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Abstract: There have been increasing demands for automatically monitoring urban areas 

in very high detail, and the Unmanned Aerial Vehicle (UAV) with auto-navigation 

(AUNA) system offers such capability. This study proposes an object-based hierarchical 

method to detect changes from UAV images taken at different times. It consists of several 

steps. In the first step, an octocopter with AUNA capability is used to acquire images at 

different dates. These images are registered automatically, based on SIFT (Scale-Invariant 

Feature Transform) feature points, via the general bundle adjustment framework. Thus, the 

Digital Surface Models (DSMs) and orthophotos can be generated for raster-based change 

analysis. In the next step, a multi-primitive segmentation method combining the spectral 

and geometric information is proposed for object-based analysis. In the final step,  

a multi-criteria decision analysis is carried out concerning the height, spectral and 

geometric coherence, and shape regularity for change determination. Experiments based on 

UAV images with five-centimeter ground resolution demonstrate the effectiveness of the 

proposed method, leading to the conclusion that this method is practically applicable for 

frequent monitoring. 

Keywords: Change detection; Unmanned Aerial Vehicle; Digital Surface Models;  

Multi-Criteria Decision; Semi-Global Matching 

 

1. Introduction 

Detecting changes over the urban area is essential for city monitoring and disaster response, as  

well as the map/3D model updating [1]. Gathering this type of information is valuable for applications 

at various scales: at the landscape scale, it provides information for studying land cover evolution. 

OPEN ACCESS



Remote Sens. 2014, 6 7912 

 

 

At the building level, it has the potential to reduce labor cost for city management and updating  

3D models. There have been numerous studies on change detection on remote sensing images with 

low-to-medium resolution [2–5], which mainly focus on the landscape level. The use of very high 

resolution (VHR) [6,7] remote sensing images popularized the change detection on the building  

level [8–12]. However, the concept of smart city management requires such techniques to work even in 

a higher spatial (sub-building level) and temporal resolution within a relatively small area (e.g., city 

blocks, streets) [13]. Examples are the detection of the visible damage of city facilities, such as from 

telephone stations or the detection of misbehavior, such as illegal waste dumping [14,15]. Such 

scenarios ask for a low cost solution both data-wise and labor-wise, due to their highly frequent 

operation. The advent of auto-navigated (AUNA) Unmanned Aerial Vehicle (UAV) provides a 

possible platform for such missions. As a small flying vehicle, it is much cheaper and more flexible 

than traditional aerial platforms, and the AUNA capability enables the operator to locate the target area 

more easily and accurately. The flight path can be precisely programmed to record regularly 

overlapped images for deriving 3D information. Nevertheless, there were only a small number of 

studies addressing such tasks in the past, owning to the scene complexity and the temporal difference 

of the illuminations, and disturbances of moving cars and pedestrians. 

1.1. Related Work 

In general, change detection can be divided into Image-based change detection and DSM (Digital 

Surface model) aided approaches according to the data dimension. Bouziani et al. [10] proposed  

a rule-based change detection method using the existing geo-database that stores information about the 

building footprints and land semantics. One disadvantage of this approach is that the required 

information may not be commonly available or accurate enough. Pacifici et al. [16] proposed  

a classification-based method using a neural network to simultaneously perform pixel-wise 

classification and change detection. However, the method required manually labeled training samples, 

and images used in this method were limited to nearly vertical views. Related image-based techniques 

can also be found in [9,11,17]. 

There are a number of methods considering the use of DSMs, which aim to improve the change 

detection accuracy and apply volumetric change analysis. Martha et al. [18] analyzed the landslides 

phenomenon by subtracting two DSMs. Similar approaches can be found in [19,20]. Since simple 

subtraction of height values may lead to false positives and noisy results, Chaabouni-Chouayakh and 

Reinartz [21] applied a post-classification on an initial change mask computed by DSM subtraction, 

taking into account various shape features such as elongation, eccentricity and solidity. Similar 

methods were proposed in [8,22], where the classification was performed on the aerial images. 

However, these methods were sensitive to the quality of DSM and tall vegetation. By integrating the 

height and spectral information, Tian et al. [23] proposed a region-based method to perform change 

detection on DSMs and panchromatic orthophotos generated from Cartosat-1 stereo pairs. The height 

and spectral information were fused by the change vector analysis framework (CVA) [24]. In another 

work by Tian et al. [25], the Dampster-Shafer method [26] was adopted to fuse the height and spectral 

information for change detection on multispectral stereo imagery. However, the parameter tuning of 

such methods depended on the data quality, and shape features of the segments were not considered. 
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Several studies have investigated change detection/monitoring techniques for applications with UAVs. 

Coulter et al. [27] used UAV images for monitoring country borders, and a threshold-based method in the 

image space was used to reach real-time performance, yet this method was purely based on image 

comparison, which might be affected by perspective distortion and luminance difference. Shi et al. [28] 

combined feature points with segmentation results to perform image-based change detection, and the 

image registration between two dates was done through a projective transformation. However, this 

method was essentially an image-based method, which did not employ the geometric information. 

