than the S-W model at the US_Bo1 site. 

At the US_MMS site, the four models showed similar performance and corresponded well with 
measurements (Figure 3a,e,i,m and Figure 4a). The MAE ranged from 37.6 to 48.4 W/m2 and the 
values of E1 were all larger than 0.6 and d1 were all larger than 0.8 (Table 2), indicating that all models 
appear to perform well at this site. 

At the US_Fmf site, the P-M model severely underestimated ETa with a slope of 0.20 and E1  
of −0.20, suggesting that the use of the P-M model to predict ETa was even worse than using the mean 
value of the measurements (Figure 3n and Table 2). This marked underestimation was mainly because 
of the low Fr value at the site (around 0.3 during the study period), which failed to meet the 
assumption of “big leaf” in the P-M model. In addition, Stannard (1993) reported that the P-M model 
would underestimate ET when canopy surface resistance was much greater than soil surface resistance. 
During the study period, the average canopy surface resistance (ݎ௦௖	) was about 560 s/m, while the 
average soil surface resistance (ݎ௦௦	) was only 200 s/m at the US_Fmf site. Similar results can also be 
drawn from Figure 4b, where the P-M model greatly underestimated ETa during the daytime.  
The performance of the three dual-source models is much better than that of the P-M model  
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(Figure 3b,f,j,n, Figure 4b and Table 2), which can be ascribed mostly to their ability to discriminate 
plant transpiration from soil evaporation. However, the T-P model overestimated ETa by about 24%, 
with E1 of 0.38 and d1 of 0.72, and the S-W model overestimated ETa by 8%, with E10f 0.41 and d1 of 
0.71 (Table 2). The low E1 values of the T-P and S-W models suggest that both models do not seem to 
work at the woody savannas site. 

For the grassland site (US_Var), where Fr was high and the vegetation distribution was relatively 
uniform, the performance of the P-M model was largely improved compared with that at the US_Fmf 
site (Figure 3c,g,k,o, Figure 4c and Table 2). The statistics show that the P-M model performed even 
better than the three dual-source models at this site (Table 2). The S-W overestimated ETa by about 
43% (the slope was 1.40), which is larger than results in published studies. Hu et al. [61] reported that 
the S-W model generally overestimated ETa by 8%–15% at four grassland sites of similar latitude as 
the US_Var site. The T-P model also provided acceptable results, with a MAE of 24.4 W/m2, E1 of 
0.58, and d1 of 0.81. 

The cropland site (US_Bo1) showed the best correlations between estimates and observations 
(Table 2) for all four models. In the farmland ecosystem where the soil moisture remains at high levels 
(e.g., due to irrigation), the P-M model with various bulk surface resistances was found to be a good 
predictor for evapotranspiration (Figures 3p and 4d and Table 2). This phenomenon has also been 
reported by other studies [32,33,62,63]. Figure 4d shows that the P-M model slightly underestimates 
ETa during 10:00–14:00, with a MAE of 34.4 W/m2, E1 of 0.74, and d1 of 0.86 for the study period 
(Table 2). Amongst the dual-source models being tested, the ETa estimates from the S-W and T-P 
models have almost the same diurnal patterns (Figure 4d) and similar statistic values (Table 2), 
suggesting that these two models can be interchangeably used to estimate ETa at the cropland site. 

4.3. Evapotranspiration Components (E and T) and its Vegetation Controls 

Differing descriptions of vegetation coverage characteristics are the largest difference among the 
four ETa models. In order to trace the error of ETa estimates and explore the underlying reasons, 
variations in daily LAI, Fr, and estimated daily evaporation (E) and transpiration (T) from the three 
dual-source models at four sites are shown in Figures 5–8. A summary of mean evaporation, mean 
transpiration, and the ratio of E/ETa during study periods from each model is given in Table 3. Due to 
the inability to distinguish E and T, the P-M model was precluded from the following analysis. 

