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Abstract: The estimation of evapotranspiration of blue water (ETb) from farmlands, due to 

irrigation, is crucial to improve water management, especially in regions where water 

resources are scarce. Large scale ETb was previously obtained, based on the differences 

between remote sensing derived actual ET and values simulated from the Global Land 

Data Assimilation System (GLDAS). In this paper, we improve on the previous approach 

by enhancing the classification scheme employed so that it represents regions with 

common hydrometeorological conditions. Bias between the two data sets for reference 

areas (non-irrigated croplands) were identified per class, and used to adjust the remote 

sensing products. Different classifiers were compared and evaluated based on the generated 

bias curves per class and their variability. The results in Europe show that the k-means  

classifier was better suited to identify the bias curves per class, capturing the dynamic 

range of these curves and minimizing their variability within each corresponding class. The 

method was applied in Africa and the classification and bias results were consistent with 

the findings in Europe. The ETb results were compared with existing literature and provided 

differences up to 50 mm/year in Europe, while the comparison in Africa was found to be 

highly influenced by the assigned cover type and the heterogeneity of the pixel. Although 

further research is needed to fully understand the ETb values found, this paper shows a more 

robust approach to classify and characterize the bias between the two sets of ET data. 
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1. Introduction 

Water management in agriculture has been always important, especially in areas where water 

resources are scarce. In this context, it is relevant to distinguish between the sources of the usage: 

water supplied by precipitation (called green water) and irrigation (called blue water). 

Recent studies obtained blue and green water usage in agriculture at large scale, using data from 

national agricultural statistics, reports and climatic databases, and making use of hydrological models 

based on the calculation of actual evapotranspiration (ETactual) [1–4]. Moreover, several studies tackled 

the problem of retrieving global irrigated areas by using national statistics of areas equipped for 

irrigation [5] and by statistically analyzing remote sensing products [6].  

The potential of using remote sensing data for global studies of green and blue waters use and water 

footprint estimations is discussed in Romaguera et al. [7]. The first approaches to exploit those data at 

large scale are shown in Romaguera et al. [8,9], where the use of the different components of the water 

cycle is explored, together with the use of land surface models. Other works used remote sensing to 

evaluate irrigation performance at regional scale [10–12]. 

In particular, Romaguera et al. [8] obtained large scale blue water evapotranspiration (ETb), i.e.,  

due to irrigation, based on the differences between remote sensing ETactual obtained from the Meteosat 

Second Generation (MSG) satellites [13] and ETactual values simulated from the Global Land Data 

Assimilation System (GLDAS) [14]. In general, it was found that there was a systematic bias between 

the two datasets in rain-fed pixels and that this difference was variable in time and space. The bias 

amplitude changed along the year, roughly resembling a positive concave curve. The maximum 

amplitude value reached up to 3 mm/day and occurred in the months of spring and summer in northern 

latitudes. The spatial variability of the bias was associated in this paper to vegetation characteristics 

and the remote sensing observation angle. Romaguera et al. [8] calculated the bias per day and used 

three parameters to generate a classification map for Europe to discriminate areas with different bias 

patterns: the maximum value of the NDVI (NDVImax), the season where NDVImax occurred, and the 

viewing zenith angle (VZA) of the sensor on board MSG. Thresholds were assigned to distinguish 

between classes. Recent work from Romaguera et al. [15] showed that the classification scheme was 

not sufficient to describe the variability of the bias estimates in the continent of Africa and proposed 

the inclusion of a climatic indicator in the selection of parameters for the classification.  

Similar results in terms of bias between these two datasets were obtained by Ghilain et al. [13] and 

the validation report from the Land Surface Analysis Satellite Applications Facility (LSA–SAF) [16], 

who showed that the bias might be explained by the differences in the inputs of incoming solar 

radiation, the ratio between leaf are index (LAI) and stomatal resistance, and land cover type. 

Yilmaz et al. [17] identified discrepancies in insolation inputs and analyzed differences in soil 

moisture, when comparing these data sets in the region of the Nile River basin. Romaguera et al. [8] 

emphasized that the GLDAS simulations did not account for extra water supply due to irrigation and 
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consequently it was expected that they underestimate ETactual during the cropping season in irrigated 

areas. Therefore in the aforementioned work, the differences between these two estimates were 

corrected for the bias in rain–fed croplands, to obtain blue water evapotranspiration according to: 

biasETETb 
 (1)

ΔET is the difference between MSG ETactual (MSG–ET in the following) and GLDAS ETactual 

(GLDAS–ET in the following), and bias is this difference in ETactual calculated in reference areas, i.e., 

rain–fed croplands where irrigation practices are not present. 

In this paper, we intend to solve the drawbacks of the previous methodology by improving  

the classification scheme in order to achieve a better spatial representation of the bias in rain–fed  

croplands, which results in better estimates of ETb. 

First, a better choice of parameters is proposed to represent regions with common hydrometeorological 

conditions, based on three processes at which ETactual estimation may be affected, namely vegetation 

characterization, atmosphere/forcing definition, and land–atmosphere interaction. Secondly, an 

alternative strategy for classification is adopted, based on the use of classifiers, instead of the selection 

of thresholds published in the aforementioned work. This makes the methodology generic and robust. 

The suitability of these classifiers is explored via the classification maps and the bias curves obtained  

per class. 

Section 2 explains the selection of parameters for the classification and the properties of  

the selected classifiers. Next, in Section 3, the datasets used in this paper are detailed. The Results 

section includes the classification maps, the bias curves and ETb outputs compared with the original 

methodology. The application of the method to the region of Africa is shown in Section 5, together 

with the comparison of the results with existing literature. Finally relevant issues about the proposed 

improved methodology can be found in the Discussion and Conclusions sections. 