Xuan [29] used a UAV with AUNA capability and adopted a simple subtraction on manually edited DSMs 

for change detection. The images between two dates were registered by ground control points (GCP). 

These studies did not fully utilize the geometric or spectral aspects of the UAV images, as well as the 

special characteristics of UAVs such as their low flying altitude, speed, and high image redundancy. 

Hence, a comprehensive change detection method using UAV imagery should be explored. 

1.2. Work in This Paper 

This paper presents an object-based hierarchical method for change detection using images taken 

from a UAV with AUNA capability, which adopts a step-wise strategy under the object-based image 

analysis (OBIA) framework. The proposed method first registers images from a later date to the earlier 

date under the general bundle adjustment (BA) framework. Such solutions have rarely been explored 

for the UAV images before. A multi-primitive segmentation method is proposed concerning the color 

and geometric properties to support an object-based decision tree analysis. The contribution of this 

work is mainly threefold: first, the proposed method adopts the general BA for image registration of 

both dates to minimize the geometric misalignment; second, a multi-primitive segmentation is 

proposed integrating geometric and spectral information; third, the decision tree analysis is used to 

employ the color and smooth for coherence checking between neighboring segments, which is able to 

reduce false positives caused by matching errors. 

The remainder of the paper is organized as follows: Section 2 presents the used UAV platform and 

data pre-processing, including automatic image registration and DSM generation. Section 3 introduces 

the proposed object-based change detection method. In Section 4, experiments performed on UAV 

images with a ground sample distance (GSD) of 5 cm are introduced, and the results are discussed. The 

last section concludes the paper by analyzing the pros and cons the proposed method. 

2. Data Acquisition and Pre-Processing 

2.1. Platform 

The UAV used in this work is the AscTec Falcon 8 octocopter [30], with an off-the-shelf Sony-Nex 

5/5N camera is for the image acquisition (as shown in Figure 1). It has a built-in GPS unit (Global 

positioning system)/IMU (Inertial measurement unit), barometer and stabilizer, thus, to allow image 

acquisition following a predefined path. Such platforms usually have the following advantages: 

(1) With a small take-off/landing space (e.g., 5 × 5 m2) and resistance of certain wind speed, the 

UAV is able to work in a relatively confined space with higher reliability (Figure 1a). 
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(2) Images can be taken in a discrete mode, with the UAV hovering when the shutter is being 

triggered, which effectively avoids motion blurs. 

(3) The flight path can be pre-programed according to the expected overlaps and resolution. Once 

the path is designed (Figure 1b), it can be used repetitively for frequent data acquisition. 

The above-mentioned advantages are not limited to this model, but in general apply to drones 

with AUNA capabilities. One drawback of such platform is that their battery life is short (usually  

15–20 minutes of flying per battery), and this compromises the flexibility for close-range urban 

applications (noise-free and light). 

Figure 1. (a) The system used in this paper and examples of operations in confined spaces. 

(b) The control panel in the ground station for path planning and online-flight monitoring. 

 
(a) (b) 

2.2. Automatic Data Registration 

Accurate and robust co-registration of the data from different dates is an essential issue for change 

detection. Change detection methods at the landscape level normally adopt affine transformations 

between images from two dates to achieve pixel-wise registration, but this is limited to low resolution 

images on relatively flat area [15]. DSM-based methods adopt 3D least squares surface matching for 

accurate registration [31], while this requires DSM to be coarsely aligned. GCP-based registration 

methods geo-reference the aerial/satellite images with manually collected GCPs either by additional 

survey or stereo measurement of the oriented images of the earlier date, and this requires extra manual 

work for GCP measurement and induces measurement errors. This work registers both datasets 

photogrammetrically by SIFT (Scale-invariant features transform) feature points [32] under a general 

bundle adjustment (BA) framework [33]. The UAV images of the earlier date is geo-referenced via 

free-network BA or GCP-assisted BA (this depends on the application whether the detected changes 

will be included into the Geographic Information System (GIS)), and images taken at the later date are 

oriented under the same coordinate system through a large number of tie points between two datasets. 

The GPS information can be used for the pairwise tie point generation, thus, to limit tie point 

extraction to neighboring images. The interior and exterior orientation parameters of the first date are 

N
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fixed as observations, with the orientation parameters of the later date optimized through BA. By a 

simple expansion, the co-registration procedure can be explained under the following BA formulation: 

-eB = A1xp + A21t1 + A31z1 + A22t2 + A32z2 – lB: PB

-et1 = It1 – lt1: Pt1 
-ez1

 = Iz1 – lz1
: Pz1

 (1)

where , ,  and  denote the exterior orientation parameter (EOP) vector and the self-calibration 
parameter (SCP) vectors for both dates, and  is the object point vector, with A21, A22, A31, A32, and 

A1 being their associated design matrix, respectively. On the left hand side, eB, et1 and  represent 

the true error vectors of image coordinates of all images in both date, EOP and SCP of date 1. lB, lt1 

and lz1
are associated observation vectors, which are essentially the matched SIFT feature points of 

(and between) the two datasets, EOP and SCP of date 1. PB,  Pt1 and Pz1
 are the prior weights of the 

observations. EOP and SCP of the date 1 are fixed as observations, thus Pt1,Pz1
→∞. The readers may 

refer to [33] for more details of the BA formulation. 