Table 3. Summary of mean evaporation (E, W/m2), mean transpiration (T, W/m2), and the 
ratio of E/ET (%) at four sites during study periods. 

Model 
US_MMS US_Fmf US_Var US_Bo1 

E T E/ETa E T E/ETa E T E/ETa E T E/ETa 
H-D 26.1 87.4 23.0 104.1 21.6 82.8 29.7 21.9 57.6 37.3 86.3 30.2 
S-W 32.4 102.3 24.1 110.7 31.5 77.8 34.5 42.2 45.0 39.5 97.7 28.8 
T-P 53.1 73.2 42.0 132.7 30.4 81.3 0 44.7 0 43.8 93.6 31.9 

At the US_MMS site where LAI varied markedly and soil moisture remains relatively constant at a 
high level (favorable water conditions, Figure 2a) during the study period, variations in transpiration 
from the H-D model show an obvious positive relationship with those in LAI, whereas evaporation is 
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negatively correlated with LAI (Figure 5a,b). Similar relationships were also found for the S-W model 
(Figure 5c,d). However, both E and T from the T-P model did not show obvious variation with 
changes in LAI. This is because LAI is not used in the T-P model, while Fr is the only variable used to 
account for the vegetation controls on E and T partitioning. During the study period, Fr remained 
nearly invariant. As a result, both E and T from the T-P model show dampened variations compared 
with those from the H-D and S-W models (Figure 5e,f). 

Figure 5. Variations in daily leaf area index (LAI), fractional vegetation coverage (Fr), and 
estimated evaporation (λE) (left) and transpiration (λT) (right) from three dual-source ETa 
models: H-D model (a,b), S-W model (c,d) and T-P model (e,f), at the US_MMS site.  

 

The ratio of E/ETa was similar between the H-D and the S-W models (Table 3). However, the S-W 
model predicted higher values of both E and T compared with the H-D model. Given the fact that the 
H-D model accurately estimated the total ETa while the S-W model overestimated it (Figure 3a,e, 
Figure 4a and Table 2), it is plausible that both E and T were overestimated in the S-W model. 
Similarly, the E/ETa ratio from the T-P model was much higher than that from the H-D model, 
suggesting that the T-P model overestimated E and underestimated T at this site (Table 3). 

At the US_Fmf site, both LAI and Fr remained generally invariant during the simulation period. 
Variations in E and T were therefore controlled primarily by atmospheric and soil moisture conditions. 
It is observed that T from the three models showed similar trends that appear to increase before ~DOY 
130 and then to decrease to a low level between ~DOY 140 and ~DOY 210. Afterwards, T started to 
increase again. This trend corresponds well with that of soil moisture shown in Figure 2b, suggesting a 
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strong moisture control on plant transpiration at this site. Although the surface vegetation condition 
was not the influential factor controlling seasonal variations in E and T, it does play a key role in 
partitioning ETa into E and T. Because both the LAI and Fr were small at this site, E accounted for a 
larger proportion of total ET (Table 3). The ratio of E/ETa was the highest from the H-D model 
(82.8%) and lowest from the S-W model (77.8%). For the T-P model, the E/ETa ratio was 81.3%. 
Combining the results listed in Tables 2 and 3, it was found that the S-W model overestimated T but 
the proposed H-D model underestimated T. In addition, both E and T were significantly overestimated 
by the T-P model. 

Figure 6. Variations in daily leaf area index (LAI), fractional vegetation coverage (Fr), and 
estimated evaporation (λE) (left) and transpiration (λT) (right) from three dual-source ET 
models: H-D model (a,b), S-W model (c,d) and T-P model (e,f), at the US_Fmf site. 