2. Method 

The objective of this work is to improve the existing methodology for ETb estimation [8] on two 

aspects: the selection of parameters for the classification of the study area and the 

classification method. 

2.1. Selection of Parameters for the Classification 

The hypothesis here is that the classification output discriminates between areas with different bias 

curves, i.e., differences along the year of MSG–ET and GLDAS–ET estimates. Therefore, potential 

variables need to be identified in order to explain the differences in ETactual retrievals. In the present 

work, a more complete selection of parameters is carried out by accounting for three processes at 

which ETactual estimation from both sources may differ, namely vegetation characterization, 

atmosphere/forcing definition and land–atmosphere interaction. In order to account for the vegetation 

properties, a typical indicator is selected, the NDVI, and in particular its maximum value along the 

year, NDVImax. Precipitation and net radiation are combined into a climatic indicator (CI) to account 

for the driving forces for ETactual, as follows [18]:  
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CI   (2) 

where L(J/kg) is the latent heat of vaporization, P (mm) is the annual precipitation and Rn (W/m2) is 

the annual net radiation (obtained as the sum of net shortwave (Sn) and net longwave (Ln) radiation). In 

other words, the LP term is the amount of energy necessary to evaporate the available precipitation P.  

The land–atmosphere interaction is included in the selection of parameters by means of the monthly 

accumulated ETactual, and in particular the maximum value along the year (ETmmax). This aggregated 

value is chosen in order to reduce relative errors in ETactual estimation. Since the focus of this paper is 

to obtain the ET bias curves per class, including ET itself in the classification inputs contributes to 

capture the observed variability. Moreover, as shown in previous literature [8,13], a seasonality was 

found in this bias. The position of the bias maxima was variable and, therefore, it was reasonable to 

select t_ETmmax (month when ET monthly maxima occurs) to account for these different patterns. 

Being aware that other potential variables might have been included in this selection, such as land 

surface temperature and albedo, effective precipitation, soil moisture, LAI or topography, the number 

was limited in order to reduce data redundancy when the parameters were correlated or equivalent in 

terms of climate and vegetation interaction. Moreover, the use of too many variables in a classification 

procedure may decrease the classification accuracy [19].  

2.2. Classification Methods  

Many classification methods exist in the literature and all have their own merits. However,  

the question of which classification approach is suitable for a specific study is not easy to answer [20]. 

Romaguera et al. [8] used a basic classification method, based on thresholds, as follows: NDVImax 

higher/lower than 0.4, October to March and April to September periods for the NDVImax to occur, and 

VZA intervals of 10°. 

In this paper, the use of three different classifiers was explored and discussed. Firstly, a common 

classification approach was chosen: an unsupervised classification based on k–means. Secondly,  

a more advanced learning method was selected: an unsupervised classification based on the 

expectation–maximization algorithm. These two approaches do not use training samples, they work 

per pixel, they are hard classifiers (i.e., output is a definitive decision) and they do not use spatially 

neighboring pixel information for the classification, all aspects that are appropriate to this study. 

Thirdly, an image transform of the selected parameters was carried out by using the principal 

component analysis in order to reduce data redundancy of correlated bands and concentrate the 

information contents in the transformed images, exploring the possible clustering. 

2.2.1. Unsupervised Classification Based on K–means  

An unsupervised classification of the study area was executed in order to cluster pixels based on  

the k–means statistical technique [21]. This method calculates initial mass means evenly distributed in 

the data space and then iteratively clusters the pixels into the nearest class using a minimum distance 

technique. In each iteration, classes’ means are recalculated and pixels are reclassified with respect to 

the new means. All pixels are classified to the nearest class unless a standard deviation or distance 
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threshold is specified, in which case some pixels may be unclassified if they do not meet the selected 

criteria. This process continues until the number of pixels in each class changes by less than the 

selected pixel change threshold or the maximum number of iterations is reached. The four-layer input 

file contained NDVImax, ETmmax, t_ ETmmax and CI as described in the previous section. A maximum of 

100 iterations was fixed to ensure completion of the algorithm, and the default value of 5% was 

conserved for the pixel change threshold [22]. 

Neither standard deviation, nor distance thresholds were fixed. In order to select the optimal number 

of clusters and to evaluate the clustering found by the algorithm, a scattering distance (SD) quality 

index was calculated according to Rezaee et al. [23], which accounts for the intra–cluster and  

inter–cluster distances as: 

)()()( cDiscScatacSD   (3) 

where c is the number of clusters, Scat(c) is the average scattering and indicates the average 

compactness of the clusters (i.e., intra–cluster distance), Dis(c) is the total separation between the c 

clusters (i.e., an indication of inter–cluster distance), and a is a weighing factor equal to Dis(cmax), 

where cmax is the maximum number of input clusters.  

A small value of Scat(c) indicates a compact cluster. The second term Dis(c) is influenced by  

the geometry of the cluster centers and increases with the number of clusters. The optimal value for  

the number of clusters present in the data set is such that minimizes the SD index.  

In the present research, the maximum number of clusters for the unsupervised classification was set 

to 20, assuming a reasonable minimum percentage of pixels per class of 5%. The classification was 

obtained for 5 up to 10 clusters and SD was calculated. As a result, the number of clusters for which 

the SD quality index was minimized was found to be 6 in the region of Europe. 