SIFT extracts a large number of tie points between two dates. The BA is performed by APERO 

software [34], and the controlling script is modified particularly for the aforementioned co-registration 

task. It adopts the RANSAC algorithm [35] for incremental relative orientation to compute the initial 

approximation of the solution vectors. Then it solves the quadratic form of (1) with the Cholesky 

method after a suboptimal ordering of unknowns. The advantage of the software is its high degree of 

customization: it allows the users to freeze or release any unknowns in each iteration of the 

optimization, and supports multiple camera calibration. In this paper, the value of SCPs and EOPs of 

date 1 are computed in the earlier date and fixed as observations, while the co-registration procedure 

only optimizes the SCPs and EOPs of the images in date 2. 

Figure 2. A comparison between the GCP-based co-registration method and the proposed 

co-registration method: left: the studied profile (highlighted in vertical line); right: the height 

comparison of DSMs generated orientation parameters after difference co-registration 

method, and the RMSEs (root-mean square error) are computed by ignoring the height jumps. 

 

This procedure assumes there is no complete scene change in the area of interest (AOI), and this is 

particularly applicable for monitoring with high temporal resolution (1–24 months), as significant changes 
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of the whole scene are not likely to occur in a short time. Moreover, due to the rich textural content, there 

are higher chances to extract a large number of feature points for co-registration. Compared to GCP-based 

registration, the proposed registration strategy provides accurate geometric alignment. Figure 2 shows a 

comparison of the proposed co-registration strategy and normal GCP-based co-registration. 

It can be seen in Figure 2 that the GCP-based co-registration produces observable systematic shift 

in the flat region of the profile, which is mainly induced by the measurement error, while the proposed 

strategy gives better results due to the redundancy of a large number of tie points. 

2.3. DSM Generation 

The recent development of advanced image dense matching techniques offers the possibility to 

generate accurate and dense point clouds within reasonable time [36–38]. Semi-global matching (SGM) 

is favored by its dense stereo correspondence in texture-less area thanks to its quasi global optimization 

and neighborhood propagation. It adopts a multi-path dynamic programming to minimize the following 

energy within linear time (regarding to Image width × Image height × Disparity range): 

E(D)= C p,Dp

p

+ P1

q∈Np

T(|Dp-Dq|=1)+ P2

q∈Np

T(|Dp-Dq|>1) 
(2)

where the first term denotes the sum of matching cost for the disparity D. The second and third term pose 
the smooth constraint of the neighboring pixel pair (p,q) (q∈Np, Np is the neighboring pixels of p), with 

penalty P1 and P2 on small (1 pixel) and large (larger than 1 pixel) disparity jump. T ·  is the Boolean 

function which return 1 for true statements, otherwise 0. 

UAV images usually produce large disparity range due to the large base-high ratio for high-rise 

buildings. Therefore, a hierarchical SGM (H-SGM) [39] is adopted to generate dense point clouds, 

which applies SGM with a coarse-to-fine strategy. Images are down-sampled as pyramids, and the 

disparity range is dynamically determined according to the disparity computed from the coarser level, 

while in the coarsest level the algorithm searches for all possible disparities. 

Compared to traditional aerial platforms, the flying altitude and speed of UAV is relatively low, 

thus the moving objects (e.g., cars, pedestrians) on the ground may result in wrong disparities, as the 

corresponding points in each image are not geometrically identical. Most of such errors can be 

eliminated by a left-right consistency check. The remaining moving objects are further filtered by 

excluding 3D point with less than three rays. Therefore, the UAV’s low flying speed inherently 

excluded moving objects owing to the high matching redundancy. 

Even with densely overlapped block design, such a low flying altitude inevitably creates notable 

occluded areas due to the large parallax. Traditional DSM generation procedure usually employs 

Delaunay triangulation for interpolation, whilst such interpolation will possibly result in height differences 

due to the uncertainty of the occluded area. Hence, this paper proposes to directly project the point clouds 

onto a regular grid, and to fill the small gaps using inverse distance interpolation (IVDI) with a small 

radius (five pixels), while to exclude the large occluded areas for the subsequent change detection. 

Based on the DSMs, the corresponding orthophotos are generated by projecting each perspective 

image on the DSM, and then a weight average method is employed to blend the overlapped area 

according to the angle and visibility of each ray. 
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3. Change Detection 

Among the proposed change detection methods, the most prominent trend is to combine both the 

height information and spectral information [21,23,25]. Especially in the case of very high resolution, 

the spectral information creates high intra-class variability and luminance discrepancy, so that change 

detection methods with spectral information alone bring a large number of false positives. Therefore, 

the height differences take the key role to improve the performance of change detection. In the 

meantime, the OBIA is agreed to be a valid tool for high resolution image analysis [40], owing to its 

robustness by representing information with groups of pixels. Therefore, a step-wise object-based 

change detection method is introduced in this section: the raster grid of the area is segmented and 

merged with a set of primitives extracted from the orthophoto and DSM, and then the change detection 

is performed on the object level according to a sequence of criteria under a decision tree analysis. 

