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Abstract: There is increasing demand for reliable, high-resolution vegetation maps 

covering large areas. Airborne laser scanning data is available for large areas with high 

resolution and supports automatic processing, therefore, it is well suited for habitat 

mapping. Lowland hay meadows are widespread habitat types in European grasslands, and 

also have one of the highest species richness. The objective of this study was to test the 

applicability of airborne laser scanning for vegetation mapping of different grasslands, 

including the Natura 2000 habitat type lowland hay meadows. Full waveform leaf-on and 

leaf-off point clouds were collected from a Natura 2000 site in Sopron, Hungary, covering 
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several grasslands. The LIDAR data were processed to a set of rasters representing point 

attributes including reflectance, echo width, vegetation height, canopy openness, and 

surface roughness measures, and these were fused to a multi-band pseudo-image. Random 

forest machine learning was used for classifying this dataset. Habitat type, dominant plant 

species and other features of interest were noted in a set of 140 field plots. Two sets of 

categories were used: five classes focusing on meadow identification and the location of 

lowland hay meadows, and 10 classes, including eight different grassland vegetation 

categories. For five classes, an overall accuracy of 75% was reached, for 10 classes, this 

was 68%. The method delivers unprecedented fine resolution vegetation maps for 

management and ecological research. We conclude that high-resolution full-waveform 

LIDAR data can be used to detect grassland vegetation classes relevant for Natura 2000. 

Keywords: remote sensing; LIDAR; Natura 2000; machine learning; grasslands; 

lowland hay meadows; habitat mapping 

 

1. Introduction 

1.1. Conservation Biology Background 

1.1.1. The Natura 2000 Network 

Natura 2000 is a network of protected nature areas established by all European Union (EU) member 

states in response to the Fauna-Flora-Habitats directive of the European Council in 1992 [1] as an 

implementation instrument of the 1979 Bern Convention on the Conservation of European Wildlife 

and Natural Habitats. The member states have committed to monitor these areas in order to follow 

their conservation status, and to report this every six years to the Commission. Remote Sensing is 

expected to play and increasing role in standardizing and streamlining this monitoring procedure [2]. 

1.1.2. Conservation of Grasslands 

Grasslands are vital elements of the European landscape [3,4], they have traditionally been managed 

by grazing and mowing for centuries [5–7]. Grasslands also deliver essential ecosystem services such as 

erosion protection, groundwater recharge, carbon sequestration, and recreation [8]. From the nature 

conservation point of view, grasslands are crucial in maintaining landscape-scale habitat and species 

diversity [3,9]. Species richness is outstandingly high in many types of grasslands compared to other 

habitats, especially at small grain sizes [9–11]. In addition to the high overall species diversity, 

grasslands harbour several rare plant and animal species [4,12,13]; 18.1% of the endemic species of 

Europe can be found in grasslands [14]. Their current total extent is 1.80 million km2 in Europe [15] with 

608,410 km2 in the EU [16]. However, due to increasing urbanization and intensification of agriculture 

resulting in cease of traditional land use and also due to infrastructure development leading to 

fragmentation, the area of grasslands in Europe is constantly decreasing [3,17–19]. 
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1.1.3. Lowland Hay Meadows 

Lowland hay meadows are one of the most widespread semi-natural grasslands of Europe. They are 

included in the Annex I of the Habitats Directive of the European Union [1] as habitat of community 

interest: habitat type 6510, lowland hay meadows (Alopecurus pratensis, Sanguisorba officinalis). In 

the European Union, these habitats cover 4402 km2 (fifth largest extent of Natura 2000 grassland 

habitats) with 222 km2 in Hungary [20]. 

Lowland hay meadows are species-rich mesophilous grasslands formed on lightly or moderately 

fertile soils [21]. They are typical for the higher parts of floodplains, which are only rarely inundated, 

and also in lowland areas with a relatively high groundwater level. They are one of the most diverse 

habitats of Europe and harbor several protected and endangered species [5,13,22]. The species pool of 

lowland hay meadows is rather variable, depending on the geographical location, neighboring habitats 

and management. The tall grass layer (up to 120–150 cm above ground according to our field 

observations) is dominated by Arrhenatherum elatius; Poa pratensis and Leucanthemum vulgare are 

typical for the middle layer (50–60 cm above ground) and the lower layer (0–25 cm) consists mainly of 

the ground leaves of rosette plants such as Plantago lanceolata and Ranunculus species.  

Generally, lowland hay meadows were created by forest cutting and were developed and maintained 

by mowing, typically twice a year: early summer and late summer/early autumn, which contributes to a 

species-rich vegetation community [21,23]. The major threats for these habitats are changes in land 

use, such as afforestation or conversion to arable lands. Changes in the intensity of management (both 

intensification and neglect) lead to the decline of species richness [24,25]. Abandonment of traditional 

mowing regimes is most typical in Central and Eastern Europe [22,26] due to considerable decrease in 

livestock numbers and accordingly a decreased demand for hay production [27–29]. Discontinuing 

management rapidly alters habitat structure and ecosystem functions, resulting in a decline of total 

species richness [22,28,30]. This is mainly caused by organic litter accumulation [31] and 

encroachment of herbaceous and woody competitor species [18,32,33]. 

1.2. State of the Art in Habitat Mapping and Assessment 

1.2.1. Grassland Habitat Assessment 

Mapping and assessment of grasslands for conservation, management and research is an especially 

tedious task due to fine-scale dynamics, high sensitivity of vegetation to season, and often the lack of 

clearly defined categories [34,35]. Typical methods for grassland monitoring and assessment are based 

on phytosociological relevés, repeated according to random, regular or nested sampling layouts [36]. 

While such surveys provide a good understanding of vegetation composition and patterns within the 

surveyed samples, they cover small areas and can be difficult to extrapolate to wider areas [37]. For 

conservation purposes, ideally, both vegetation type and management regime should be mapped [38–40]. 

There is a clear demand for robust and repeatable vegetation mapping tools in grasslands that can aid 

and complement field methods [41,42]. This demand is further increased by the requirement of the 

Habitat Directive [1] that member states shall monitor the status of their protected areas and report to 

the Commission every six years: repeatable, reliable, efficient, and area-covering monitoring 

technologies are needed for this. 
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1.2.2. Remote Sensing in Habitat Monitoring 

Remote sensing has often been recommended as a way to obtain broad-scale ecological data, and 

typically allows high repeatability even over large areas [43]. The high spatial heterogeneity and 

seasonality of grasslands continues to challenge remote sensing technology, with very few tools 

routinely applied for mapping or assessment [2,44]. At the current level of technology, most Natura 

2000 assessments are done by field mapping, but, due to the need for harmonization between member 

states [2,45], an increasing involvement of remote sensing is foreseen [36,39,46]. The most frequent 

(but probably least published) method for remote-sensing assisted grassland mapping is using an aerial 

photo for aiding navigation and as a basis for drawing the final map [41]. Georeferenced aerial images 

have been used in a GIS environment for outlining grasslands [47], and with the onset of high 

resolution multi-temporal satellite images, habitat mapping schemes, based on such data, have grown 

to include various types of grassland as well [48,49]. 

1.2.3. Remote Sensing of Grassland Vegetation 

Remote sensing studies of grasslands are relatively rare compared to other habitats [36]. Recent surveys 

of grassland or scrubland vegetation were typically carried out with multispectral or hyperspectral 

sensors [50–52]. Water content of the leaves was identified from spectral signatures [53,54], and based on 

the resampling of field spectra, it is anticipated that satellite images would contribute to mapping 

floristic gradients [55]. On hyperspectral images, up to three classes of grassland vegetation and other, 

non-grassland classes were differentiated [56]. Object-oriented image analysis of multispectral aerial 

or satellite images [57–59], and classification of high temporal resolution satellite images have also 

been used for similar purposes [60]. Heathlands were successfully analyzed for conservation-related 

mapping by hyperspectral and multispectral images, and these studies also included grassland 

vegetation classes [50,58,61,62]. Using multi-temporal RapidEye and separately TerraSAR-X data, 

Schuster et al. [60] and Neumann [49] mapped grassland, reaching very high accuracies (Kappa > 0.8), and 

Franke et al. [40] successfully categorized grassland use intensity (four classes, overall accuracy > 80%). 

While these results are certainly ground breaking in their own field and cover a certain aspect of monitoring 

(detecting mowing regime for the radar-based studies, species composition principle components for the 

hyperspectral study), they are less compatible with the vegetation classification schemes normally used in 

conservation mapping, and their spatial resolution is also limited to several meters. 

1.2.4. LIDAR for Ecological Mapping 

LIDAR (Light Detection And Ranging, also referred to as Airborne Laser Scanning, ALS) has 

acknowledged potential for mapping canopy structure but it is rarely considered an alternative to imaging 

methods for vegetation classification [63]. Instead of a more intuitive “picture”, LIDAR samples terrain 

elevation and vegetation height and creates a dense set of points [64]. However, with the onset of full 

waveform recording and later radiometric calibration, it was proven that vegetation classification relying 

only on LIDAR data is possible [65]. LIDAR was first used for such purposes in forests, where 

vegetation height and canopy structure are more diverse [66], but applications in shrublands [67,68] and 

wetlands were also successful [69–72]. LIDAR is increasingly used for mapping conservation relevant 
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variables, including coverage of different species or associations for biodiversity assessment [73,74], but 

also human activities or natural environmental variables relevant for habitat quality [46]. Meanwhile, one 

of the major advantages of LIDAR compared to airborne multi- or hyperspectral data is the versatile use 

of such data, which has led to more widespread surveys and easier data access than the case for passive 

multi- or hyperspectral airborne surveys. In many locations, LIDAR data is collected for purposes 

including topographic mapping, forestry, or in preparation for construction. Exploiting this data for 

automated vegetation classification of grasslands would allow cheap access to high-resolution habitat 

maps that could be within the reach of conservation management. 

1.2.5. LIDAR in Grasslands 

To our best knowledge, LIDAR has not been tested so far for direct vegetation classification in 

grasslands. In a prairie setting, LIDAR was used to quantify aerodynamic resistance based on 

vegetation height [75]. LIDAR was also used for predictive modeling of potential grassland vegetation 

using water availability based on LIDAR-derived terrain height models [76]. However, this approach 

did not involve mapping the vegetation itself based on its signature in the remote sensing data, but 

modeling its most probable pattern based on the governing environmental variable. All in all, LIDAR 

as a standalone tool was so far not considered suitable for classification of grasslands [36]. 

2. Objectives 

The main objective of this study was to check the feasibility of using LIDAR as a tool for mapping 

different types of grassland vegetation. We also intended to establish a methodology for automatic 

grassland vegetation classification based on LIDAR, and to evaluate the accuracies of different 

surveying and processing approaches. 

3. Methods 

3.1. Study Site 

Our study areas are located in the Soproni-hegység Natura 2000 site, in western Hungary (47°41ʹN, 

16°34ʹE, Figure 1). The Natura 2000 site has an area of 52 km2 in a hilly region about 150–500 m 

above sea level. The local climate is sub-alpine with a mean annual precipitation of 750–900 mm, and 

a mean temperature of 8.5 °C [77]. The site was designated to preserve 14 different Annex I habitat 

types: mainly beech and oak forest types, dry, mesophilous and wet grasslands, fens, fringes, and small 

heaths [78]. Meadows are present throughout the area with patch sizes ranging from 0.1 ha to 27 ha. 