 

At the US_Var site, LAI showed obvious seasonal variations while Fr remained invariant. 
Evaporation from both the H-D and S-W models had similar values (Table 3) and remained relatively 
constant despite changes in LAI. This is possibly because that the actual evaporation process at this 
site was controlled mostly by the variability in meteorological and soil moisture conditions. During the 
study period, atmospheric demand was expected to increase with time, and soil moisture remained at a 
high level before ~DOY 100 but showed an abrupt decrease afterwards (Figure 2c), which may 
somehow offset the increase in atmospheric demand and result in a relatively unchanged evaporation 
rate. Such an effect could also affect the process of transpiration. However, T from the S-W model 
exhibited a sharp increase after ~DOY 100 despite the reduction in soil moisture (Figure 7d), resulting 
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in a higher/lower T/E ratio in the S-W model (i.e., E/ETa = 45%). In contrast, T from the H-D model 
that shows a more gradual increase with LAI after ~DOY 100 seems to be more reasonable  
(Figure 7b). The above phenomenon suggests that the S-W model may respond to changes in LAI/soil 
moisture more/less sensitively than the H-D model does. Considering that the H-D model estimated 
total ETa more precisely while the S-W model considerably overestimated the total ETa (Table 2), 
and both models predicted similar E (Table 3), it could be derived that the S-W model overestimated 
the T at this site. Studies also reported that the ratio of E/ETa for the grassland with mean growing 
season LAI of 0.50 (close to 0.52 of the US_Var site) were between 56% and 60% [61], which lends 
credibility to our findings at the US_Var site. 

Figure 7. Variations in daily leaf area index (LAI), fractional vegetation coverage (Fr), and 
estimated evaporation (λE) (left) and transpiration (λT) (right) from three dual-source ET 
models: H-D model (a,b), S-W model (c,d) and T-P model (e,f), at the US_Var site. 

 

As for the T-P model, because the site was completely covered by vegetation, there was no 
evaporation occurred during the simulation period (Figure 7e). It is interesting to note that the 
negligible E was well compensated by the overestimation of T due to higher canopy available energy, 
thereby resulting in comparable total ETa estimates (Table 2). However, because of the obviously 
erroneous E and T partitioning, it is not recommended using the T-P model at the site. 

At the US_Bo1 site, soil moisture remained at a high level (Figure 2c) and both LAI and  
Fr changed synchronously during most of the simulation period (Figure 8). As a result, both E and T 
estimated by all three models showed similar temporal patterns. The estimated transpiration was 
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positively correlated with changes in LAI and Fr, while the evaporation was negatively related with 
these two variables. In addition, the three models had similar E/ETa ratios, with values ranging from 
28.8% to 31.9% (Table 3). However, the S-W and T-P models slightly overestimated T compared to 
the H-D model (Table 3). This overestimation of transpiration would likely be as a result of the 
overestimation in total ET by these two models (Table 2). Nevertheless, the overestimation of the S-W 
model happened mostly during the beginning and the end of the simulation period when LAI was 
generally low (Figure 8b,d), whereas the overestimation of the T-P model mainly occurred in the end 
of the simulation period with low LAI but high Fr values. 

Figure 8. Variations in daily leaf area index (LAI), fractional vegetation coverage (Fr), 
and estimated evaporation evaporation (λE) (left) and transpiration (λT) (right) from  
three-dual source ET models: H-D model (a,b), S-W model (c,d) and T-P model (e,f), at the 
US_Bo1 site. 

 

Similar results can also be found at three other sites that the S-W model tended to overestimate T 
when LAI was low, and therefore overestimated the total ETa. Conceptually, this is because the S-W 
model assumes fluxes from different components to be firstly fully coupled and then interact with the 
above atmosphere. However, when LAI is low, the interactions between fluxes from different 
components become less intense, which may contradict the assumption of the S-W model. This 
discrepancy would be even larger if Fr is also small. Other similar studies also reported that the S-W 
model overestimated T under low LAI conditions [26,29,61]. 
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In contrast, the T-P model does not consider LAI. Instead, it uses Fr to partition available energy and 
to rescale latent fluxes between components. As a result, the T-P model provided a relatively high 
transpiration rate under high Fr conditions regardless of low LAI values. This phenomenon was not only 
found at the US_Bo1 site but also at the US_MMS and US_Var sites (Figures 5 and 6). 