3.1. Multi-Primitive Segmentation and Region Merging 

The primitives in this paper are defined as a set of special geometric and appearance properties, 

such as smoothness and blob. Each of the properties creates primitive segmentation (PS). The basic 

idea of the multi-primitive segmentation is to merge the resulting PS with each other, thus to form a 

group of segmentations with different properties. Then the segmentation results can be used for change 

decision analysis. Three spectral primitives and two geometric primitives are adopted in this paper. 

These primitives and the merging procedure will be introduced in the next subsections. 

3.1.1. Spectral Primitives 

(1) Texture Segments (TS) 

The mean shift segmentation algorithm has been intensively studied in the past, and it produces 

acceptable results for spaceborne remote sensing images [23]. It aims to find clusters of pixels which have 

similar spectral responses. This is not suitable for images with very rich textures. Therefore, an efficient 

graph-based segmentation (EGS) approach [41] is employed. It adopts a greedy strategy to perform a 

pairwise comparison between inside-region variations and across-region variations. An important 

characteristic of EGS is its ability to preserve low variation image regions (e.g., homogenous roofs, 

ground), at the same time ignoring details in high-variability regions (e.g., shrub area, grass area with 

regular texture patterns). It has three tunable parameters: a smooth parameter σ  for preprocessing, a 

threshold k for greedy merging, and a post-processing segment size  for small region merging. A typical 

parameter set is used in this paper (σ	=	1,	k	=	800, m	=	200) and these parameters are robust for normal 

RGB images. Readers may refer the algorithmic detail of EGS to [41]; 
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(2) Bright Blobs (BB) and (3) Dark Blobs (DB) 

Some small but significant objects may be ignored by EGS due to inappropriate threshold values. 

Such small objects sometimes create high local contrasts, such as public benches, dustbins, either 

brighter or darker than the surrounding environment. Such appearance characteristic can be effectively 

extracted by top-hat reconstruction (THR), which originates from morphological reconstruction of 

grey-level images [42]. It reconstructs a mask image J as BJI from a marker I, and this is done by 

finding the peaks of J, which are marked by I. The THR is then computed by subtracting BJI from J, 

where I is numerically smaller than J and is usually computed by a morphological erosion of a given 

structural element . Thus, the THR computation can be written as: 

TJ
e  =  J - BJε(J,e) (3)

and ( , ) is defined as the grey-level morphological erosion: 

ε(J,e)(i,j)= min {J(a,b)|,e(a-i,b-j)=1} (4)

A disk-shaped element with a given radius  is adopted to extract the blobs in an isotropic way.  is 

defined as the maximal radius of the objects of interest in pixels, and objects with radius larger than  

will not be detected. 

The color orthophoto is transformed into CIELAB space [43] and then the THR is applied on L 

band images and its negative images. The computed THRs are truncated with a given threshold to 

detect the DB and BB, and the thresholds can be determined by finding the median of the k-mean 

clusters [44]. The binarized DB and BB are segmented according to their 4-neighborhood connectivity. 

Therefore, the spectral primitives consist of large texture segments TS and small reflectance primitives 

segments DB and BB. 

3.1.2. Geometric Primitives 

(1) Connected Surface Segments (CS) 

In an urban area, man-made structures usually create discontinuous surfaces to the ground, and 

pixels on such surfaces usually have high coherence in geometric deformation. Namely, pixels on the 

same surface may have the same change status. Such surfaces with large height jumps can be 

effectively detected with a simple and fast 4-neighborhood segmentation [45] with a single parameter	  

in a linear time, which is the cut-off threshold for the height jumps. 

(2) Blob-shaped Objects (BO) 

With the same idea as the BB and DB, the geometric blobs can be detected by applying the THR on 

the DSM, which has shown its great advantages in building detection applications [46]. It should be 

noted that the BO are complementary to DB and BB, and vice versa: objects with similar color but 

different height to the surroundings can be detected by BO, while geometric blobs which fail to show 

significant height difference in the image matching could be detected by DB and BB once they create a 

local contrast. 
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3.1.3. Region Merging 

By merging the five PSs with different combinations, more detailed segmentations interpreting 

different semantics can be used for change analysis. Denote a segmentation result Q as a grid of labels: 

Q= Q(i,j)=Qij Qij is a nonnegative interger} (5)

The merging operation of two PSs A and B can be done by the following operation: 

C=A⊗B= Cij=(Aij,Bij)  (6)

where ⊗ is the Cartesian product in pixel-wise. In practice, the two-dimensional label is mapped 

uniquely into a scalar for ease of manipulation, and the mapping function is defined as:  

Φ Aij,Bij =Aij+ωBij, where = max ({ }) (7)

Thus Equation (6) can be rewritten as: 

C=A⊕B= Cij=Φ(Aij,Bij)  (8)

where ⊕ is defined as the merging operation. The numerical value of the merged segment label Cij can 

be very large, so these labels can be sorted and replaced by their ranks to reduce the possible overflow. 