2.2.2. Unsupervised Classification Based on the Expectation–Maximization Algorithm (EM)  

The Expectation–Maximization algorithm [24] is an iterative procedure that estimates the 

probabilities of the elements to belong to a certain class, based on the principle of maximum likelihood 

of unobserved variables in statistical models. The EM iteration alternates between performing an 

expectation (E) step, which creates a function for the expectation of the log–likelihood evaluated using 

the current estimate for the parameters, and a maximization (M) step, that computes parameters 

maximizing the expected log–likelihood found on the E step. These parameter estimates are then used 

to determine the distribution of the latent variables in the next E step. This classification was 

performed using the machine learning software WEKA version 3.6.9 (Waikato Environment for 

Knowledge Analysis) [25], using the implemented Simple EM classifier. This software contains tools 

and algorithms for the analysis of data and predictive modeling, where the system is trained and can 

learn from the data and provide classified outputs. EM assigns a probability distribution to each 

instance which indicates the probability of it belonging to each of the cluster and can decide how many 

clusters to create by cross validation. In the current research, the maximum number of iterations was 

set to 100 to ensure completion of the algorithm. Moreover, the software allowed to test the model 

output by using the 66% of the data as a training set and the rest for testing. 
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2.2.3. Classification Using Principal Component Analysis (PCA)  

The principal component analysis (PCA) [26] consists of a transformation of the input dataset 

(multilayer file with NDVImax, ETmmax, t_ETmmax and CI) to produce uncorrelated output bands, 

segregate noise components, and reduce the dimensionality of data sets. The characteristic matrix 

(covariance matrix or correlation matrix) of the variables, the eigen values, the eigen vectors (which 

are the directions of the principal components (PC)), and the coordinates of each data point in the 

direction of the PC’s were calculated. A new set of orthogonal axes was found, which had their origin 

at the data mean and which were rotated so the data variance was maximized. PC output bands were 

linear combinations of the original spectral bands and were uncorrelated. The relationships found between 

the principal components, which led to the clustering of the data are shown in the results section. 

3. Data Sets 

Table 1 describes the main characteristics of the datasets used in the present work which are 

detailed in the following subsections. 

Table 1. Specifications of the data sets used in the present work. 

Data Source 
Spatial  

Coverage 

Spatial  

Resolution 

Temporal 

Resolution 
Details 

ETactual 

MSG MSG disk * 3 km at nadir 30’ 

Availability of data: 

Europe: January 2007–present 

The rest: September 2009–present 

GLDAS Global 
0.25° 

(~30 km at equator) 
3 h 

Availability of data: 

February 2000–present 

Sn, Ln, P  GLDAS Global 
0.25° 

(~30 km at equator) 
3 h 

Availability of data: 

February 2000–present 

Land Cover MERIS  Global 300 m Static GlobCover map calculated in year 2009 

NDVI AVHRR 

Europe 

1 km Monthly 

Generated by DLR 

Period: year 1997 

Africa 
Generated by IGBP 

Period: April 1992–March 1993  

Irrigation Blue WF Global 
5 arcmin 

(~10 km at equator)  
Static Data: blue WF per year[3] 

* Meteosat disk covers latitudes between −60° and +60° and longitudes between −60° to +60°; ** List of 

acronyms: MSG (Meteosat Second Generation), GLDAS (Global Land Data Assimilation System), MERIS 

(Medium Resolution Imaging Spectrometer), AVHRR (Advanced Very High Resolution Radiometer), DLR 

(Deutsches Zentrum für Luft– und Raumfahrt), IGBP (International Geosphere–Biosphere Programme Data), 

WF (Water Footprint). 

From a technical point of view, the combination of data of different spatial resolution, extent  

and geographical projection was tackled by creating a layer stack where the data were resampled and 

re–projected to a common output projection. The present work was carried out at the resolution of the 

MSG–ET products. 
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3.1. Evapotranspiration and Cover Type Data  

Based on Equation (1), the main datasets for obtaining the ETb were the ETactual products from the 

MSG satellites provided by the Land Surface Analysis Satellite Applications Facility (LSA–SAF) [13] 

(MSG–ET) and ETactual from the Global Land Data Assimilation System (GLDAS) generated with the 

Noah land surface model [27,28] (GLDAS–ET). These datasets are available from the LSA–SAF 

website (http://landsaf.meteo.pt/) and the NASA Goddard Earth Sciences Data and Information 

Services Center (GES DISC) (http://disc.sci.gsfc.nasa.gov/hydrology/data-holdings) respectively.  

The GlobCover land cover map (ver. 2.3) [29] was used to identify the land cover type, e.g., rain–fed 

croplands (where the bias was calculated) and bare areas (where ETactual rates are low) (see Figure 1). 

More detailed information about these datasets can be found in Romaguera et al. [8]. 

Figure 1. Pixel type (only rain–fed croplands, rest of croplands, bare areas, others) from 

the GlobCover classification map. 

  

In the research presented, daily MSG–ET values were obtained by temporal integration of the  

48 instantaneous values per day, during the year 2010. Linear interpolation in time was used to fill in 

missing data, due to non–acquisitions. Daily MSG–ET were not considered if missing data occurred 

during periods of one hour or longer. Daily GLDAS–ET values were obtained by temporal averaging 

of the eight provided ETactual rates per day. No missing data were found in this dataset.  

3.2. Data for the Classification  

As explained in previous sections, four parameters were selected for the classification of the study 

area: (a) NDVImax; (b) a climate indicator (CI) based on net radiation, latent heat of vaporization and 

precipitation; (c) the maximum value of monthly aggregated ET (ETmmax); and (d) the month where  
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the ETmmax occurs (t_ETmmax). The selected study area was Europe and the year was 2010. 