4.4. Advantages of the Hybrid Dual-Source Model 

Compared with the S-W and T-P models, the estimated E and T from the H-D model seem more 
reasonable. Not surprisingly, the H-D model performed best in estimating total ETa (Table 2). The H-D 
model deviates from a layer model in distinguishing the difference in evaporation from inter-canopy 
soil and that from under-canopy soil, and restricting convective transfer contributions to transpiration 
only from vegetated fractions. The H-D model is also different from a patch model in that it allows E 
from under-canopy soil, and the effect of vegetation on both E and T is somehow considered. More 
importantly, both LAI and Fr are adopted in the H-D model, while the S-W model only uses the LAI 
and the T-P model only uses the Fr. It should be emphasized that LAI and Fr are two variables 
representing different characteristics of surface vegetation distribution. LAI focuses on the vertical 
density and distribution of leaves, whereas Fr explains more on the horizontal development of 
vegetation canopies. Therefore, both variables showed strong, but different controls on E and T 
processes (Figures 5–8, see also Yang and Shang [13,64]). Although the value of both variables would 
change synchronously in some situations (i.e., in the farmland ecosystem, and thus resulted  
in similar E and T estimation among three dual-source models (Figure 8)), they function differently  
in determining ETa processes. Moreover, synchronized changes in LAI and Fr rarely happen in  
natural ecosystems. 

5. Implications for Satellite-Based ET Modeling Approaches 

Since the late 1970s, satellite remote sensing has been widely used in ETa modeling by providing 
critical variables depicting characteristics and the state of the land surface, e.g., land surface 
temperature and Fr. The basis of satellite-based ETa modeling approaches is reliant on physical and 
mathematical description and/or simplification of the interactions of water and heat fluxes between 
vegetation and soil components. Overall, there are two ways to make use of satellite-based retrievals of 
surface and/or atmospheric variables to simulate ETa from field to continental scales based on 
approaches entailing different assumptions, configurations, and coupling between vegetation and soil. 

The first way is to mainly use remotely sensed Fr to describe composite components of the land 
surface and parameterize E and T separately based on the Penman-Monteith equation and T-P 
approach [44,46,65–67]. Furthermore, remotely sensed vegetation indices (e.g., EVI or the Normalized 
Difference Vegetation Index, NDVI) are physically and mathematically related to parameters associated 
with soil moisture stress on ETa and surface resistance. Based on this framework, there are two valuable 
global ETa products developed based on the Moderate Resolution Imaging Spectroradiometer 
(MODIS) [44] or NOAA-Advanced Very High Resolution Radiometer (AVHRR) [68]. These products 
take advantages of multispectral reflectance that shows relatively slow variations compared with land 
surface temperature and are therefore less compromised by cloud contamination. However, as 
indicated by more recent studies by Long et al. [4,69], Ruhoff et al. [70], and Yang et al. [71], these 
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global satellite ETa products or vegetation indices-based ETa output show a slower response to 
precipitation and soil moisture in some cases compared with hydrological models, especially during 
extremely dry or wet conditions. This could be related to an indirect relationship between remotely 
sensed vegetation index and soil moisture but a more dynamic response of ETa to soil moisture is 
explicitly depicted and simulated in hydrological models [72]. One of the most important strengths of 
satellite ETa products is its relatively high spatial resolution (~1–8 km) compared with the coarse 
resolution of hydrological models (e.g., 1/8 degree, ~14 km at the equator). The global ETa products 
could be valuable in interpreting ETa patterns on a global scale and large river basin scales. 