Merging operation of multiple segments can be done iteratively. 

By varying the basic PS for merging, the resulting segmentations represent different levels of 

information. Let TSi, BBi, DBi, CSi, BOi be the five PSs described in this section, with i	=	1,	2 

distinguishing between date 1 and date 2, the inherent meanings of different combinations of them are 

illustrated in the Table 1. 

Table 1. Interpretations of the different combination of the primitive segmentation (PS) 

Combination Interpretation Short Form 

TSi⊕DBi⊕BBi⊕CSi⊕BOi 
contains all possible segments in both dates, and serves as the basic unit 

for change analysis 
TDBCB 

TSi⊕DBi⊕BBi 
contains all possible color segments in both dates, useful to exclude false 

positives from DSMs 
TDB 

TSi⊕CS1 
contains possible color segments from both date, and connected surfaces 

in date 1, helpful to exclude matching errors in date 1. 
TC1 

TSi⊕CS2 
contains possible color segments from both date, and connected surfaces 

in date 2, helpful to exclude matching errors in date 2. 
TC2 

Note: when  is present as the subscript, it mean this primitives are merged in both dates,  

e.g., TSi=TS1⊕TS2 

The segmentations in Table 1 are defined as the multi-primitives segmentation. An example of the 

PSs and the multi-primitive segmentation is shown in Figure 3, where it can be seen that different PS 

complement each other such as the DB and BB, while TDBCB is the most detailed segmentation, and 

each of its segment serves as basic unit for change analysis. 
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Figure 3. The PSs and multi-primitive segmentations: first row: left to right: ortho-images 

of one date, TS1 and DB1; second row, left to right: BB1, CS1 and BO1; third row: TDBCB, 

TDB and TC1. 

 

 

 

3.2. Change Detection with Multi-Criteria Decision Tree Analysis 

As mentioned in the first section, a weighting strategy fusing the spectral and height information 

might result in sensitive parameter tuning. This sometimes affects the transferability of the methods. 

Moreover, in most cases, the derived height information of UAV images is more robust than the spectral 

information for change detection, as it directly reflects the geometric difference. Therefore, hierarchical 

utilization of the height and color information might help to reduce false positives, and give rise to the 

transferability of the method. Based on the segmentation results, a multi-criteria decision analysis is used 

to post the spectral and height constraints hierarchically. The basic idea is to obtain an initial change 

mask first by comparing the height differences of each segment in	 , and then falsify the segments 

identified in the initial mask by a set of spectral and height constraints, and a post-shape filtering. The 

proposed decision analysis considers four criteria sequentially: (1) the height difference of the segment in 

TDBCB; (2) the vegetation index; (3) the color and smooth coherence; (4) the shape of the segments. 
  

N
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3.2.1. Height Difference 

Segments in TDBCB serve as the basic units for change analysis. Due to the unexpected luminance 

difference, the color information is used to check the color coherence of neighboring segments, rather 

than compare the color difference directly. An initial change mask is computed first by comparing the 

height difference of each segment in TDBCB. For each segment, the histogram of the height difference 

is computed. Height differences of pixels with more than 10% of total amount are averaged as the 

height difference value of the segment. Thus a threshold Thei is given to determine segments as 

candidates of potential changes. 

3.2.2. Vegetation Index 

Sometimes the seasonal change of vegetation is not of interest, and trees usually cause matching 

errors due to their complex and irregular shapes. Therefore these areas are not considered or given less 

weight. NDVI (Normalized Difference Vegetation Index) is used to extracted vegetation when the 

near-infrared band is available. For the case that only normal RGB images are available, the greenness 

of each pixel can be computed to indicate the green vegetation, which can be represented by Excessive 

Green Index (EGI) [47]: 

EGI=2G-R-B (9)

As an extension, a normalized form of EGI (nEGI) similar to NDVI can be used: 

nEGI=(2G-R-B)/(2G+R+B) (10)

By repetitive tests, the value 0.1 is chosen as an empirical parameter in this paper. To eliminate the 

disturbances by the soft canopies from the vegetation, pixels identified as vegetation in both dates with 

height differences less than 2Thei will not be considered as changes, and segments in TDBCB 

containing 80% of such pixels will not be considered. 

3.2.3. Color and Smooth Coherence 

It has been found that the matching artifacts usually occur at image edges for global matching 

methods [23], and this might lead to false positives. Color coherence check is helpful to eliminate such 

artifacts: if a segment in TDBCB is identified as a change due to the large height difference, while the 

neighboring segments share the same color segments in TDB are non-change, these changed segments 

might be false positives. Noting that there is a correlation between the DSM and the orthophoto, an 

erroneously matched pixel leads to a wrongly picked color, which might create wrong DB and BB 

segments. Therefore, only TS are used for more robust coherence check. Moreover, since the 

geometrically connected surfaces usually have the same change status, the CS is also considered to 

falsify the identified changes. 