Additionally, the classification was also obtained in Africa for testing the method. 

In order to ensure consistency of the data, the NDVImax was extracted from the source related  

to MSG–ET retrieval. That is the ECOCLIMAP database [30], which includes the LAI values that are 

used in the MSG–ET algorithm. These values are obtained by taking in situ maximum and minimum 

values of LAI and considering Advanced Very High Resolution Radiometer (AVHRR) NDVI series to 

impose seasonality per class cover. For Europe, the monthly NDVI values generated during the year 

1997, by the Deutsches Zentrum für Luft– und Raumfahrt (DLR) [31], are considered, and, for Africa 

the International Geosphere–Biosphere Programme Data (IGBP) 1 km AVHRR NDVI composites 

from April 1992 until March 1993 [32]. Although these values may not represent irrigated vegetation 

in the year of analysis, they influence the MSG–ET retrieval and therefore the difference with 

GLDAS–ET, which is the focus of this research. 

CI was calculated for the year 2010, according to Equation (2), by yearly aggregating Rn and P. Net 

radiation was obtained as the sum of net shortwave (Sn) and net longwave (Ln) radiation, which were 

obtained from the GLDAS dataset, together with the precipitation values. 

GLDAS–ET values were aggregated monthly and the maximum value was obtained (ETmmax), as 

well as the month when it occurred (t_ETmmax). Radiation and ETactual values in GLDAS were given as 

rates every 3 h, so the proper way to calculate the yearly/monthly values was by temporal averaging of  

the data corrected by the time conversion factor. 

The data sets were filtered according to the following criteria. Firstly, bare pixels defined by  

the GlobCover classification map were masked. These are arid areas, where the estimation of t_ETmmax 

may be affected by fluctuations of the low values of ETactual. Secondly, coastal pixels with nonrealistic 

values were also masked. This effect appeared when resampling the data to a common grid and pixel 

size. Finally, pixels with negative NDVImax value were also masked for the calculations. These were 

found in the datasets in areas close to water bodies. Figure 2 shows the selected data sets for the 

classification and the study area. Finally, every dataset was normalized dividing by its maximum and 

the generated four–layer file was used for the classifications. 

3.3. Data for the Test of the Method 

The global blue water footprint (WFb) of crop production estimated by Mekonnen and Hoekstra [3] 

was used to compare the ETb outputs produced in Europe and Africa. The water footprint (WF) is 

defined as the water consumed for crop production, where green and blue stand for precipitation and 

irrigation water usage. In their method, the computations of crop evapotranspiration were done 

following Allen et al. [33] for the case of crop growth under non–optimal conditions. The model takes 

into account the daily soil water balance and climatic conditions for each grid cell. Climatic and 

reference evapotranspiration inputs are averaged for the period 1996–2005 and results are given as 

average over that time interval. WFs are typically given in units of m3/ton or mm/year. In the last case, 

the yield is not considered and therefore WFb corresponds to total ETb. This product has global 

coverage and a spatial resolution of 5 arcmin. 
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Figure 2. Study area and inputs used in the present paper: (a) NDVImax; (b) Climate 

indicator; (c) ETmmax; (d) t_ETmmax. 

 
(a) 

 
(b) 

(c) (d) 

4. Results 

This section shows the classification maps generated with the three selected methods. The k–means 

and EM classifiers have a straightforward application. For the PC approach, the relationship between 

the first and third PC allowed identifying 11 vertical clusters, whose pixels were assigned to 11 classes 

(named from 1 to 11, from left to right of the Figure 3). Neither clear relationships nor groupings could 

be established between the PC1 and the components PC2 and PC4. 

4.1. Classification Maps 

Figure 4 shows the classification maps obtained using the new set of input parameters and the three 

classifiers in the region of Europe. The map generated in Romaguera et al. [8] (ROM in the following) 

is also included for the sake of comparison. Information about the abundance of different cover types 

is shown per class. Three cover types are considered: (i) only rain–fed croplands; (ii) rest of croplands 

(irrigated and mixed types); and (iii) others (forests, shrublands, woodlands, sparse vegetation, 

grassland, savanna, lichens/mosses), according to the GlobCover map. Additionally, the number of 

rain–fed croplands (RC) and the ratio of these over the total croplands (RC/TC) are incorporated.  
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Figure 3. Scatter plot of first principal component (PC1) versus the third (PC3) obtained in 

Europe from the classification dataset proposed in this paper. 

 

Figure 4. (a) Classification maps obtained using the methods ROM, k–means, EM and 

PCA; (b) Abundance of cover type per class (i) only rain–fed croplands; (ii) rest of 

croplands (irrigated and mixed types); or (iii) others (forests, shrublands, woodlands, sparse 

vegetation, grassland, savanna, lichens/mosses); (c) Total of rain–fed cropland pixels (RC) 

per class and ratio between RC and the total number of cropland pixels (RC/TC). 

(a) Classification map (b) Abundance of cover type 
(c) rain–fed cropland pixels (RC) and 
ratio with total cropland pixels (TC) 

 
* Only pixels in the map are counted for plotting 

Class #RC RC/TC (%) 

1 750 24 

2 302 14 

3 1315 33 

4 328 21 

5 2832 45 

6 40 14 

7 13,872 40 

8 332 13 

9 6032 47 

10 10 7 

11 15,142 40 

12 32 7 

 

 
Class #RC RC/TC(%) 

1 1889 14 

2 1654 32 

3 6710 34 

4 13,181 51 

5 17,996 43 

6 7880 34 
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Figure 4. Cont. 