The second way is to use remotely sensed land surface temperature as a primary forcing of models 
to integrally or separately simulate sensible heat fluxes of vegetation and soil. Latent heat fluxes are 
subsequently calculated as the residual of the energy balance. Examples of single-source models of this 
approach include the Surface Energy Balance Algorithm for Land (SEBAL) [73], the  
modified-SEBAL [3], and the Surface Energy Balance System [74]. In addition, some of these  
single-source models suffer somewhat from subjectivity and uncertainty due to manual selection of 
end-members that reflect ETa under extreme conditions from satellite images. These issues have been 
systematically investigated recently [6,75,76]. The dual-source models seem to be able to more 
realistically depict the interactions of turbulent fluxes between vegetation and soil components. 
Examples of dual-source models include the series Two Source Energy Balance (S-TSEB) and patch 
TSEB (P-TSEB) [11,12,77]. Based on the H-D scheme developed in the presented study, 
decomposition of composite remotely sensed radiative temperature into temperature components based 
on a trapezoid framework [78,79], soil moisture isoplethes [80–83], and interpolating slopes of dry and 
wet edges for inferring slopes of soil moisture isoplethes [84], a Hybrid dual-source scheme and 
Trapezoid framework based ET Model (HTEM) has been developed and showed a favorable accuracy 
in central Iowa in the US and the North China Plains [13]. In this way, the requirement for air 
temperature and vapor pressure involved in the H-D model that are not readily available through 
satellite remote sensing is circumvented but the advantages of the two-layer and two-source schemes 
are retained. 

There is always a tradeoff between data requirement, model complexities and uncertainties, as well 
as purposes of studies and applications. Many satellite-based models were developed with the intention 
to reduce parameters and forcing data so as to be applicable over large heterogeneous areas [85,86]. 
We propose that for global change studies, use of ETa models/products with the law of parsimony and 
simplicity is necessary. Therefore, incorporating remotely sensed vegetation indices as was done by 
MODIS and AVHRR ETa products is feasible and should be very useful on global and continental 
scales. However, for regional, watershed, and field scales, use of H-D scheme-based approaches by 
incorporating more or less a priori knowledge and information on soil (e.g., soil surface albedo and 
emissivity) and vegetation (e.g., vegetation height) is necessary and should be able to provide more 
realistic partitioning between E and T as shown in this study and others [62]. 

Furthermore, satellite remote sensing can also provide surface albedo that is extremely critical to 
determining energy budgets of the land surface and therefore ETa [5,87]. Parameterization schemes of 
net radiation and its components (e.g., shortwave and longwave radiation) and land cover classification 
keep evolving and should greatly benefit satellite-based ETa modeling in the future [88–91]. It should 
be further emphasized that the four models we examined in this study are not the only models of their 



Remote Sens. 2014, 6 8380 
 
type in existence, and adding complexity to a model of this type does not necessarily improve it, 
although in this case the additional components such as the inclusion of LAI did add benefit. 

6. Conclusions 

In this study, a hybrid dual source (H-D) model is developed and applied in four different 
ecosystems to estimate actual ET processes. Outputs of the H-D model were tested against eddy 
covariance measurements and compared with three other ET models. The results indicate that: (1) the 
H-D model could generate accurate ET estimates in different ecosystems, with mean absolute errors 
ranging from 16.3 W/m2 to 38.6 W/m2, modified coefficient of efficiency ranging from 0.56 to 0.79, 
and modified index of agreement ranging from 0.48 to 0.87; (2) the H-D model generally gives better 
ET estimates and E and T partitioning than the three other models (i.e., MAE = 33.8~51.4 W/m2 for 
the S-W model, MAE = 24.4~53.2 W/m2 for the T-P model and MAE = 15.7~99.5 W/m2 for the  
P-M model), suggesting that the H-D model appear to be more suited for ETa estimation over surfaces 
with different vegetation patterns; (3) the P-M model significantly underestimates ETa in the savannas 
ecosystem (i.e., MAE = 99.5 W/m2), but generally performs well in other three ecosystems; and (4) the 
S-W model tends to overestimate plant transpiration when LAI is low, and the T-P model tends to 
overestimate plant transpiration under low LAI but high Fr conditions. This study could provide 
guidance on the use of satellite-based retrievals in different ETa modeling approaches in the future. 
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