These grasslands are mainly situated in the valleys, which are the floodplains of small rivers and in 

some cases on other flat, mesophilous areas. Most of the studied grasslands have an anthropogenic 

origin, except for the extremely wet patches in the largest meadows [77]. These clear-cuts were 

formerly mainly orchards or vegetable gardens, and grassland development supported by traditional 

land use by regular mowing resulted in species-rich habitats. The most widespread grasslands in our 

study site are lowland hay meadows, which build a diverse mosaic structure with other grassland types 

such as semi natural dry grasslands with Bromus and Festuca species, wetter Molinia meadows, sedge 
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stands, disturbed and abandoned grasslands, weed patches, and shrubs. Most of these meadows are 

mown twice a year (late spring and late summer or early autumn) regardless of vegetation type. 

Figure 1. Location of the study area in the northwestern part of Hungary with the LIDAR 

flight pattern and the boundaries of the meadow study sites. 

 

3.2. Field Data Collection and Survey 

Field campaigns were carried out during May and September 2012 and April and May 2013, timed 

to match the local vegetation climax as determined by weather conditions of each year. Most of the 

grassland patches were visited several times in different years to confirm that both vegetation and 

management corresponds to the assigned class. Field reference data were collected in 140 homogenous 

vegetation patches with a minimum size of 50 m2, giving a total ground truth area of 16,162 m2 for 7 km2 

of meadows within a total flight area of 90 km2. Sampling polygons were typically circles of 4-meter 

radius, or more or less rectangular patches of similar minimum area. If homogeneous areas of this size 

could not be found, polygons of different (more elongated) shape were also used, especially for fringes 

and field roads. The study area was divided into a set of 9 different studied meadow sites based on the 

LIDAR-derived tree mask (Section 3.6), and we aimed to capture at least one polygon of each class for 

each of these areas as far as possible. We specifically searched for field examples of the less frequent 

classes (e.g., lawn) to reach an optimum distribution of the calibration and validation data in space 

across the study area. We selected the methodology of the fieldwork based on the objective as a 

feasibility study, balancing the need for similarity to Natura 2000 assessments with efficient and 



Remote Sens. 2014, 6 8062 

 

focused data collection. Coordinates of the polygons were marked by a differential GPS. While full 

phytosociological relevés were not carried out, we registered a list of characteristic vascular plant 

species, and noted water availability (mesophilous, wet, dry, seasonally wet or dry patches) and the 

current management (mown, grazed, or abandoned) for each polygon. Polygons representing field 

roads and non-grassland classes such as shrubs and non-vegetated surfaces were manually digitized 

from the raw leaf-on NDSM (Normalized Digital Surface Model) and Reflectance LIDAR product 

rasters (Section 3.5) validated by differential GNSS (Global Navigation Satellite System) in the field 

afterwards. The classes were also defined to test whether LIDAR is suitable for grassland vegetation 

mapping. We did not adhere to a pre-existing classification system, such as EUNIS [79] or the 

Hungarian Á-NÉR system [80] since these were not developed for remote sensing, but created 

categories with the intention of keeping them relevant for habitat management and grassland ecology, 

and covering the full range of land cover encountered in the studied sites (“mutually exclusive and 

totally exhaustive” [81]). However, for grassland categories, we included three classes where we 

followed Natura 2000 habitat characterization manuals [82–84] as far as possible. For outlining these 

polygons, we strictly relied on the diagnostic species and specific structures outlined in the manual 

(and in the respective category definition, Section 3.3.1). Since not all grasslands fall into Natura 2000 

categories, other classes had to be specified to cover areas of the grassland mosaic that do not fulfill the 

criteria of any Annex I habitat type. In addition to lowland hay meadows we defined seven grassland 

classes altogether, some of these including (but not exclusive to) other Natura 2000 habitat types. We also 

introduced categories for non-vegetated surfaces, and shrubs and single trees. The final set consisted of 

10 classes that were hierarchically merged to five larger categories as an alternative scenario (Table 1). 

Half of the reference polygons were used for calibration and half for validation, based on random 

selection and checked in a GIS to ensure maximum independence of the calibration and validation sets. 

3.3. Description of Classes 

3.3.1. Set of 10 Classes 

“Not vegetation”: In our case, non-vegetation surfaces were asphalt roads, building roofs, open water 

surfaces and bare soil including some field tracks. In case of the studied meadows, open soil reflects 

various kinds of disturbance: vehicle traffic, animal trampling, and wild boars foraging are some examples. 

“Shrub”: Shrubs were defined as woody plants below 1.5 meter height (threshold of the meadow 

mask, Section 3.6) They are important for separation from meadow vegetation, but also as an element 

of habitat diversity. Shrub encroachment is often part of the degradation process of abandoned 

meadows. In our case, these were mostly Crataegus, Rosa or Salix species, or fruit trees. Young trees 

planted for forest renewal purposes were also included in this category. 

“Fringe”: Our class fringe pools three different types of vegetation: Patches dominated by non-native 

neophytes, such as Fallopia japonica (Figure 2a), Impatiens glandulifera or Solidago canadensis; 

native fringe communities represented by nitrophilous, fresh patches of Urtica dioica (Figure 2b) and 

hydrophilous forb fringe communities on forest edges including Natura 2000 habitat type 6430 or 

Phragmites australis. Therefore, this category contains the habitat 6430 but is not exclusive to it. 
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Fringe vegetation is rich in or dominated by tall growing forb species, and typically occupies an 

intermediate setting between (mown) grassland habitats and forests or single shrubs. 

Figure 2. Field photographs showing examples of the category “Fringe”. (a) Tall fringes 

formed by invasive species Fallopia japonica and Impatiens glandulifera. (b) Lower and 

broader fringe dominated by Stinging nettle (Urtica dioica). 

 

“Abandoned”: We mapped grassland patches as abandoned if there was no sign of any management 

during the field campaigns and species composition confirmed this. Calamagrostis epigejos dominated 

patches were also assigned to this category even if some of them were regularly mown, since its 

presence reflects deteriorating quality of the meadow. Usually, species of grasses and herbs typical for 

mown meadows still occur in these areas, but ruderal species, such as Tanacetum vulgare, Artemisia 

vulgaris, Bromus inermis are also present, and a high proportion of Dactylis glomerata is typical. Tree 

and shrub encroachment is also characteristic (Figure 3a,b). 

Figure 3. Field photographs showing examples of the category “Abandoned”. (a) A recently 

abandoned meadow already showing changes in structure. (b) In the foreground, the 

abandoned side of the meadow has high coverage of woody species, while the area in the 

background is still managed. 
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“Meadow like”: Grasslands composed of grass and/or herb mixtures but not belonging to one of the 

other classes were categorized “meadow like”. This is a relatively heterogeneous class: meadows where 

the species composition reflected degradation and did not allow identification of the original grassland 

association, without a meadow typical mowing regime (such as road embankments), or covered by 

weeds but regularly mown, were included in this category, some of them very similar to a lowland hay 

meadow but lacking some characteristic species and not fulfilling the Natura 2000 criteria. Examples for 

meadow like areas in our case are intensely used or undergrazed pastures, vegetated field tracks (Figure 4a) 

and an open, unmanaged areas (Figure 4b). Meadow like patches are characterized by a high cover of tall 

grass and fringe species, while typical meadow herb species are missing or just occur with very low 

coverage, or ruderal indicator species can be present. Meadow like implies occasional mowing, 

nevertheless, the transition to the species composition of abandoned meadows is fluent. 

Figure 4. Field photographs showing examples of the category “meadow like”. (a) A field 

track with a high vegetation cover. (b) An open, unmanaged grassland heavily influenced 

by timber storage and traffic from logging 

 

“Lowland hay meadow” (Natura 2000 habitat type 6510): We defined Lowland hay meadows as 

close as possible to the Natura 2000 Interpretation Manual (see Section 1.1.2 in the text for a detailed 

definition) [84,85]. Since this definition refers to a specific combination of species composition, 

management and abiotic parameters, the term lowland hay meadows was applied strictly and only to 

areas that truly corresponded to all criteria (within the limits of identification) in the field (Figure 5a). 

A detailed species list was collected for all patches categorized as lowland hay meadows, and most 

such areas were visited several times in order to confirm that they are correctly managed. Nevertheless, 

field identification was often problematic, since at the studied spatial scale of a few meters, lowland 

hay meadows form smooth transitions with dry meadows and Molinia meadows. Differences in 

definition of the habitat category according to national Natura 2000 evaluation schemes were also a 

problem, but wherever contradictions were found, the Hungarian national system was applied [83,85]. 
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Figure 5. Field photographs showing examples of Natura-2000 related classes. (a) Typical 

Lowland hay meadow (6510) with well-structured canopy and high species diversity.  

(b) Typical “dry meadow” patch. Note that the canopy is lower and less structured than for 6510. 

 

“Wet high”: This is a relatively heterogeneous class, in areas wet throughout the year, with 

vegetation dominated by Carex and Juncus species (pure or mixed with, e.g., Iris pseudacorus, 

Alopecurus pratensis, Phragmites australis) (Figure 6a) or by species of the grasses (Poaceae), such as 

Deschampsia cespitosa, Alopecurus pratensis, or Phalaris arundinacea (Figure 6b) reaching a height 

of 1–1.5 m. Most such patches were located along floodplains of small rivers or areas of groundwater 

seepage, mown once or twice a year. 

Figure 6. Field photographs showing examples for patches of the class “wet high”.  

(a) A wet area dominated by Phalaris arundinacea. (b) Characteristic tall wetland 

vegetation formed by Carex acuta with Iris pseudacorus. 

 

“Molinia”: All areas where Molinia species were among the dominant grasses belong to this class, 

which therefore roughly corresponds to the Natura 2000 category 6410 (Planar to montane Molinia 

meadows [82–84]). In our study site, Molinia patches occurred in the transition zones between wet 
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grassland types and lowland hay or dry meadows which are wet in spring but dry in summer, 

sometimes without developing a well-defined association. 

Molinia can form small patches or mingle with other grasses but shows a characteristic tussock 

shape (Figure 7). Unlike most of the other grass species, Molinia develops quite late in the year and 

reaches its maximum height with the flower stands only by the end of summer. 

Figure 7. Field photograph showing example of the class “Molinia”. Note that Molinia 

caerulea forms a typical tussock shape. 

 

 “Dry meadow”: Xeric sand calcareous grasslands dominated by Bromus erectus (Natura 2000 

habitat type 6210 [82–84]) and Viscario-Festucetum rubrae [86] patches belong to this category. These 

xerotherm communities grow under warmer and drier conditions than lowland hay meadows, often on 

southern exposed slopes. Dry meadows usually grow lower in height than lowland hay meadows and 

the layer of tall grasses is not that dense, therefore they are usually rich in short growing, flowering 

herbs (Figure 5b). Both types form fluent transitions to the lowland hay meadows in our study site. 