  

Class #RC RC/TC (%) 

1 4989 29 

2 13,222 50 

3 16,876 44 

4 2223 16 

5 9573 35 

6 301 27 

7 88 39 

8 2038 39 

  

 
Class #RC RC/TC (%) 

1 1 3 

2 7 11 

3 142 8 

4 674 16 

5 4075 26 

6 28,279 44 

7 15,948 38 

8 152 36 

9 8 14 

10 24 47 

11 0 0 
 

The number of classes generated was 12, 6, 8, and 11 in the ROM, k–means, EM and PCA 

classifications respectively. The numbers assigned to the classes must be understood as labels and their 

value is not necessarily related between the different classification outputs. In general, the proposed 

classifications had a visually more continuous spatial distribution than ROM, which presented the 

characteristic rings due to the intervals chosen in the VZA criteria. Moreover, some similar grouping 

can be observed in the generated classifications, such as the areas of Spain and East and center Europe 

in EM and PCA or Eastern part of Norway in k–means and EM, although this comparison is not easy 

to evaluate. The distribution of the classes in the k–means and EM classification showed the influence 

of all four input parameters, whereas in the PCA classification output, the parameter determining the 

classes was the t_ETmmax. This is associated to the fact that the third component of the PCA captures 

the variability (after transformation) of the discrete values of t_ETmmax. 

Two majority classes were found in the ROM classification, as well as in PCA. That is represented 

in Figure 4b by the total height of the columns. However, the abundance of the classes in k–means and 

EM was more balanced, with no significant minority classes in the case of k–means.  

The blue color in the graphs indicates the amount of rain–fed croplands per class, which is also 

indicated in Figure 4c. This number is important since the bias is calculated in this cover type. 

Therefore in classes 6, 10, 12 from ROM and classes 1, 2, 9, and 10 from PCA, the bias was calculated 

with relatively few samples. Additionally, class 11 in PCA had no rain–fed pixels and the bias could 

not be calculated. 
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Another relevant factor is the relative abundance of rain–fed croplands with respect to the total 

number of croplands (rain–fed plus rest of croplands) per class. The ETb is ultimately calculated in all 

croplands, and therefore this ratio (named RC/TC in the following) is important. The higher RC/TC is, 

the more representative the bias is for all the pixels in a class, that is in classes 3, 5, 7, 9, 11 from 

ROM, 2 until 6 in k–means, 2, 3, 5, 7, 8 in EM, and 6, 7, 8, 10 in PCA. These classes had a ratio higher 

than 30%, as can be observed in Figure 4c. 

As a result of this analysis, it was concluded that the k–means and EM classification schemes 

improved the existing one (ROM) in two aspects: the spatial pattern of the classification map and  

the increase in number of rain–fed pixels and RC/TC per class, with less minority classes, showing  

the k–means a better performance. The PCA approach showed weaker changes. 

The evaluation of the performance of the classifications is detailed in the Discussion section. 

4.2. Bias Curves  

The bias values were obtained per pixel at monthly scale. Monthly ETactual values were obtained 

from the daily MSG–ET and GLDAS–ET estimates during 2010. Due to the lack of some MSG–ET 

data, and in order to obtain a consistent bias curve, the daily values were only aggregated when both 

datasets existed. Then, monthly bias values were obtained per pixel and yearly curves were averaged 

per class, using rain–fed pixels only, for each of the classifications. 

Figure 5 shows the bias curves using the three proposed classifiers and ROM. Additionally the 

mean bias curve using all rain–fed croplands is plotted as a reference. Note that they are discrete 

monthly values that are connected to facilitate visual interpretation. 

In general it was observed that the k–means and EM classifications achieved a better separation of 

the bias curves, compared with ROM and PCA. The k–means curves (Figure 4a) presented a minimum 

around the month of June in classes 3, 4, 5, and 6 with a general convex shape and amplitude up to  

−28 mm/month. A local maximum was found around August. The curves of classes 1 and 2 were 

concave and corresponded to classes with relatively low number of rain–fed croplands, achieving for 

class 1 the lowest RC/TC ratio (see Figure 4c). 

Figure 5. Bias between MSG–ET and GLDAS–ET obtained in rain–fed pixels and 

averaged per class, using different classifiers. (a) k–means; (b) EM; (c) PCA; (d) ROM; (e) all 

rain–fed pixels. Note: Monthly discrete values are connected to facilitate visual interpretation. 

(a) k–means (b) EM 
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Figure 5. Cont. 

 
(c) PCA 

 
(e) All rain–fed croplands 

 
(d) ROM 

 

Classes 1, 2, 3, 5, and 8 in EM also presented a convex bias with maximum amplitude around  

May–June with values up to −28 mm/month. A local maximum was found around August. Classes 4, 6 

and 7 were concave; 4 and 6 corresponded to lowest ratio RC/TC and class 7 to lowest value of  

rain–fed croplands. 

In the PCA classification, classes 5, 6, and 7 behaved in a similar way as the convex curves 

described for k–means and EM. These were the classes with higher number of rain–fed pixels and also 

high RC/TC. Classes 2, 3, 4, 8 and 10 were concave and presented more irregular bias curves. These 

were less abundant classes, some of them not even noticeable visually in the figure, in general they had 

lower ratio RC/TC and relatively low number of pixels. Class number 9 presented an intermediate 

pattern and classes 1 and 11 were not plotted since they contained only one rain–fed pixel or none. 