Therefore, a color-smooth coherence check is performed by testing each segment with the following 

pseudo code: 
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Figure 4. Pseudo code for color-smooth coherence checking 

 

Intuitively, this procedure (Figure 4) checks each change segment p  in TDBCB in a larger 

component: if a larger component containing p is not dominated by changed pixels, thus p should be 

falsified. The larger components contain the color and smooth surface information, and the smooth 

coherence check is made separately for each date, as artifacts may sometimes only occur in one date at 

the same place. 

3.2.4. Shape Filtering 

Since the aim is to detected possible changed objects, some irregularly shaped segments, such as 

thin structures, are likely to be artifacts induced by matching errors. Therefore, a post-shape filtering 

procedure is adopted considering two measures for thin and highly concave segments: 

Elongation= 
Minor axis length

Major axis length
 

Convexity=
Area

Area of the convex hull
 

(11)

where the major and minor axis refers to those of the fitted ellipse of the segment, and the convex hull 

can be computed by triangulating the pixels of the segment and then finding the area surrounded by the 
boundary edges. To avoid filtering the real changes, small thresholds Telong	=	0.025 and Tconvex	=	0.3 is 

used throughout the experiments. The decision analysis workflow is shown in Figure 5: 

Figure 5. Workflow of the multi-criteria decision analysis. 
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4. Experiments and Discussion 

The proposed method aims to detect the geometric changes in an urban scenario for frequent 

monitoring, thus, changes of buildings and small infrastructures are of interest. We are also interested 

in detecting the significant changes of tree canopies, since they might be caused by natural disasters 

such as lightning or sudden failing due to healthy problems, which are important for the application of 

smart city management. The UAV images in this study are acquired with Falcon-8 octocopter. Two 

test areas in a university campus are chosen for experiments, and each test area contain 20 images. 

Images are acquired with 15 months difference, and the flight waypoints are designed as a regular 

block (as shown in Figure 1b) with five images (with 80% overlap) in the in-strip direction  

and 4 (with 60% overlap) in cross-strip direction. The same waypoints are used for image acquisition 

in both dates, and an accuracy assessment of the on-board GPS system can be found in Figure 6 by 

comparing the GPS records and perspective centers after BA. It shows, from Figure 6b, that positional 

deviation between two dates is relatively small (3.67 m in total), which is good enough to ensure the 

UAV image between two dates are accurately overlapped, while the GPS drifts shown in Figure 6a is 

larger (6.33 m in total), which mainly comes from to the Y direction, and this might be a systematic 

error induced by physical conditions such as radio quality, which demonstrates the deviation of the 

actual and planned flight waypoint. In this experiment, the GPS records are only used to find 

neighborhoods for pair-wise tie point matching, instead of being one of the observations. 

Figure 6. GPS differences between two dates. (a) Difference between GPS records and the 

BA results; (b) difference between BA results from different dates. 

(a) (b) 

A Sony-Nex 5 camera and a Sony-Nex 5N are used for date 1 and date 2, respectively. With 16 mm 

focal length and 5 micron pixel size, the flying height is 150 meters above the ground, producing 

images with roughly 5 cm GSD. The interior and exterior orientations of image in date 1 were computed 

with GCPs from land surveys from one of our previous 3D modeling project [48], with RMSE of 0.08, 

0.06, 0.06 in X, Y, Z dimension for check points. The co-registration of these two dates is illustrated in 

the “Data Acquisition and Pre-processing” section, with average image residual of 0.6 pixels. The 

change detection results were validated by the ground truth masks, which were generated by carefully 

manual inspection. 
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4.1. Experiment 1 

Figure 7 shows a relatively simple scene, with only a few houses. There exists a clear seasonal change 

on the vegetation due to dryness, with a high degree of luminance difference, the sparser trees in date 2 lead 

to a notable error in the matched DSM (Figure 7c,d). This test area covers 7.82 hectares, with a 25 cm2 

footprint per pixel, and the dimension of the orthophoto is 5853 × 6009. The change detection results 

in Figure 7e show that the proposed method has detected most of the significant changes, such as new 

buildings and standing construction vehicles. Tree differences are also detected as significant 

vegetation change, while these are false positives caused by the matching errors (Figure 7h). 

Figure 7. Results of experiment 1: (a) orthophoto 1. (b) Orthophoto 2; (c) DSM 1.  

(d) DSM 2. (e) Detected changes. (f) Ground truth. (g) Enlarged examples showing new 

houses and still trucks are detected (highlighted in red). (h) Enlarged examples 

(highlighted in red) showing pavilion of the sports are destructed, false positives occur due 

to erroneous matched DSM. 

 
(a) (b) (c) 

 
(d) (e) (f) 

(g) (h) 

4.2. Experiment 2 

Figure 8 shows a more complex scenario with dense buildings and parting lots, covering 8.64 ha. 