“Lawn”: Lawns are frequently mown grasslands (more than three times a year). They are generally 

species poor, sown grassland areas. Lawns are much shorter in height than all other meadow types. 

Typical lawn areas were playgrounds, sports grounds and gardens. 

3.3.2. Set of Five Classes 

The set of only five classes was composed by hierarchically fusing the previously defined 

categories (Table 1). It is more focused on meadow identification for management and more specific to 

lowland hay meadows. 

“Not vegetation”: Not vegetation corresponds to the not vegetation class of the 10 category scheme. 

“Shrub”: Shrub is exactly the same as the shrub class of the 10 category scheme. 

“Not mown”: Not mown vegetation is composed from the categories “Fringe”, “Abandoned”, and 

“Meadow like” and thus includes all patches dominated by mainly unmanaged non-woody vegetation. 

“Lowland hay meadow”: Lowland hay meadow is the same as for the 10 category survey, thereby 

focusing the five categorization scheme on the detection of this key habitat. 
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“Mown meadow”: Mown meadow vegetation was fused from the following classes: “Wet high”, 

“Molinia”, “Dry meadow”, and “Lawn”. This category covers all regularly managed grasslands except 

lowland hay meadows. 

Table 1. Overview table of classification categories and their properties 

5 Classes 10 Classes 
N2000 

Habitat 
Typical Species Environment 

Canopy  

Height 

Reference 

Polygons 

(cal/val) 

Not vegetation  No vegetation 
Bare soil, buildings,  

asphalt, open water 

0 except  

buildings 
14/13 

Shrub  Crataegus, Rosa, Salix spp. 
No mowing, natural  

or artificial renewal 

1–1.5 m 

(excluded  

if higher) 

8/7 

N
ot

 m
ow

n 

Fringe 

(Figure 2) 

includes 

6430 

Fallopia japonica,  

Solidago canadensis,  

Urtica dioica 

Forest-meadow  

boundary, hydrophilous,  

fertile soil 

1.5–3 m 8/11 

Abandoned 

(Figure 3) 
 

Dactylis glomerata,  

Calamagrostis epigeios,  

Bromus inermis 

Unmanaged former  

meadows or fields 
0.5–1 m 10/8 

Meadow like 

(Figure 7) 
 

ruderal indicators present,  

meadow typical herbs rare 

irregular mowing regime, 

 heavy human influence 
0.2–1 m 13/15 

Lowland hay meadow 

(Figure 4a) 

strictly 

6510 

Alopecurus pratensis,  

Arrhenaterum elatius,  

Briza media 

Mesophilous,  

mown twice a year,  

moderately fertile soil 

0.3–1.2 m 10/10 

M
ow

n 
m

ea
do

w
 

Wet high 

(Figure 6) 
 

Carex, Juncus spp.,  

Deschampsia cespitosa 

wet throughout the year,  

regularly mown 
0.5–1.5 m 8/11 

Molinia 

(Figure 5) 

mainly 

6410 
Molinia caerulea 

wet in spring,  

dry in summer,  

regularly mown 

0.5–1.5 m 6/7 

Dry meadow 

(Figure 4b) 

mainly 

6210 

Bromus erectus,  

Festuca rubra 

warm and dry,  

mown twice a year 
0.2–0.8 m 8/9 

Lawn  
artificial planting  

from seed 

mown more than  

3 times a year 
0.1–0.2 m 3/2 

3.4. Airborne Survey 

LIDAR data were acquired in two separate flights, both covering the same study area, under early 

spring (March 2012) and summer (July 2011) conditions, which we respectively call “leaf-off” and 

“leaf-on” datasets in the following. The data were collected in a broader project with the main purpose 

of forest mapping, which explains why the dates are less than optimal for grassland mapping. A Riegl 

LMS-Q680 sensor was used [87], flown at an altitude of ca. 500 m above ground, with a pulse repetition 
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rate of 400 kHz and 50% strip overlap. The emitted laser pulse had a wavelength of 1550 nm, which 

means the reflectivity is strongly influenced by water content of the plant cell structure [54]. The sensor 

had a footprint diameter of 0.25 m and full waveform recording was applied [65]. The resulting point 

density was 12.8 echoes/m2. 3.5 LIDAR Data Product Rasters 

Data products (point cloud “derivatives”) were all generated in a 0.5 m × 0.5 m raster size, using the 

Opals software package [88,89]. 0.5 m × 0.5 m is a widely accepted plot size for grassland studies [83] 

and has been used successfully before for grassland remote sensing [57]. The final set of LIDAR–derived 

raster data was the following (Table 2): 

Table 2. Overview of input datasets and processing steps 

Input Sensor 
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Variable Name  Corresponds to Processing Steps 
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leaf-off 

Echo width 
leaf-on Fine-scale roughness and 

signal penetration leaf-off 

NDSM height 
leaf-on 

Canopy height 
leaf-off 

Sigma Z 
leaf-on Coarse-scale roughness and 

penetration leaf-off 

Min. Openness 
leaf-on 

Texture and edge density 
leaf-off 

Max. Openness 
leaf-on 

Texture and edge density 
leaf-off 

Mean surface reflectance: The LIDAR sensor emits a short pulse of light, and the amplitude of the 

reflected signal is influenced by the reflectivity of the target surface. In case of vegetation, calibrated 

LIDAR reflectance has already been proven to contribute significantly to classification [70], but it is 

also known that reflectance is only partly correlated with species composition and is influenced by 

plant health and chemical structure together with soil surface parameters [52]. Based on homogeneous 

reference surfaces with known reflectance (asphalt roads), a mission-specific calibration constant was 

calculated and LIDAR amplitude was converted to the real surface reflectance coefficient using the 

OpalsRadioCal software module [90,91]. The mean reflectance value of all points within the raster 

cells was output as a result. 

Echo width: The outgoing laser pulses are characterized by a uniform width in time, while the width 

of the backscattered echo is modulated by properties of the target surface within the footprint [92]. 

If the area illuminated by the pulse footprint is flat, smooth, and homogeneous in height, the recorded 

signal closely resembles the emitted pulse. If there are differences in elevation within the illuminated 

footprint, this results in the energy of the pulse being spread over a longer time in the echo. Therefore, 

areas with heterogeneous vegetation height or a rough canopy or terrain surface will have higher echo 

widths than smooth and flat terrain [93]. Echo width was stored as an attribute for each recorded 

LIDAR point during the airborne survey. We calculated the mean echo width for each 0.5 m cell. 
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NDSM height: In typical vegetation mapping studies, the most important LIDAR-derived parameter 

is the vegetation canopy height [57,94,95]. This is represented by the Normalized Differential Surface 

Model (NDSM), which is generated by creating both a Digital Terrain Model (DTM) from the LIDAR 

points reflected from the actual terrain surface, and a Digital Surface Model (DSM) from the points 

corresponding to the top of the canopy, and then subtracting the DTM height from the DSM height. In 

our case, we used hierarchical robust filtering implemented in the SCOP++ software package [96] to 

generate a DTM (cell size 0.5 m) from the leaf-off data. In order to avoid eventual noise points, the 

second highest point within the 0.5 m cells was rasterized to create a DSM separately for leaf-off and 

leaf-on point clouds and the DTM was subtracted from each. 

LIDAR-derived canopy height models generally slightly underestimate vegetation height [97], since 

the echoes do not always sample exactly the highest point of the canopy. Therefore, NDSM height was 

not expected to deliver the absolute vegetation height, but to represent it consistently enough for 

accurate classification. 

Sigma Z: Surface roughness is relevant for vegetation classification for two different reasons. On 

one hand, it characterizes the ability of the sensor to penetrate the canopy, with strong penetration 

resulting in point returns both from the canopy surface and the terrain below. On the other hand, it 

quantifies the local-scale variation in canopy height, referring to a neighborhood of points (d = 3 m) 

instead of the points in a single raster cell (as is the case for echo width). Both of these variables 

(penetration and height variation) characterize different plant growth strategies [70]. During moving 

planes interpolation we used for calculating this variable, an inclined plane was fitted to the eight 

nearest LIDAR points within a 1.5 m distance from the central point. The standard deviation of the 

vertical distances of each point to the fitted plane is called Sigma Z and describes the roughness of the 

surface sampled by the ALS points. 

Openness: Surface texture is one of the characteristic parameters of different vegetation classes, and 

especially clumped or tussock grasses may be well identified, based on their shape in 3D. Openness 

describes the roughness of a surface (represented by a raster) through a kernel filter where a cone shape is 

fitted to each pixel, recording the maximum opening angle where the cone touches one of the neighboring 

pixels [98,99]. Openness was calculated both by fitting the cone from above and from below (positive and 

negative openness). The minimum openness is described as the angle where the cone touches the closest 

neighboring pixel while the maximum openness refers to the angle corresponding to the furthest. 

Datasets were generated separately for leaf-on and leaf-off flight data. The cell-by-cell difference 

between leaf-off and leaf-on measurements was produced in all cases. 

Part of the information in the LIDAR data is the pattern of point data within a neighborhood. Raster 

products that sample a neighborhood are a way to extract this information, and they also have a de-

noising property. Therefore we checked various kernel filtering algorithms and evaluated how they 

influence classification accuracy. The best results were produced by Bilateral Filtering [100]. This 

algorithm preserves prominent edges while integrating neighboring pixels, using the non-linear 

combination of image values in a local neighborhood. It is based on measuring local image variation 

and creating a weighted average within a neighborhood of variable size and shape depending on the 

local variation of the pixel values. Therefore, instead of simply averaging pixels that are similar in 

terms of horizontal spatial coordinates, it works on pixels that are similar both in spatial position and in 

pixel value. We applied bilateral filtering with two different similarity settings to all the LIDAR-derived 
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rasters described above before using them for classification. Therefore, for each of the leaf-on and leaf-off 

data products, two filtered versions and the unfiltered original were all used as separate bands for 

classification. The full list of LIDAR data products used for classification is available in the 

supplementary material. 

3.5. Pre-Processing and Explorative Data Analysis 

We calculated areas with canopy height above 1.5 m based on the NDSM, and after a 

morphological closing operation [101] (kernel size 10 pixels) they were excluded from further analysis 

as non-meadow areas. In order to gain a deeper understanding of the data properties and to perform a 

basic a priori input variable selection, the independence of the candidate LIDAR derivatives from each 

other was checked through covariance matrices, and the distributions of each input variable within the 

reference polygons corresponding to each vegetation class were calculated. Boxplots and violin  

plots [102] were used for comparative analysis of the distribution of LIDAR derivative values 

characteristic for each vegetation category. Scaled map visualizations of the input rasters were also 

checked together with the reference data polygons for initial qualitative assessment of feasibility. 

3.6. Multi-Band Image Generation and Reference Data Processing 

The different data products were processed by a script implemented in Python language. The first 

step was to create a multi-band pseudo-image from the data, where the bands were the different 

LIDAR derivatives. This was then overlain with the vectors of the field reference polygons, and the 

pixels within the polygons clipped and assigned to the corresponding vegetation class. Next, the 

distribution of each vegetation class in the feature space (defined by the pixel values in the LIDAR 

derivative bands) was investigated and used for training a classifier. 