The biases obtained from the ROM classification were more fuzzy and irregular. Some of  

the classes (3, 5, 7, 8, 9, and 11) presented a convex shape similar to the aforementioned curves, but  

the pattern was irregular and it was difficult to distinguish between classes and extract conclusions 

regarding the amount of rain–fed croplands and RC/TC.  

Finally, Figure 5e shows the variability of the bias curve when all rain–fed croplands are averaged and 

no classes are taken into account. The position of the minimum and local maxima is consistent with what 

it has been described in this paper, and the amplitude is in general flattened due to the averaging. 

In general the k–means and EM approach represented an improvement with respect to the ROM 

bias results in terms of separation of the bias curves, which means a better discrimination of the 

classes. Furthermore, differences in the maximum amplitude of the curves were also found. In order to 

understand them better, Figure 6 shows the comparison of the bias values around the maximum (month 
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six) (represented as dots) together with the standard deviation associated to it (represented as error bars 

and also in columns). This was obtained for all the classes and for the mean curve where no classes are 

assigned (Figure 5e). 

Figure 6 shows how the standard deviation (σ, in columns and secondary Y axis) changed when 

adding a classification in the method instead of using a single bias curve averaged for all rain–fed 

croplands. In general, the diminution of σ was found in majority classes. In the case of the k–means 

classifier, σ was reduced in classes 4, 5, and 6 and slightly increased in classes 1, 2, and 3. For the EM 

classifier, σ increased in classes 1, 4, 6, 7, and 8. In general terms, σ increased in the PCA 

classification, and the values in ROM fluctuated depending on the class. It was also observed that the 

increase of σ was related with the decrease of number of rain–fed croplands and RC/TC in the class. 

Figure 6. ET bias at month six and standard deviation (error bars and columns) obtained 

for all the classifiers and classes discussed in this paper. The label “all” refers to the 

calculation with all rain–fed croplands, where no classes are assigned.  

 

In terms of the bias value, the classifiers captured different intervals of variability: between −27 and 

10 mm/month in k–means, between −23 and 15 mm/month for EM, between −18 and 20 mm/month  

for PCA and between −19 and −2 mm/month for ROM. The value of the bias for the single curve was 

−15 mm/month. Therefore the proposed classifiers captured a higher range of bias with respect to ROM. 

Previous literature showed the differences between MSG–ET and GLDAS–ET [13,34]. For the 

region of Europe, these studies showed the bias relative to the mean MSG–ET, with values ranging 

from −0.5 to 0.5. The mean MSG–ET in the month of July was also plotted in this literature, with  

a value of 0.22 mm/h calculated in the range 9–12UTC. If we assume a constant ETactual rate, and 10 h 

of sun, the aggregated value is 66 mm/month. This value combined with the ±0.5 values of relative 

bias, produces values of absolute bias up to 33 mm, which is consistent with the intervals found with 

the proposed classifiers. 
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As a result of this analysis, the k–means approach showed to improve the existing methodology and 

perform better than EM and PCA in different aspects related with the bias estimation; first, the ability 

to differentiate bias curves; second, by reducing the standard deviation of the data when introducing 

the classes; third, by capturing the expected variability of the maximum bias.  

Therefore based on the conclusions extracted from the classification and bias analysis, the k–means  

is used in the following to estimate ETb, since it was shown to be the most suitable approach for  

this research. 

4.3. ETb Estimation  

ETb was obtained in the region of Europe in 2010 following Equation (1), the k–means 

classification and the bias results. ΔET values were calculated daily when both datasets were available 

and then accumulated monthly. Monthly bias corrections were undertaken, and the resulting positive 

ETb values were aggregated to a yearly scale.  

According to the method described in Romaguera et al. [8], the GlobCover map was used to mask 

all cover types except for the rain–fed croplands, irrigated croplands and mixed types that include 

croplands. Although in that publication a value of 50 mm was suggested as a threshold from which the 

method was able to detect irrigation, in the current research, no threshold was considered based on the 

fact that small values of ETb may be also representative for heterogeneous pixels. 

The same procedure was used to obtain ETb using the classification scheme provided in the 

literature (ROM). The comparison showed how the outputs changed when using a different 

classification scheme. ETb reached differences up to 60 mm/year, being ETb (k–means) higher in some 

regions of Ukraine and lower in some regions of Spain, Turkey and coast of France. The spatial 

distribution of these differences is related with the classification maps, being for example the red areas 

in Figure 7 associated with class number 2 of the k–means classification that has a convex shaped bias. 

Figure 7. Difference between yearly ETb (ROM) and ETb (k–means) obtained for the year 2010. 

 

5. Application of the Method 

The study area selected to test the method was the whole Meteosat observation disk, which included 

Europe and Africa, in the year 2010. The analysis was carried out by separating it in three sectors 

namely Europe, North Africa, and South Africa, like the MSG–ET products delivered by LSA–SAF. 

These sections are separated at the latitudes of 34°N and the equator approximately. 
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Following the method explained in the present paper, a classification of every sector was carried out 

with the k–means algorithm using the proposed input data sets. Pixels labeled as bare areas by the 

GlobCover map were excluded from the classification. The optimal number of classes was calculated 

per sector following the procedure explained in Section 2.2.1. The bias curves per class in the rain–fed 

pixels of North Africa and South Africa are plotted in Figure 8.  

Figure 8. Bias curves obtained in rain–fed pixels of the sectors (a) North Africa and 

(b) South Africa. 