There is a high coverage of vegetation, leading to many occlusions. Since this paper aims to monitor 

the scene frequently, thus the presence of still cars in the scene is also counted as changes.  
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The orthophotos and DSMs have the same GSD as experiment 1. Compared to the ground truth  

mask (Figure 8f), the detection result (Figure 8e) shows that most of the significant changes are 

detected, and the level of detail is down to individual still cars. Figure 8g shows the cars are parking 

along the road, which demonstrates the application of illegal parking detection, and missing detection 

happens to cars partially covered by trees. In Figure 8h, the displacements of conservation facilities 

around the swimming pools are detected, which demonstrate an application for facility monitoring. 

Moreover, the largest change segment in Figure 8f is the significant change from grass to a bush area, 

which is 2 meters higher than date 1. This indicates it might need some actions for cleaning. It can be 

seen that there are large height differences in the tree canopy (Figure 8d shown in red circle), and they 

are not identified as changes. This is mainly because this area has the same height as the ground, and 

they are removed due to the color-smooth coherence procedure. Therefore, it shows that this strategy is 

able to eliminate false positives induced by large matching errors. 

Figure 8. Results of experiment 2: (a) orthophoto 1. (b) Orthophoto 2. (c) DSM 1.  

(d) DSM 2, red circle indicates the matching errors. (e) Detected changes. (f) Ground truth. 

(g) Enlarged examples (highlighted in red) showing the still cars along the road.  

(h) Enlarged examples (highlighted in red) showing the displacements of conservation 

facilities along the swimming pool. 
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(d) (e) (f) 
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4.3. Results and Discussion 

4.3.1. Accuracies, Errors and Uncertainties 

The accuracies and errors are established with TP (true positives), FP (false positives), FN (false 

negatives) and TN (true negatives) in pixel-wise and object-wise. TPR (TP rate), FPR (FP rate),  

FNR (FN rate), OA (overall accuracy), and Kappa coefficient (KC) are computed to quantify the 

accuracy measure: 

TPR=
TP

GP
, FPR=

FP

PD
,FNR=

FN

GP
,OA=(TP+TN)/N 

KC=
OA-M

1-M
, M=

(TP+FP)×(TP+FN)+(FN+TN)×(FP+TN)

N×N
 

(12)

where GP, PD and N indicate ground truth positives; positives detected and total number of 

pixels/objects. TPR denotes the completeness of detected changes; and FPR describes the proportion 

of wrongly detected changes, which gives the errors of the proposed method. KC measures the total 

agreement between detected results and the ground truth. The detailed statistics are shown in Table 2. 

Table 2. Experimental Results  

(Pixel-Based) OA KC TPR (Object-Based) TPR FPR FNR NSCD NSCG 

Experiment 1 0.995 0.987 0.652  0.875 0.582 0.125 17 8 
Experiment 2 0.992 0.979 0.683  0.708 0.420 0.292 69 73 

NSCD: number of changed segments detected; NSCG: number of changed segments in ground truth. 

The results in Table 2 demonstrate that the proposed method achieves a KC of 0.987 and 0.979 for 

both experiments, which are mainly attributed to the large number of TN pixels. The pixel-wise 

measures require that the method not only detect the changes, but also ensure that the change segments 

should fit the ground truth well. This causes a lower TPR (0.652) in the pixel domain, where the errors 

mainly occur in the vegetation area. 

From the object-based evaluation, 87.5 and 70.8 percent are correct detections for the two 

experiments, which show the proposed method could provide valuable information to reduce the manual 

work for frequent urban monitoring. 58.2 and 42 percent of the detected segments are erroneous 

detection for the two experiments; 12.5 and 29.2 percent of changed segments are missed. These errors 

are mainly due to the uncertainties of DSM, which substantially attribute to the matching algorithm. 

The main uncertainties in the experiments come from the unwanted changes, such as seasonal 

effects of the vegetation and moving pedestrian, which essentially affect the performance of the 

matching algorithm, resulting erroneous height information. Moreover, the matching algorithm itself 

has uncertainties, which might come from noises, occlusions, quality of geo-referencing and repetitive 

patterns of the data. These uncertain factors will also lead to erroneous detections. 
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4.3.2. Analysis of the Multi-Criteria Process 

The experimental results show that most of the false positives occur in the tree canopy area, which 

are caused by matching errors and the strong seasonal effects on the greenness, and such seasonal 

effects will become much weaker if the temporal resolution increases. In addition, some artifacts with 

isotropic shape still remain on the edges of large objects owing to the matching errors, which are not 

filtered by the elongation and convexity constraints. 

It is interesting to assess the contribution of each step of the multi-criteria process. Based on 

experiment 2, Figure 9 shows the results of each step in a portion of the images. 

Figure 9. The results of each step of multi-criteria change decision (red: false positive; 

green: true positive; blue: false negative). (a) Result of initial change mask (truncated with T ). (b) Result after vegetation truncation. (c) Result after color-smooth coherence and 

(d) Result after shape filtering. (e) Statistical results of (a–d). 