3.7. Training a Classifier Using Machine Learning Algorithms 

The set of rules for classification (called the “model”) was derived using machine learning 

algorithms implemented in the Scikit-learn library [103]. Decision trees were used for initial analysis 

and refining different algorithm hyper-parameter settings. An automatic decision tree classification 

algorithm was employed [104] that created a model predicting the class of each input pixel based on 

the corresponding local values of input LIDAR data derivatives (pseudo-image “bands”) and 

optimized the various thresholds for separation between classes (“trained the model”) using the ground 

truth pixels assigned for calibration. The trained model then classified the pixels of the ground truth 

polygons assigned to validation, and accuracy was assessed by comparing for each pixel the result of 

LIDAR-based classification and the ground truth. The validation results were summed in confusion 

matrices and the band importance percentages output in separate report files for each run. These 

percentages describe how much each of the input rasters influenced the final outcome of the 

classification. The insight we gained from the consecutive evaluation was used iteratively to refine the 

calculation settings of input LIDAR derivatives (e.g., interpolation and point filtering parameters). 

After testing various machine-learning algorithms, random forest classification was found to 

perform best. Therefore this method was used for training the final classification models and at a later 
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stage to create the output maps [105]. In this method, random bootstrap subsets of the training pixels 

are selected and used to construct a large number of decision trees (the “random forest”). Nodes of 

each decision tree are split using values from a random sample of data bands (input rasters) and the 

split resulting in the largest information gain is selected. Random selection of input pixel sets increases 

classification accuracy, decreases sensitivity to noise and minimizes over-fitting [105]. The ensemble 

of trained decision trees is then applied to each pixel of the validation dataset. Output of all individual 

decision trees takes part in the voting process, which selects the final class by the majority vote. The 

method also outputs the probability of each class for the classified pixels. 

3.8. Image Classification and Rendering 

Finally, the classification model with the best validated accuracies was applied to the multi-band 

pseudo-image covering the whole study area, and a classified vegetation map was produced with  

0.5 m × 0.5 m resolution and 10 classes. 

Two different visualization methods were used: basic “hard category” visualization assigns the 

most probable class to each pixel, and delivers a thematic raster map in the classical sense, where each 

of the pixels belongs to one (and only one) of the vegetation classes represented by the pixel value in 

the raster. While this is the default method for vegetation mapping by remote sensing, in some cases it 

fails to provide an appropriate representation of the species composition pattern [106]. 

A possible alternative is a fuzzy visualization. Random forest classifiers estimate for every pixel the 

probability that it belongs to each of the classification categories. Since the categories were designed to 

exclude each other, in the typical case a single class has a high probability for the pixel and all the rest 

have low or zero probabilities. However, given the smooth transitions between grassland classes and 

the similarities in structure and species composition, in our case it frequently happened that two or 

more classes had similar and high probabilities for a particular pixel. The fuzzy visualization we, 

therefore, produced was based on the probability output assigned by the random forest classifiers to the 

vegetation classes for each pixel. The colors corresponding to the vegetation classes were blended by 

creating a combination of their RGB (red, green, blue) values weighted according to the class 

probability (as already suggested by Foody [106]). 

4. Results 

4.1. New Method for Grassland Vegetation Mapping and Accuracies of Different Baseline Datasets 

The machine learning approach together with the generation of a large number of LIDAR product 

rasters allowed good exploitation of the information contained in the point cloud. The concurrent use 

of waveform attributes and calibrated radiometric information allowed a step beyond the usual LIDAR 

products of vegetation height and texture, and were the key to classification into a large number of 

classes. The relative contribution of each LIDAR component to the classification accuracy is reported 

in full detail in the supplementary material both for the 5 and 10-class scheme. 

The difference between leaf-off and leaf-on variables added the dimension of seasonality to the 

information in the image, which is especially important for tall grassland vegetation. Combining  

leaf-off and leaf-on data improved overall accuracy by 10 pp (percentage points) compared to using 
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only data from one season. Noise filtering proved to be crucial since the rasters were generated from a 

point cloud and not from direct imaging sensors: the bilateral filtering algorithm proved to be suitable 

for this rather unusual data type: overall accuracy increased by 8 pp compared to the accuracy obtained 

from non-filtered rasters. The necessary amount of reference data was comparable to the amount 

needed for classifying passive optical airborne data to a similar level of detail. 

4.2. Map of 10 Classes 

Overall accuracy 68.0% and Cohen’s Kappa is 0.64, resembling again a “good agreement” 

according to Altmann [107] (Table 3). The most accurate classes are (not surprisingly) not vegetation, 

shrubs and trees, artificial lawn and wet high, all with producer’s and user’s accuracy near 80%. These 

categories are well defined by their typical NDSM heights. The Molinia and Dry meadow classes also 

have producer’s and user’s accuracies between 60% and 80%, the category abandoned has producer’s 

and user’s accuracies close to 65%. Lowland hay meadows and meadow like areas have accuracies 

between 40% and 50%. The vegetation map of these 10 categories reveals the fine-scale mosaic 

pattern of different grassland habitats (Figure 8). Both natural patterns created by micro-relief and soil 

composition and artificial features such as field roads and boundaries between management regimes 

stand out clearly in the hard-boundary visualization. Strip boundary effects sometimes cause artefacts 

in the classification, but these can be detected if information on the flight pattern is available. 

The fuzzy visualization introduces a further level of detail by showing smooth transitions, and 

allows even more detailed identification of gradients, boundaries and objects (Figure 9). 

Table 3. Confusion matrix of 10 vegetation classes and accuracies 
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Not vegetation 4106 47  25  793   203  5174 79.4 

Shrub 2 2108 55 16       2181 96.7 

Fringe 28 256 688 593 594 140 270 1   25702 26.8 

Abandoned  48 105 2865 370 559 199 40 34  4220 67.9 

Meadow like 142 1 59 379 2695 1201 107 72 267 2 4925 54.7 

Lowland hay meadow 77  6 78 619 2271 19 579 586  4235 53.6 

Wet high  2 11 150 228 7 2906 378 55  3737 77.8 

Molinia   16 103 42 284 37 1823   2305 79.1 

Dry meadow 1 78  437 612 833 90 65 4200 5 6321 66.4 

Lawn 308    44 83    2750 3185 86.3 

Total 4664 2540 940 4621 5997 5403 3628 2958 5345 2757   

Producer’s Acc. (%) 88.0 83.0 73.2 62.0 44.9 42.0 80.1 61.6 78.6 99.7   

Cohen’s Kappa 0.64    
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Acc. (%) 
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4.3. Map of 5 Classes 

Overall accuracy from the 5-category confusion matrix is 75.5%, with a Cohen’s Kappa value of 

0.66 (“Good agreement” according to Altmann [107]) (Table 4). However, it has to be kept in mind 

that these values are grouped across all categories, and are therefore influenced by the differences in 

the number of validation pixels for the 5 categories, since they were fused from the 10-category 

scheme where more similar amounts of validation pixels were used. 

Table 4. Confusion matrix of 5 vegetation classes and accuracies 

 
Not  

Vegetation 
Shrub 

Not 

Mown 

Lowland  

Hay Meadow 

Mown 

Meadow 
Total 

User’s  

Accuracy (%) 

Not vegetation 4047 58 784 12 273 5174 78.2 

Shrub  2082 99   2181 95.5 

Not mown 160 260 8815 1288 1613 12136 72.6 

Lowland hay meadow 42 9 1067 1941 1532 4591 42.3 

Mown meadow 180 67 1311 764 12449 14771 84.3 

Total 4429 2476 12076 4005 15867   

Producer’s accuracy (%) 91.4 84.1 73.0 48.5 78.5   

Cohen’s Kappa 0.66     
Overall  

accuracy [%] 
75.5 

Most classes have both producer’s and user’s accuracies above 70%, the only exception being 

lowland hay meadows themselves. While these only have producer’s and user’s accuracies around 45%, 

the values are well balanced (producer’s and user’s accuracies are similar) and indicate relatively low 

overestimation. This map allows quantification of mown meadow vegetation in general, together with 

abandoned areas, which are both of high interest for conservation and ecosystem service assessment. 

5. Discussion 

5.1. Survey Flight and LIDAR Data 

Meadows have pronounced seasonality due to the mowing regime. In our case, the timing and data 

collection parameters of the airborne survey could not be optimized with the intention of mapping 

grassland vegetation: for some of our studied meadows, the grass was unfortunately mown shortly 

before the flight. Nevertheless, the high point density and the collection of leaf-on and leaf-off data 

together with waveform and radiometric attributes resulted in sufficient information for automatic 

classification of grasslands. While we believe that survey timing is crucial for grasslands and optimal 

accuracies can probably be reached when the flight overlaps with the optimum in meadow vegetation 

development, this study represents a real-world case: LIDAR data collected for non-scientific purposes 

(construction preparations, topographic mapping, urban surveying) is becoming available for more and 

more areas, and these can be used as input data even for such detailed vegetation studies. 
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5.2. Ground Mapping and Reference Data 

The size and distribution of ground truths we surveyed was similar to other remote sensing studies 

using multispectral data [108]. Reference data mapping in grasslands can require several visits over the 

course of a year for identification of characteristic species as a basis for clear categorization of 

reference polygons. The trade-off between reference data coverage and detail applies to all remote 

sensing studies and this was no exception. We found that (not surprisingly) classification accuracy 

increases steeply with the number of reference pixels for each category, but for the category lowland 

hay meadows we may have reached a threshold where the main limit was really the similarity to other 

grassland categories. Full quality assessment of the fuzzy classification by fieldwork was outside our 

scope and would have required much more detailed reference data collection [109], in our case this 

was merely a visualization tool. 

5.3. LIDAR Data Products and Their Importance 

During explorative data analysis, it was clear that the initial variables can be grouped into three main 

categories: those that depend closely on vegetation height (Echo width, NDSM height, sigma Z), those 

that refer to vegetation height texture but are theoretically independent from height itself (openness 

variables) and reflectance bands, which are mostly independent from vegetation height patterns. 

Reflectance: Reflectance at 1550 nm is closely related to the water content of the leaves and the 

soil, and to the material of artificial surfaces [54]. The reflectance raster is a single-channel infrared 

image, and since LIDAR is an active sensor, it delivers a better signal-to-noise ratio than most passive 

sensors. While sun shadow effects are usually problematic in passive imaging, the LIDAR-derived 

reflectance raster is free from shadow, which also underlines its use for classification. Very fine 

differences in soil and vegetation properties are well represented in the data: we suspect that even 

single circular clones of Brachypodium sylvaticum could be detected within the meadow. Unvegetated 

surfaces typically have a much higher reflectance than green leaves, therefore especially the leaf-on 

reflectance separates non-vegetation surfaces well from the meadows, allowing field roads with dry 

bare soil to be clearly traced. Tall and relatively dry vegetation reflects stronger than mown areas or 

very wet patches. The difference between leaf-on and leaf-off reflectance seems to be especially 

sensitive to grass and herb biomass and is a strong discriminator between mown and unmown areas. 