 
(a) 

 
(b) 

Similarly to the conclusions found in Europe using the k–means approach (Figure 5), the curves 

present distinguishable patters with different amplitudes and shapes. Classes 1, 4 and 6 in North Africa 

present more defined convex bias curves which correspond to highest numbers of rain–fed pixels and 

ratio RC/TC, whereas classes 3 and 7 are represented by the lowest number of rain–fed pixels and ratio 

RC/RT. In the sector of South Africa, the curves present a shift of about six months with respect to  

the sectors of Europe and North Africa. This is due to the seasonality patterns of the southern 

Hemisphere. The most abundant classes in terms of rain–fed pixels were classes 2, 4, and 7. However, 

due to the relatively low quantity of rain–fed pixels in this sector, the ratio RC/TC is below 10% for all 

the classes in South Africa. 

Equation (1) was used in all the study area to calculate monthly ETb and the positive values were 

aggregated to a yearly scale. These were compared with the values of blue water footprint (WFb) for 

crop production estimated by Mekonnen and Hoekstra [3]. For consistency, the areas labeled with no 

irrigation croplands in Mekonnen and Hoekstra [3] were masked (see Figure 9). 

The mean value of the differences found in Europe and Africa was 27 and 62 mm/year with 

standard deviation of 62 and 142 mm/year, and rmse of 44 and 155 mm/year. No straightforward 

correlation was found between the two datasets. Differences between the two methods were found to 

be below 50 mm/year in most of Europe and in some regions of Africa, although in this area the 

discrepancies (in positive and negative sign) were higher as also shown by the statistical indicators. 

Several reasons exist to explain the magnitude and sign of the differences.  

First, from a methodological point of view, Mekonnen and Hoekstra [3] used the cropmap of 

Monfreda et al. [35] to correct the calculated ETactual with the percentage of cropland per pixel, and 

then the irrigated area map from Portmann et al. [36] to correct for the area used for irrigation. This 
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resulted in values of annual ETb lower than the ones generated in this paper, as it can be observed in 

most of Europe and some regions in Africa indicated with green color.  

Figure 9. Difference between ETb generated in this paper and the WFb (mm/year) given by 

Mekonnen and Hoekstra [3]. 

 

Higher discrepancies (in orange and red) were found in mid Africa. This can be explained based on 

the cover type and pixel heterogeneity, since these are areas labeled as forests and shrublands by  

the GlobCover map. The method by Mekonnen and Hoekstra [3] provided low values of ETb (below  

1 mm/year) in these mixed pixels due to low value of irrigated cropland area. However, the method 

presented in this paper and the bias estimation were not developed for cover types different than 

croplands, and therefore the values obtained in these areas are not realistic and should be masked  

as indicated by Romaguera et al. [8]. This is the case also of the forested areas in Spain, Italy, Greece,  

and Turkey. 

The region of Ukraine presented higher values of ETb compared with the estimates given by 

Mekonnen and Hoekstra [3]. This can be explained by a combination of factors. Low values of ETb 

were obtained by Mekonnen and Hoektra [3] in the majority of this area. Higher values were obtained 

by the proposed method, which were influenced by the high values of ΔET found in the inputs. 

Moreover, this region is located in the extremes of the Meteosat observation disk, which might 

influence the accuracy of the remote sensed ETactual estimates. 

Areas painted in cyan were labeled as bare areas by the GlobCover map and were masked in  

the classification carried out in the present paper. That was done to avoid misclassification caused by 

the fluctuation of low ETactual rates in these areas. Therefore, the method did not provide ETb values, 
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whereas Mekonnen and Hoekstra [3] estimated values of ETb below 1 mm/year. Moreover, other bare 

areas were also masked in the present paper and they provided significantly high values of ETb in the 

estimates of the literature. That was the case of the White Nile in Sudan and some areas in Morocco.  

Mekonnen and Hoekstra [3] provided significantly higher values of ETb in the region of the Nile 

basin. These are areas where the assigned cropland irrigated area from Portmann et al. [36] was higher 

than 100%, a fact that was related to multiple cropping practices. ETb estimates were higher than  

1000 mm/year in this case. However, the method presented in this paper relied only on the differences 

between the ETactual inputs from MSG and GLDAS and the bias correction, achieving annual values in 

this region of 600 mm/year. 

Moreover, the discrepancies in some mountainous areas like Mozambique, Ethiopia or north of 

Italy, may be associated to the effect of the terrain on the radiation. In zones of complex topography, 

variability in elevation, surface slope and aspect create strong spatial heterogeneity in solar 

distribution, which determines air temperature, soil temperature, ET, snow melt and land–air 

exchanges. Therefore, MSG–ET satellite retrievals may need a slope and aspect correction to radiation 

inputs in areas of significant relief. Some remote sensing methods that include this geometric 

correction for calculating ET are given by Allen et al. [37] and Chen et al. [38]. Finally, together with 

the aforementioned methodological reasons, the differences between the two estimates might be 

related to the accuracy and parameterization of the input data, and the period of comparison, since the 

datasets were obtained at different time spans. 

6. Discussion 

6.1. Uncertainty  

6.1.1. Performance of the Classifications 

Evaluating the performance of the generated classifications is not an easy task, especially due to  

the fact that a “ground truth classification map” that explains the different classes in terms of the biases 

between MSG–ET and GLDAS–ET does not exist. However, in order to optimize the performance of 

the methods, different strategies were adopted. The k–means settings were adjusted to a maximum of 

100 iterations in order to ensure completion of the algorithm and the optimal number of clusters was 

calculated using a quality index [23] that accounts for the intra–cluster and inter–cluster distances,  

as it is shown in Section 1.2.1. 