 
(a) (b) (c) 

  
(d) (e) 

It can be seen from Figure 9a that the mere truncation on height difference with Thei produces many 

false positives, and the vegetation truncation eliminates most of the false positives which is induced by 

the matching uncertainties (Figure 9b). The color-smooth coherence check procedure reduces the false 

positives on both vegetation area and impervious surfaces (Figure 9c), and the final shape filtering 

removes the thin and concave structures (Figure 9d). Figure 9e shows this procedure greatly reduces 

the false positives with slight increasing the false negatives, and consequently raises the KC (from 0.84 

to 0.97). The proposed method is able to detect changed objects with larger than 2.5 m2 footprint under 

the experimented case. There are still some false positives on vegetation and building segments, and 
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they mainly sit on regular segments, where matching errors occur. In particular, the most significant 

error source is the matching artifacts on the multilayer and thin objects, which is the main limitation of 

the proposed method. 

4.3.3. Parameters 

The feature-based co-registration follows a standard BA procedure, where parameters are  

problem-independent and generally adaptable for UAV images. The H-SGM-based DSM generation 

adopts parameters that are very insensitive to imaging conditions [38]. Therefore these two procedures 

can be seen as parameter-less. The tunable parameters/thresholds of the proposed method are mainly 

from the process of multi-primitive segmentation the multi-criteria decision tree analysis. A summary 

of the tunable parameters can be seen in Table 3: 

Table 3. Tunable parameters of the proposed method 

Parameter/Thresholds Description 

Radius r for blob 

detection 

This parameter is used for the morphological top-hat reconstruction for DB, BB and BO, 

the radius value should be larger than the detected blobs (dustbins, or chimneys, etc.), 

and is robust as it increases. 

Thei for initial mask 
This parameter is a self-explanatory value, dependent on the quality of the DSM 

and the resolution, an empirical value is  Thei = 10GSD. 

τ for CS computation This parameter is dependent on the DSM quality and resolution, an empirical value is τ=2GSD. 

Telong and Tconvex 
These two thresholds are used for shape filtering of elongation and convexity, both of them are  

scale-invariant, and are used as an empirical values Telong = 0.025 and Tconvex	=	0.3. 

It is worth mentioning that some of the parameters might be tuned to match different urban 

complexity for better change detection accuracy.  is directly linked to the minimal size of the changed 

object, and during the test, overestimation of  will not result in significant difference of the final KC. 

Thei and  are related to the quality of the DSM, which depend on various factors such as the quality of 

the images, intersection angle and scene complexity. In practice, the given estimations of Thei and r in 

Table 3 performs well for H-SGM generated DSM. Since the parameters are mainly resolution 

dependent, it is intuitive to transfer the proposed methods to UAV images with different resolution 

under different scenario. Once an area is selected for frequent monitoring, the parameters can be 

optimized and fixed to achieve high automation. Moreover, most of the disturbances of the moving 

objects are inherently eliminated by constraining the minimal number of rays, while makes the 

proposed method more practical. 

5. Conclusions 

This paper presents an objected-based change detection method on UAV images for frequent urban 

monitoring. Two experiments were performed using regularly overlapped UAV images with 5 cm 

footprint. For each experiment, UAV images were taken with 15-month intervals, and the images from 

the earlier date were geo-referenced with GCPs. An overall accuracy of 99.6% and 99.2% were 

archived for both of the experiment. 58.2% and 42% wrong detection were observed due to the strong 

seasonal variance of the datasets. Most of the significant changes were detected, which showed that the 
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proposed method could be used to reduce the manual work on inspecting urban changes and dynamics. 

In sum, the contribution of the work lies into the following aspects: 

(1) This paper has explored the capability of UAV for automatic urban monitoring by integrating 

the color and height information, which has rarely been investigated before. 

(2) The proposed method adopts a general BA framework to solve the registration of the  

multi-temporal dataset, which has achieved higher alignment accuracy (RMSE of 0.12 m) compared to 

traditional GCP-based registration (RMSE of 0.45 m) with the experiment dataset. 

(3) A novel multi-criteria strategy is adopted combining multi-primitive segmentation, which  

has raised the KC progressively from 0.84 (initial change mask truncated with height difference)  

to 0.97 (final change mask). 

However, since the increased resolution does not necessarily facilitate the same level of 

improvement for change detection, the disturbances from trees and omission errors due to matching 

ambiguity are also observed. Moreover, a UAV drone with longer battery life is expected to greatly 

enhance the practical value for this urban monitoring. 

In future work, a more advanced and robust matching algorithm with higher edge-preservation 

capacity is planned. The near-infrared camera is expected for vegetation detection to reduce the false 

positives on the trees. More shape features such as solidity and eccentricity will be tested to filter false 

positives induced by matching errors on object boundaries. Furthermore, fixed-wing UAVs with 

longer operation time for large scene change detection will be explored and the use of oblique images 

will be investigated. 
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