Echo Width: Echo width resembles vegetation height structure consequently, but at an even finer 

scale. Differences in the order of magnitude of 0.1 ns in mean echo width are typical between mown 

and abandoned meadows, or Molinia-dominated patches and lowland hay meadows (both mown). 

Since the waveform data is delivered with a precision of 0.1 ns these patterns are at the very edge of 

use for classification. Non-vegetated surfaces have the lowest echo widths, followed by regularly 

mown lawns, and grasslands that do not correspond to any Natura 2000 habitat type. Leaf-on echo 

width has a broader range, but leaf-off echo width also shows some characteristic patterns, especially 

in the unmown places and where some growth is still possible after the second mowing. Given the very 

small differences that are exploited for classification based on echo width, it is no surprise that strip 

edge effects are also prominent, and even influence the final categorization of the raster. Echo width 



Remote Sens. 2014, 6 8075 

 

varies slightly with the scan angle, increasing by 0.1–0.2 ns towards the strip edges. This difference 

could not be corrected, it was probably one of the major sources of classification artifacts. 

NDSM height: As expected, NDSM height is proportional to vegetation height in general, but while 

it is close to the true heights for shrubs and fringes where the canopy is really closed, the height of 

grassland vegetation is strongly underestimated. In lowland hay meadows or dry grasslands where the 

vegetation height at the time of flying was around 50–120 cm, we found that the leaf-on NDSM shows 

heights around 20–30 cm. In a meadow that was only partly mown at the time of flight, an NDSM 

height difference of 20 cm represented an approximate difference of 50–100 cm in vegetation height. 

Abandoned grasslands and wet, high vegetation still have consequently higher NDSM values than 

mown wet or dry meadows despite the fact that the NDSM strongly underestimates vegetation height. 

In many cases, small variations in NDSM height down to a few centimeters were shown to convey 

valuable information. While the leaf-on NDSM was more useful for classifying natural differences in 

vegetation height, the leaf-off NDSM showed vehicle tracks, mowing strips and historic plowing marks 

more clearly. However, these small values are in the error range of the LIDAR measurement (2–5 cm), 

and also the typical uncertainties of co-registration between leaf-off and leaf-on flights (2–7 cm). 

Nevertheless, since the classifier does not rely on the absolute NDSM values but on their relative 

differences, even these very fine scale vertical patterns could be used for categorizing the data pixels. 

Sigma Z: Sigma Z does not enhance very fine differences in point heights: very flat surfaces such as 

asphalt roads have quite similar values to mown meadows, both in the range of 2–5 cm. However, 

sigma Z contributes to discriminating between taller classes such as fringes, abandoned patches and 

wet high vegetation, since each of these classes have their characteristic canopy height variability and 

typical laser signal penetration rate. Sigma Z is also less sensitive to artifacts, but it smoothes away 

some fine detail since it is calculated based on the neighborhood of each cell and not the cell on its own. 

Openness: From the openness bands, especially minimum openness showed interesting detail as a 

measure closely resembling the steepest slope within the immediate neighborhood of each cell. 

Openness is especially strong in detecting artificial boundaries between different management regimes. 

However, band importance calculations have shown that this parameter delivers limited information 

beyond the other vegetation height-related variables. 

According to the band importance reports produced by the classification software (see 

supplementary material for an example), the most important LIDAR derivatives were typically leaf-off 

echo width, the difference between leaf-on and leaf-off reflectance, and leaf-off NDSM height. 

5.4. Uncertainties, Errors, Accuracies 

Machine learning classification of LIDAR-derived parameters delivered high-resolution maps of 

grassland vegetation. The 0.5 m raster resolution provides an unprecedented fine scale for grassland 

vegetation maps, hardly achievable by state of the art methods such as airborne hyperspectral imaging 

(typically lower spatial resolution, lower number of classes), hand digitizing of high-resolution aerial 

or satellite photos (less fine scale of mapping), hypertemporal satellite imaging (lower spatial 

resolution or spectral resolution) or field maps (lower area coverage). A primary source of uncertainty is 

that definition of classes and quantification of habitat health is generally a problem in grasslands [34]. 

We believe that most of the inaccuracy of lowland hay meadow detection can be allotted to the fact 
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that the habitat is not very clearly defined, and the definition itself was developed with field 

identification and not remote sensing in mind. The high spatial resolution also contributes to 

uncertainty. While large pixels tend to smooth the inherent variability of the measured objects and, 

thus, result in relatively similar (average) values of a given variable, using small pixels leads to more 

prominent differences between pixel values During initial tests, it was shown that higher accuracies 

can be reached with larger pixel sizes, but we decided to keep the 0.5 m × 0.5 m resolution for the sake 

of higher information content. 

The most widespread source of error we could identify was the effect of flight strip edges on Echo 

Width, which led to over-estimation of Lowland Hay Meadows, Molinia and Meadow like in these 

areas. However, these artifacts can be well identified if the strip boundaries are known, and the fuzzy 

visualization can be used to interpret the correct class in most cases. 

The 5-category scheme produced accuracies (overall 75%, Kappa 0.66) that are slightly lower  

than the repeatability of field vegetation mapping [110], but similar to hyperspectral image 

classification [111] or LIDAR classification of tall wetland vegetation [70] or forests [112]. 

The set of 10 classes also delivered accuracies (overall 68%, Kappa 0.64) in the range of many large-

scale remote sensing methods and also similar to the accuracy of LIDAR DTM-based plant community 

prediction [76]. The accuracies reached in the Molinia and Dry meadow classes are especially interesting 

for conservation since they are closely related to the Natura 2000 habitat types 6410 and 6210 (the latter 

is one of the most widespread Annex I grassland habitat types in the EU [113]). The slightly lower 

reliability of the category Abandoned is mostly due to the smooth transition with fringes, and to the 

fact that this category covers a wide range from meadow patches abandoned a year ago to agricultural 

fields unused for a decade and encroaching with shrubs. Fringes, lowland hay meadows and meadow 

like areas are often difficult to delineate even by experts in the field: fine differences of species 

composition control their occurrence, and especially the definition of lowland hay meadows is 

different in various national habitat evaluation instructions [82,85,114]. 

5.5. Feasibility and Potential Applications of LIDAR-Based Grassland Classification 

Our results show that the feasibility of LIDAR-based grassland vegetation mapping is quite similar 

to that of most remote sensing based vegetation mapping studies. Given a certain set of ground truths 

and a suitable classification algorithm, reasonable accuracies are produced. In our case, high-resolution 

sensor data with several additional attributes was required, together with a machine-learning algorithm 

not (yet) available in off-the-shelf software. Grasslands are an especially difficult target for remote 

sensing, and it is demonstrated that LIDAR has very strong potential for mapping them. The habitat 

type where this feasibility study was tested is one of the most common grassland types of Europe; therefore 

we expect our method to be widely applicable in different geographic settings. While this level of accuracy 

does not directly correspond to the needs of Natura 2000 reporting, such maps can nevertheless be used in 

support of dedicated field mapping and habitat quality assessment. The non-grassland classes, which are 

slightly more accurate, can also be used for outlining habitats of interest for focusing field visits. 
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Figure 8. True color aerial image showing a studied meadow with ground truth polygons, 

and the vegetation map resulting from hard-boundary classification of LIDAR data. For 

areas excluded from classification (forests), the vegetation map is left transparent. Note 

strictly defined boundaries between classes. 

 

For Natura 2000 reporting obligations, remote sensing is expected to contribute to mapping habitat 

area and distribution, detection of changes and information on habitat quality [41]. It is expected that 

in case of LIDAR mapping of grasslands, the “hard-boundary” map would be used for this purpose: it 

delivers clear indications of the area occupied by each vegetation category, including fine-scale 

patterns and boundaries (Figure 8). The maps can also be used for identifying key habitats, for 

modeling the preferences of protected wildlife in order to find them in the field [115], or as a basis for 

precise targeting of conservation management. Since grasslands are hotspots for pollinating insects [116], 

it is expected that these maps would also be a valuable input for quantifying pollination ecosystem 

service potential. 

For scientific applications in the field of vegetation ecology, or for investigating the result of 

possible conservation measures, the fuzzy visualization is more applicable (Figure 9). It provides a 

more detailed view of the probability of lowland hay meadow presence, and generally incorporates a better 

representation of nature since in reality classes are not usually pure and boundaries are not strict [117]. 

The fuzzy renderings represent the fine texture of grassland habitats, including the transitions, boundaries 

and succession sequences, and therefore deliver much of the information in the data that would be 

omitted by hard classification. In context of mapping habitat quality, we expect that the probability-based 

maps might be suitable as an indication of species composition: the higher the probability of a given 

habitat class, the more the local species composition corresponds to it. This is confirmed by the 

observations we made at mixed vegetation reference patches that were not included in the learning and 

evaluation process. Given its high spatial resolution, it can be correlated in space with environmental 

variables and quantitatively evaluated by factor analysis. 
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Figure 9. True color aerial image showing a studied meadow with ground truth polygons, 

and the vegetation map resulting from fuzzy visualization of the LIDAR-derived grassland 

classification. For areas excluded from classification (forests), the vegetation map is left 

transparent. Note that the overall vegetation pattern is the same as in Figure 8, but fine-scale 

differences and transitions are represented in more detail due to the fuzzy visualization. 

 

5.6. Recommendations for Future Studies 

Since the patterns we were searching for in the data were subtle, some general caveats of airborne 

survey planning proved to be especially important for our study. Dual leaf-on and leaf-off flights 

already introduce some variability between surveys, and this is further enhanced if the ground 

campaign takes place at a third time. In our case, this clearly meant that the timing of the flights was 

less than optimal; we had more freedom in timing the fieldwork, which successfully surveyed the local 

vegetation optimum at least for our targeted lowland hay meadows. 

We expect that better flight timing and exactly simultaneous field surveys would have resulted in 

better accuracy. For dedicated grassland flights in the future, it is advised to fly with high strip overlap 

and a full pattern of lengthwise and cross strips (contrary to the typical flight pattern of many parallel 

and few cross strips), to ensure accurate geodetic control. Noise removal from the point cloud is a 

routine processing step, but has to be done with special care in case of a grassland target, and cannot be 

restricted to the removal of too high or too low points: erroneous amplitude and echo width values also 

have to be excluded in advance. In addition, data acquisition should be timed to match exactly the 

mature phase of the meadows but take place before the first mowing, to ensure that the vegetation and 

therefore the differences between vegetation classes are fully developed [55]. This requirement could 

not be met in our case due to the logistics of the project, but the classification accuracies were 

nevertheless satisfactory for a feasibility study. 

We expect that the continually increasing accuracies and point densities delivered by new 

generations of LIDAR sensors, together with enhanced information content such as multiple 

wavelengths [69,118] will result in increasing use of LIDAR as a standalone tool for mapping 

grassland vegetation. 
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6. Conclusions 

We developed a new method for classifying grassland habitats based on raster products from dual 

season LIDAR point clouds and machine learning classification. The method was validated on more 

than 35000 pixels independent from the training data. For five categories, this initial feasibility study has 

delivered accuracies directly comparable with conventional remotely sensed methods. For 10 categories 

(eight of them grassland types), and five categories (three of them grassland) the statistical evaluation 

also delivered a good agreement with field references (Kappa = 0.64 and 0.68 respectively). This 

means that LIDAR-based mapping is in good agreement with the field-based method that is currently 

used for mapping and monitoring. The most important novelty of the study is that it demonstrates that 

LIDAR can be successfully used for grassland classification. Our results show that full-waveform 

radiometrically calibrated multi-season LIDAR data holds sufficient information for mapping a large 

number of categories, and that random forest classification is a suitable tool for extracting this 

information. The spatial resolution reached in this study is unprecedented for automatic remote sensing 

classification of grasslands, and is close to the scale of the natural vegetation mosaic found in 

these habitats. The various categories used are also unique among grassland remote sensing studies in 

their close (although not direct) relevance for Natura 2000: our results are directly comparable with 

field-based maps created by botanists. We expect that the use of LIDAR datasets in grassland mapping 

will be tested in other sites in the future, and especially surveys planned from the ground up for 

grassland vegetation would produce better accuracies. The availability of high-resolution vegetation 

maps with good agreement to field references will also significantly advance grassland ecology 

and conservation. 

Acknowledgements 

The studies carried out and the data used in this study have been acquired within the 

ChangeHabitats2 project, an IAPP Marie Curie project of the Seventh Framework Programme of the 

European Commission. BS contributed partly as an Alexander von Humboldt Research Fellow. We 

wish to thank the Fertő-Hanság National Park Directorate for permitting the fieldwork in the protected 

areas and the Dept. of Surveying and Remote Sensing (Sopron) for assistance during the field survey. 

Aerial imagery and continental-scale basemaps used in the graphics are from ESRI, with data from the 

visualized areas owned by ESRI, DigitalGlobe, GeoEye, i-cubed, AEX, IGN, Aerogrid, HERE, 

DeLorme, OpenStreetMap contributors and the GIS user community. 

Author Contributions 

All authors contributed extensively to the work presented in this manuscript. András Zlinszky 

coordinated the research, wrote most of the text, calculated LIDAR data products and participated in 

software development. Anke Schroiff organized and carried out most of the fieldwork and contributed 

to pre-processing and final algorithm selection. Adam Kania coded the classification software. 

Balázs Deák contributed to fieldwork and the literature overview, Werner Mücke organized the 

airborne survey and calculated Digital Terrain Models, Ágnes Vári performed statistical analyses, 



Remote Sens. 2014, 6 8080 

 

Balázs Székely contributed to initial processing and qualitative evaluation. Norbert Pfeifer led the 

study and contributed to the text and the analysis of output maps. 

Conflicts of Interest 

The authors declare no conflict of interest. 

References 

1. European Commission. Council directive 92/43/EEC of 21 May 1992 on the conservation of 

natural habitats and of wild fauna and flora. Off. J. Eur. Union 1992, 11, 7–50. 

2. Vanden Borre, J.; Paelinckx, D.; Mucher, C.A.; Kooistra, L.; Haest, B.; De Blust, G.; 

Schmidt, A.M., Integrating remote sensing in Natura 2000 habitat monitoring: Prospects on the 

way forward. J. Nat. Conserv. 2011, 19, 116–125. 

3. Pullin, A.S.; Baldi, A.; Can, O.E.; Dieterich, M.; Kati, V.; Livoreil, B.; Lovei, G.; Mihok, B.; 

Nevin, O.; Selva, N.; et al., Conservation focus on Europe: Major conservation policy issues that 

need to be informed by conservation science. Conserv. Biol. 2009, 23, 818–824. 

4. Vrahnakis, M.S.; Janišová, M.; Rūsiņa, S.; Török, P.; Venn, S.; Dengler, J. The European Dry 

Grassland Group (EDGG): Stewarding Europe’s most diverse habitat type. In 

Steppenlebesnräume Europas-Gefahrdung, Erhaltungsmaßnahmen und Schutz; Baumbach, H., 

Pfützenreuter, S., Eds; Thüringer Ministerium für Landwirtschaft, Forsten, Umwelt und 

Naturschutz: Erfurt, Germany, 2013; pp. 1–16. 

5. Valko, O.; Torok, P.; Tothmeresz, B.; Matus, G. Restoration potential in seed banks of acidic fen 

and dry-mesophilous meadows: Can restoration be based on local seed banks? Restor. Ecol. 

2011, 19, 9–15. 

6. Pykälä, J. Mitigating human effects on European biodiversity through traditional animal 

husbandry. Conserv. Biol. 2000, 14, 705–712. 

7. Hejcman, M.; Hejcmanová, P.; Pavlů, V.; Beneš, J. Origin and history of grasslands in Central 

Europe—A review. Grass Forage Sci. 2013, 68, 345–363. 

8. Hopkins, A.; Holz, B. Grassland for agriculture and nature conservation: production, quality and 

multi-functionality. Agron. Res. 2006, 4, 3–20. 

9. Wilson, J.B.; Peet, R.K.; Dengler, J.; Paertel, M. Plant species richness: The world records. 

J. Veg. Sci. 2012, 23, 796–802. 

10. Eriksson, O.; Cousins, S.A.O.; Bruun, H.H. Land-use history and fragmentation of traditionally 

managed grasslands in Scandinavia. J. Veg. Sci. 2002, 13, 743–748. 

11. Dengler, J.; Lobel, S. The basiphilous dry grasslands of shallow, skeletal soils (Alysso-Sedetalia) 

on the island of Oland (Sweden), in the context of North and Central Europe. Phytocoenologia 

2006, 36, 343–391. 

12. WallisDeVries, M.F.; Poschlod, P.; Willems, J.H. Challenges for the conservation of calcareous 

grasslands in northwestern Europe: Integrating the requirements of flora and fauna. Biol. 

Conserv. 2002, 104, 265–273. 



Remote Sens. 2014, 6 8081 

 

13. Davidson, A.D.; Detling, J.K.; Brown, J.H. Ecological roles and conservation challenges of 

social, burrowing, herbivorous mammals in the world’s grasslands. Front. Ecol. Environ. 2012, 

10, 477–486. 

14. Hobohm, C.; Bruchmann, I. Endemische Gefäßpflanzen und ihre Habitate in Europa-Plädoyer 

für den Schutz der Grasland-Ökosysteme. Berichte der Reinhold-Tüxen-Gesellschaft 2009,  

21, 142–161. 

15. FAO FAOSTAT. Available online: http://faostat.fao.org/site/377/default.aspx#ancor (accessed 

on 11 February 2013). 

16. Eurostat Agri-Environmental Indicator-Cropping Patterns. Available online: http://epp.eurostat.ec. 

europa.eu/statistics_explained/index.php/Agri-environmental_indicator_-_cropping_patterns 

(accessed on 12 June 2014). 

17. Török, P.; Arany, I.; Prommer, M.; Valko, O.; Balogh, A.; Vida, E.; Tóthmérész, B.; Matus, G. 

Vegetation, phytomass and seed bank of strictly protected hay-making Molinion meadows in 

Zemplén Mountains (Hungary) after restored management. Thaiszia J. Bot. 2009, 19, 67–77. 

18. Kahmen, S.; Poschlod, P.; Schreiber, K.F. Conservation management of calcareous grasslands. 

Changes in plant species composition and response of functional traits during 25 years. Biol. 

Conserv. 2002, 104, 319–328. 

19. Valko, O.; Toeroek, P.; Matus, G.; Tothmeresz, B. Is regular mowing the most appropriate and 

cost-effective management maintaining diversity and biomass of target forbs in mountain hay 

meadows? Flora 2012, 207, 303–309. 

20. Europen Environmental Agency. Natura 2000 Data—The European Network of Protected Sites; 

Directorate-General for the Environment: Brussels, Belgium, 2012. 

21. Molnar, Z.; Biro, M.; Boloni, J.; Horvath, F. Distribution of the (semi-) natural habitats in 

Hungary I. Marshes and grasslands. Acta Bot. Hung. 2009, 50, 59–105. 

22. Stampfli, A.; Zeiter, M. Plant species decline due to abandonment of meadows cannot easily be 

reversed by mowing. A case study from the southern Alps. J. Veg. Sci. 1999, 10, 151–164. 

23. Fischer, M.; Wipf, S. Effect of low-intensity grazing on the species-rich vegetation of 

traditionally mown subalpine meadows. Biol. Conserv. 2002, 104, 1–11. 

24. Tilman, D. Species richness of experimental productivity gradients-how important is 

colonization limitation? Ecology 1993, 74, 2179–2191. 

25. Poschlod, P.; WallisDeVries, M.F. The historical and socioeconomic perspective of calcareous 

grasslands-lessons from the distant and recent past. Biol. Conserv. 2002, 104, 361–376. 

26. Poschlod, P.; Bakker, J.P.; Kahmen, S. Changing land use and its impact on biodiversity. Basic 

Appl. Ecol. 2005, 6, 93–98. 

27. Stoate, C.; Baldi, A.; Beja, P.; Boatman, N.D.; Herzon, I.; van Doorn, A.; de Snoo, G.R.; Rakosy, L.; 

Ramwell, C. Ecological impacts of early 21st century agricultural change in Europe—A review. 

J. Environ. Manage. 2009, 91, 22–46. 

28. Kelemen, A.; Toeroek, P.; Valko, O.; Miglecz, T.; Tothmeresz, B. Mechanisms shaping plant 

biomass and species richness: Plant strategies and litter effect in alkali and loess grasslands. J. 

Veg. Sci. 2013, 24, 1195–1203. 

29. Isselstein, J.; Jeangros, B.; Pavlu, V. Agronomic aspects of biodiversity targeted management of 

temperate grasslands in Europe—A review. Agron. Res. 2005, 3, 139–151. 



Remote Sens. 2014, 6 8082 

 

30. Stammel, B.; Kiehl, K.; Pfadenhauer, J. Effects of experimental and real land use on seedling 

recruitment of six fen species. Basic Appl. Ecol. 2006, 7, 334–346. 

31. Ryser, P.; Langenauer, R.; Gigon, A. Species richness and vegetation structure in a limestone 

grassland after 15 years management with 6 biomass removal regimes. Folia Geobot. 

Phytotaxon. 1995, 30, 157–167. 

32. Kohler, B.; Gigon, A.; Edwards, P.J.; Krusi, B.; Langenauer, R.; Luscher, A.; Ryser, P. Changes in 

the species composition and conservation value of limestone grasslands in Northern Switzerland 

after 22 years of contrasting managements. Perspect. Plant Ecol. Evol. Syst. 2005, 7, 51–67. 

33. Hansson, M.; Fogelfors, H. Management of a semi-natural grassland; results from a 15-year-old 

experiment in southern Sweden. J. Veg. Sci. 2000, 11, 31–38. 

34. White, R.P.; Murray, S.; Rohweder, M. Pilot Analysis of Global Ecosystems-Grassland 

Ecosystems; World Resources Institute: Washington, DC, USA, 2000; p. 81. 

35. Veen, P.; Jefferson, R.; de Smidt, J.; van der Straaten, J. Grasslands in Europe of High Nature 

Value; KNNV Publishing: Zeist, The Netherlands, 2009; p. 320. 

36. Ichter, J.; Evans, D.; Richard, D. Terrestrial Habitat Mapping in Europe: An Overview; 

European Environmental Agency: Copenhagen, Denmark, 2014; p. 152, doi:10.2800/11055. 

37. Lengyel, S.; Deri, E.; Varga, Z.; Horvath, R.; Tothmeresz, B.; Henry, P.-Y.; Kobler, A.; 

Kutnar, L.; Babij, V.; Seliskar, A.; et al. Habitat monitoring in Europe: A description of current 

practices. Biodivers. Conserv. 2008, 17, 3327–3339. 

38. Primack, R.B. Essentials of Conservation Biology, 5th ed.; Sinauer Associates: Sunderland, MA, 

USA, 2010. 

39. Schuster, C.; Ali, I.; Lohmann, P.; Frick, A.; Foerster, M.; Kleinschmit, B. Towards detecting 

swath events in TerraSAR-X time series to establish NATURA 2000 grassland habitat swath 

management as monitoring parameter. Remote Sens. 2011, 3, 1308–1322. 

40. Franke, J.; Keuck, V.; Siegert, F. Assessment of grassland use intensity by remote sensing to 

support conservation schemes. J. Nat. Conserv. 2012, 20, 125–134. 

41. Graef, F.; Bilo, M.; Weddeling, K.; Hölzl, N. Einsatz von Fernerkundung im Rahmen des  

FFH-Monitorings in Deutschland-Workshop; Bundesamt für Naturschutz: Bonn, Germany, 

2009; Volume 249, pp. 1–130. 

42. Hearn, S.; Healey, J.; McDonald, M.; Turner, A.; Wong, J.; Stewart, G. The repeatability of 

vegetation classification and mapping. J. Environ. Manage. 2011, 92, 1174–1184. 

43. Wang, K.; Franklin, S.E.; Guo, X.L.; Cattet, M. Remote sensing of ecology, biodiversity and 

conservation: A review from the perspective of remote sensing specialists. Sensors 2010, 10, 

9647–9667. 

44. Spanhove, T.; Vanden Borre, J.; Delalieux, S.; Haest, B.; Paelinckx, D. Can remote sensing 

estimate fine-scale quality indicators of natural habitats? Ecol. Indic. 2012, 18, 403–412. 

45. European Topic Centre on Biological Diversity. Habitats Directive Article 17 Report  

(2001–2006) Data completeness, Quality and Coherence; ETBD: Paris, France, 2008; pp. 1–24. 

46. Simonson, W.D.; Allen, H.D.; Coomes, D.A. Remotely sensed indicators of forest conservation 

status: Case study from a Natura 2000 site in southern Portugal. Ecol. Indic. 2013, 24, 636–647. 



Remote Sens. 2014, 6 8083 

 

47. Sickel, H.; Ihse, M.; Norderhaug, A.; Sickel, M.A.K. How to monitor semi-natural key habitats 

in relation to grazing preferences of cattle in mountain summer farming areas—An aerial photo 

and GPS method study. Landscape Urban Plan. 2004, 67, 67–77. 

48. Lucas, R.; Medcalf, K.; Brown, A.; Bunting, P.; Breyer, J.; Clewley, D.; Keyworth, S.; 

Blackmore, P. Updating the Phase 1 habitat map of Wales, UK, using satellite sensor data. ISPRS 

J. Photogramm. Remote Sens. 2011, 66, 81–102. 

49. Neumann, C. Synthese von Ökologischer Gradientenanalyse und hyperspektraler Fernerkundung 

zum Monitoring naturschutzfachlich bedeutsamer Offenlandschaften; Universität Potsdam: 

Potsdam, Germany, 2010. 

50. Delalieux, S.; Somers, B.; Haest, B.; Spanhove, T.; Vanden Borre, J.; Muecher, C.A. Heathland 

conservation status mapping through integration of hyperspectral mixture analysis and decision 

tree classifiers. Remote Sens. Environ. 2012, 126, 222–231. 

51. Schmidt, K.S.; Skidmore, A.K. Spectral discrimination of vegetation types in a coastal wetland. 

Remote Sens. Environ. 2003, 85, 92–108. 

52. Schmidtlein, S. Imaging spectroscopy as a tool for mapping Ellenberg indicator values. J. Appl. 

Ecol. 2005, 42, 966–974. 

53. Fava, F.; Parolo, G.; Colombo, R.; Gusmeroli, F.; Della Marianna, G.; Monteiro, A.T.; 

Bocchi, S. Fine-scale assessment of hay meadow productivity and plant diversity in the 

European Alps using field spectrometric data. Agr. Ecosyst. Environ. 2010, 137, 151–157. 

54. Sims, D.A.; Gamon, J.A. Estimation of vegetation water content and photosynthetic tissue area 

from spectral reflectance: A comparison of indices based on liquid water and chlorophyll 

absorption features. Remote Sens. Environ. 2003, 84, 526–537. 

55. Feilhauer, H.; Thonfeld, F.; Faude, U.; He, K.S.; Rocchini, D.; Schmidtlein, S. Assessing 

floristic composition with multispectral sensors—A comparison based on monotemporal and 

multiseasonal field spectra. Int. J. Appl. Earth Obs. Geoinf. 2013, 21, 218–229. 

56. Oldeland, J.; Dorigo, W.; Lieckfeld, L.; Lucieer, A.; Juergens, N. Combining vegetation indices, 

constrained ordination and fuzzy classification for mapping semi-natural vegetation units from 

hyperspectral imagery. Remote Sens. Environ. 2010, 114, 1155–1166. 

57. Hellesen, T.; Matikainen, L. An object-based approach for mapping shrub and tree cover on 

grassland habitats by use of LiDAR and CIR orthoimages. Remote Sens. 2013, 5, 558–583. 

58. Haest, B.; Thoonen, G.; Vanden Borre, J.; Spanhove, T.; Delalieux, S.; Bertels, L.; Kooistra, L.; 

Mücher, C.A.; Scheunders, P. An object-based approach to quantity and quality assessment of 

heathland habitats in the framework of Natura 2000 using hyperspectral airborne AHS images. 

Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2011, 38, 1–6. 

59. Bock, M.; Xofis, P.; Mitchley, J.; Rossner, G.; Wissen, M. Object-oriented methods for habitat 

mapping at multiple scales—Case studies from Northern Germany and Wye Downs, UK. J. Nat. 

Conserv. 2005, 13, 75–89. 

60. Schuster, C.; Förster, M.; Schmidt, T.; Kolbe, M.; Frick, A.; Kleinschmit, B. Schlussbericht 

CARE-X-Projekt: Change Detection Analyse für das flachendeckende Biodiversitätsmonitoring 

zur Erfüllung der EU FFH-Richtlinie mit Hilfe von RapidEye und TerraSAR-X Satellitendaten; 

Technische Universität Berlin: Berlin, Germany, 2012; p. 103. 



Remote Sens. 2014, 6 8084 

 

61. Chan, J.C.-W.; Beckers, P.; Spanhove, T.; Vanden Borre, J. An evaluation of ensemble 

classifiers for mapping Natura 2000 heathland in Belgium using spaceborne angular 

hyperspectral (CHRIS/Proba) imagery. Int. J. Appl. Earth Obs. Geoinf. 2012, 18, 13–22. 

62. Delalieux, S.; Somers, B.; Haest, B.; Kooistra, L.; Mucher, C.A.; Borre, J.V. Monitoring 

heathland habitat status using hyperspectral image classification and unmixing. In Proceedings of 

2010 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote 

Sensing (WHISPERS 2010), Reykjavik, Iceland, 14–16 June 2010; pp. 1–4. 

63. Nagendra, H.; Lucas, R.; Honrado, J.P.; Jongman, R.H.G.; Tarantino, C.; Adamo, M.; 

Mairota, P. Remote sensing for conservation monitoring: assessing protected areas, habitat 

extent, habitat condition, species diversity and threats. Ecol. Indic. 2013, 33, 45–49. 

64. Wehr, A.; Lohr, U. Airborne laser scanning—An introduction and overview. ISPRS J. 

Photogramm. Remote Sens. 1999, 54, 68–82. 

65. Wagner, W.; Hollaus, M.; Briese, C.; Ducic, V. 3D vegetation mapping using small-footprint 

full-waveform airborne laser scanners. Int. J. Remote Sens. 2008, 29, 1433–1452. 

66. Hollaus, M.; Mücke, W.; Höfle, B.; Dorigo, W.; Pfeifer, N.; Wagner, W.; Bauerhansl, C.; 

Regner, B. Tree species classification based on full-waveform airborne laser scanning data. 

In Silvilaser 2009; Texas A & M University: College Station, TX, USA, 2009. 

67. Riano, D.; Chuvieco, E.; Ustin, S.L.; Salas, J.; Rodriguez-Perez, J.R.; Ribeiro, L.M.; Viegas, D.X.; 

Moreno, J.M.; Fernandez, H. Estimation of shrub height for fuel-type mapping combining airborne 

LiDAR and simultaneous color infrared ortho imaging. Int. J. Wildland Fire 2007, 16, 341–348. 

68. Sankey, T.T.; Bond, P. LiDAR-based classification of sagebrush community types. Rangel. Ecol. 

Manag. 2011, 64, 92–98. 

69. Collin, A.; Long, B.; Archambault, P. Salt-marsh characterization, zonation assessment and 

mapping through a dual-wavelength LiDAR. Remote Sens. Environ. 2010, 114, 520–530. 

70. Zlinszky, A.; Mücke, W.; Lehner, H.; Briese, C.; Pfeifer, N. Categorizing wetland vegetation by 

Airborne Laser Scanning on Lake Balaton and Kis-Balaton, Hungary. Remote Sens. 2012,  

4, 1617–1650. 

71. Johansen, K.; Tiede, D.; Blaschke, T.; Arroyo, L.A.; Phinn, S. Automatic geographic object 

based mapping of streambed and riparian zone extent from LiDAR data in a temperate rural 

urban environment, Australia. Remote Sens. 2011, 3, 1139–1156. 

72. Onojeghuo, A.O.; Blackburn, G.A. Characterising reedbeds using lidar data: Potential and 

limitations. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 935–941. 

73. Hantson, W.; Kooistra, L.; Slim, P.A., Mapping invasive woody species in coastal dunes in the 

Netherlands: A remote sensing approach using LIDAR and high-resolution aerial photographs. 

Appl. Veg. Sci. 2012, 15, 536–547. 

74. Rosso, P.H.; Ustin, S.L.; Hastings, A. Use of lidar to study changes associated with Spartina 

invasion in San Francisco Bay marshes. Remote Sens. Environ. 2006, 100, 295–306. 

75. Brown, O.W.; Hugenholtz, C.H. Estimating aerodynamic roughness (zo) in mixed grassland 

prairie with airborne LiDAR. Can. J. Remote Sens. 2011, 37, 422–428. 

76. Ward, R.D.; Burnside, N.G.; Joyce, C.B.; Sepp, K. The use of medium point density LiDAR 

elevation data to determine plant community types in Baltic coastal wetlands. Ecol. Indic. 2013, 

33, 96–104. 



Remote Sens. 2014, 6 8085 

 

77. Király, G. Geographical overview. In Vascular Flora of Sopron Hills; Király, G., Ed.; 

Megjelenik: Sopron, Hungray, 2004; Volume 1, pp. 3–12. 

78. Fertő-Hanság National Park Directorate Natura 2000-Standard Data Form. Available  

online: http://natura2000.eea.europa.eu/Natura2000/SDF.aspx?site=HUFH10004 (accessed on 

21 June 2014).  

79. Davies, C.; Moss, D. EUNIS habitat classification. In the European Topic Centre on Nature 

Conservation; European Environment Agency: Copenhagen, Denmark, 1999. 

80. Molnár, Z.; Biró, M.; Bölöni, J. Appendix-English names of the Á-NÉR habitat types. Acta Bot. 

Hung. 2008, 50, 249–255. 

81. Congalton, R.G., A review of assessing the accuracy of classifications of remotely sensed data. 

Remote Sens. Environ. 1991, 37, 35–46. 

82. Ellmauer, T.; Essl, F. Entwicklung von Kriterien, Indikatoren und Schwellenwerten zur 

Beurteilung des Erhaltungszustandes der Natura 2000-Schutzgüter-Lebensraumtypen des Anhangs 

I der Flora-Fauna-Habitat-Richtlinie; Bundesministerium für Land-und Forstwirtschaft, Umwelt 

und Wasserwirtschaft & Umweltbundesamt GmbH: Vienna, Austria, 2005; p. 616. 

83. Horváth, A.; Bartha, S.; Bölöni, J. Natura 2000 élőhely-monitorozás-2. rész-Struktúra és funkció 

protokoll; MTA ÖBKI: Vácrátót, Hungary, 2009; p. 29. 

84. European Commission DG Environment, Interpretation manual of European Union habitats. In 

Nature and Biodiversity; European Commission DG Environment: Bruxelles, Belgium, 2007; p. 144. 

85. Király, G. 6510 Sík és dombvidéki kaszálórétek (Alopecurus pratensis, sanguisorba officinalis). 

In Natura 2000 fajok és élőhelyek Magyarországon; László, H., Ed.; Pro Vértes Közalapítvány: 

Csákvár, Hungary, 2014; pp. 838–841. 

86. Hundt, R. Beiträge zur Wiesenvegetation Mitteleuropas. I. Die Auenwiesen an der Elbe, Saale 

und Mulde. Nova Acta Leopold. 1958, 135, 1–205. 

87. Riegl Laser Measurement Systems Long-Range Laser Scanner for Full-Waveform Airborne  

Analysis LMS Q680i. Available online: http://www.riegl.com/uploads/tx_pxpriegldownloads/ 

10_DataSheet_LMS-Q680i_28-09-2012.pdf (accessed on 13 December 2013). 

88. Pfeifer, N.; Mandlburger, G.; Otepka, J.; Karel, W. OPALS—A framework for Airborne Laser 

Scanning data analysis. Comput. Environ. Urban Syst. 2014, 45, 125–136. 

89. Mandlburger, G.; Otepka, J.; Karel, W.; Wagner, W.; Pfeifer, N. Orientation and processing of 

airborne laser scanning data (OPALS)—Concept and first results of a comprehensive ALS 

software. In Laser Scanning 2009, Bretar, F., Vosselman, G., Eds.; IAPRS: Paris, France, 2009; 

Volume 38, pp. 55–60. 

90. Lehner, H.; Briese, C. Radiometric calibration of full-waveform airborne laser scanning data based 

on natural surfaces. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2010, 38, 360–365. 

91. Briese, C.; Pfennigbauer, M.; Lehner, H.; Ullrich, A.; Wagner, W.; Pfeifer, N. Radiometric 

calibration of multi-wavelength airborne laser scanning data. ISPRS Ann. Photogramm. Remote 

Sens. Spat. Inf. Sci. 2012, I-7, 335–340. 

92. Wagner, W.; Ullrich, A.; Ducic, V.; Melzer, T.; Studnicka, N. Gaussian decomposition and 

calibration of a novel small-footprint full-waveform digitising airborne laser scanner. ISPRS J. 

Photogramm. Remote Sens. 2006, 60, 100–112. 



Remote Sens. 2014, 6 8086 

 

93. Hollaus, M.; Aubrecht, C.; Hoefle, B.; Steinnocher, K.; Wagner, W. Roughness mapping on 

various vertical scales based on full-waveform airborne laser scanning data. Remote Sens. 2011, 

3, 503–523. 

94. Onojeghuo, A.O.; Blackburn, G.A. Optimising the use of hyperspectral and LiDAR data for 

mapping reedbed habitats. Remote Sens. Environ. 2011, 115, 2025–2034. 

95. Johansen, K.; Arroyo, L.A.; Armston, J.; Phinn, S.; Witte, C. Mapping riparian condition 

indicators in a sub-tropical savanna environment from discrete return LiDAR data using  

object-based image analysis. Ecol. Indic. 2010, 10, 796–807. 

96. Pfeifer, N.; Stadler, P.; Briese, C. Derivation of digital terrain models in the SCOP++ environment. 

In Proceedings of 2001 OEEPE Workshop on Airborne Laser Scanning and Interferometric SAR for 

Detailed Digital Elevation Models, Stockholm, Sweden, 1–3 March 2001; p. 13. 

97. Hollaus, M.; Wagner, W.; Eberhoefer, C.; Karel, W. Accuracy of large-scale canopy heights 

derived from LiDAR data under operational constraints in a complex alpine environment. ISPRS 

J. Photogramm. Remote Sens. 2006, 60, 323–338. 

98. Doneus, M. Openness as visualization technique for interpretative mapping of airborne lidar 

derived topographic models. Remote Sens. 2013, 5, 6427–6442. 

99. Yokoyama, R.; Shirasawa, M.; Pike, R.J. Visualizing topography by openness: A new 

application of image processing to digital elevation models. Photogramm. Eng. Remote Sens. 

2002, 68, 257–265. 

100. Tomasi, C.; Manduchi, R. Bilateral filtering for gray and color images. In Proceedings of 1998 Sixth 

International Conference on Computer Vision, Bombay, India, 4–7 January 1998; pp. 839–846. 

101. Hollaus, M.; Wagner, W.; Molnar, G.; Mandlburger, G.; Nothegger, C.; Otepka, J. Delineation 

of vegetation and building polygons from full-waveform airborne LIDAR data using OPALS 

software. In Proceedings of a Special Joint Symposium of ISPRS Technical Commission IV & 

AutoCarto in Conjunction with ASPRS/CaGIS 2010 Fall Specialty Conference, 15–19 

November 2010, Orlando, FL, USA; p. 7. 

102. Hintze, J.L.; Nelson, R.D. Violin plots: A box plot-density trace synergism. Amer. Statist. 1998, 

52, 181–184. 

103. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; 

Prettenhofer, P.; Weiss, R.; Dubourg, V.; et al. Scikit-learn: Machine learning in Python. 

J. Mach. Learn. Res. 2011, 12, 2825–2830. 

104. Breiman, L. Classification and Regression Trees; Chapman & Hall: London, UK, 1984. 

105. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. 

106. Foody, G. Fuzzy modelling of vegetation from remotely sensed imagery. Ecol. Model. 1996,  

85, 3–12. 

107. Altmann, D.G. Practical Statistics for Medical Research; Chapman & Hall: London, UK,  

1990; p. 624. 

108. Belluco, E.; Camuffo, M.; Ferrari, S.; Modenese, L.; Silvestri, S.; Marani, A.; Marani, M. 

Mapping salt-marsh vegetation by multispectral and hyperspectral remote sensing. Remote Sens. 

Environ. 2006, 105, 54–67. 

109. Townsend, P.A. A quantitative fuzzy approach to assess mapped vegetation classifications for 

ecological applications. Remote Sens. environ. 2000, 72, 253–267. 



Remote Sens. 2014, 6 8087 

 

110. Stevens, J.P.; Blackstock, T.H.; Howe, E.A.; Stevens, D.P. Repeatability of Phase I habitat 

survey. J. Environ. Manage. 2004, 73, 53–59. 

111. Burai, P.; Lövei, G.Z.; Lénárt, C.; Nagy, I.; Enyedi, P. Mapping aquatic vegetation of the 

Rakamaz-Tiszanagyfalui Nagy-morotva using Hyperspectral Imagery. Acta Geogr. Debr. 

Landsc. Environ. 2010, 4, 1–10. 

112. Brandtberg, T. Classifying individual tree species under leaf-off and leaf-on conditions using 

airborne lidar. ISPRS J. Photogramm. Remote Sens. 2007, 61, 325–340. 

113. Calaciura, B.; Spinelli, O. Management of Natura 2000 Habitats Semi-Natural Dry Grasslands 

(Festuco-Brometalia) 6210; DG Environment: Brussels, Belgium, 2008; p. 42. 

114. Kartier-und Bewertungsschlüssel für Offenland-Lebensraumtypen des Anhangs I der Richtlinie 

92/43/EWG (FFH-Richtlinie) Teil 1 (Grünland, Heiden und Felsen). In Abteilung Natur; Boden, 

L., Ed.; Landesamt für Umwelt, Landwirtschaft und Geologie: Dresden, Germany, 2009; p. 46. 

115. Neumann, C.; Luft, L.; Itzerott, S.; Jeltsch, F.; Blaum, N.; Freude, M. From point to  

pattern-spatial and spectral modeling of Hipparchia statilinus occurrence probability on former 

military training areas. In Proceedings of 2013 43rd Annual Meeting of the Ecological Societies 

of Germany, Austria and Switzerland, Potsdam, Germany, 9–13 September,2013; Jeltsch, F., 

Joschi, J., Eds.; Gesellschaft für Ökologie: Potsdam, Germany, 2013; Volume 43, pp. 419–420. 

116. Batary, P.; Baldi, A.; Saropataki, M.; Kohler, F.; Verhulst, J.; Knop, E.; Herzog, F.; Kleijn, D. 

Effect of conservation management on bees and insect-pollinated grassland plant communities in 

three European countries. Agr. Ecosyst. Environ. 2010, 136, 35–39. 

117. Rocchini, D.; Foody, G.M.; Nagendra, H.; Ricotta, C.; Anand, M.; He, K.S.; Amici, V.; 

Kleinschmit, B.; Foerster, M.; Schmidtlein, S.; et al. Uncertainty in ecosystem mapping by 

remote sensing. Comput. Geosci. 2013, 50, 128–135. 

118. Briese, C.; Pfennigbauer, M.; Ullrich, A.; Doneus, M. Multi-wavelength aiborne laser scanning 

for archaeological prospection. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2013, XL-

5/W2, 119–124. 

© 2014 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