The EM algorithm was trained with 66% of the data, and tested in the rest of the dataset providing  

a log likelihood of 7.04 in the test. The overall likelihood is a measure of the “goodness” of the 

clustering and increases at each iteration of the EM algorithm. The larger this quantity is, the better the 

model fits the data. In order to interpret this number, the model was applied to the whole dataset, 

obtaining a log likelihood of 7.6. This value was expected to be higher than using only the test dataset 

since the inputs included also the training data. However, the two log likelihood values were similar, 

which served as an indicator of the good performance of the classifier. Moreover, the EM algorithm 

found the optimal number of clusters for which the log likelihood had a maximum value.  

Finally the PC analysis was carried out by using two matrixes, the covariance and the correlation 

matrixes. The results showed the same clustering using both procedures, where the groups could be 
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visually identified as it is shown in Figure 3. The usefulness of the generated classifications in  

the application that is presented in this paper (bias estimation and ETb), was discussed in Section 4.2. 

6.1.2. Uncertainty of ETb Estimations 

It was pointed out in Romaguera et al. [8] that Equation (1) provided some negative values of ETb 

which were not physically correct and were due to the uncertainties in the input data and in the bias 

curves definition. In the present work, these negative values were not used in the calculation of the 

annual ETb and in order to evaluate their significance they were aggregated during 2010 and combined 

with the yearly MSG–ET. The ratio between these two (not shown here) was less than 10% in most of 

the croplands in the study area. The impact of the negative values was concentrated in areas labeled as 

“others” (see Figure 1) or in their proximity, like next to the Alps and the Carpathian mountains. 

Therefore, it was shown that with the proposed method the non–croplands pixels are more sensitive 

to errors and, therefore, they should be masked when producing ETb. 

6.2. Limitations  

This paper focused on the improvement of the classification scheme proposed by Romaguera et al. [8]. 

The analysis presented showed satisfactory results when producing the classification maps and 

obtaining the bias curves. General limitations and aspects to be taken into consideration when obtaining 

ETb are extensively discussed in the aforementioned literature, and are related to the inaccuracies of 

the inputs, data availability, validation drawbacks and generalization of the method. 

Regarding the classification approach presented in this paper, several aspects need to be discussed.  

First, the selection of the parameters for the classification is justified in the text. However, 

additional parameters may have been used and a sensitivity analysis might be carried out to select  

the optimal set to describe the study area.  

Regarding the selection of the classifier, this work showed three strategies, different in concept and 

complexity. The k–means showed to work better in this research. Nevertheless, having in mind the 

coarse resolution of the data used, subpixel classifiers may be explored in order to account for mixed 

pixels and subpixel heterogeneity. In that case, aspects like avoiding over classification and tradeoffs 

in accuracy, time consumption and computing resources would need to be taken into account. Also,  

the better performance of the k–means approach, as compared to EM and PCA, was not tested in  

the application for Africa. 

The dimensions of the study area may play an important role when the classifier finds similar pixels 

apart of each other (e.g., North and South Africa). The bias value may be influenced by the averaging 

of rain–fed areas in these distant areas. Therefore, a preliminary test on qualitative differences in  

sub–continental bias patterns is advised to avoid these effects and select reasonable study area sizes. 

The GlobCover land cover map was used in several steps in this paper, to mask bare areas in  

the classification, to identify rain–fed croplands where the bias curves were obtained and finally to 

filter other land covers for ETb estimation. The results are therefore influenced by the inaccuracies of 

this input, since pixels may be misclassified.  

From a technical point of view, the rescaling and resampling of the input data to achieve a common 

spatial resolution may have an impact in the analysis. The nearest neighbor resampling technique was 



Remote Sens. 2014, 6 7045 

 

used in this research. In general, impacts on the results are expected due to the heterogeneity of the 

surface and the question of how representative are the low resolution data disaggregated to a higher 

scale. Up–downscaling techniques tackle this issue by using the parameters of surface temperature or 

NDVI [39,40]. 

The ETb results compared with existing literature provided differences of 50 mm/year in most of 

Europe. In Africa, the comparison was highly influenced by the assigned cover type and the heterogeneity 

of the pixel. Results over regions of high topographic relief point to the need for slope and aspect 

corrections to radiation inputs to the MSG–ET algorithm. Bearing in mind the advantages of both 

approaches (literature and present paper), the synergy between them may allow to benefit from the 

temporal frequency of the remote sensed data and from the better definition of the subpixel heterogeneity.  

The in situ validation of the ETb estimates produced in this paper is hampered by the scarcity of 

good quality spatial data on irrigation at regional scale. The availability of irrigation water 

management information on a detailed scale like farmer fields or for entire river basins is not common. 

Data to quantify performance indicators are rarely collected. If collected, data frequently is unreliable 

or not easily accessible [10]. An attempt was made in previous literature to validate the methodology 

in a corn field in a cropland area in Spain [8]. Difficulties were found due to the unavailability of 

MSG–ET remote sensing data coincident with the literature, together with the fact that water resources 

and irrigation are politically critical issues and generally practices are not regulated or in situ quality 

data are difficult to access. Moreover, statistical databases such as AQUASTAT [41] provide static and 

scattered data. Therefore, the validation of the improved method with in situ data remains an open 

challenge. Although further research is needed to fully understand the ETb values found, this paper has 

shown to improve the classification scheme and the estimation of the bias curves between the sets of 

ET data from MSG and GLDAS. An example of application of this improved method to time series of 

data in the Horn of Africa and Southwest of China is presented in Romaguera et al. [42].  

7. Conclusions  

This paper provided a more generic and robust methodology to estimate blue water evapotranspiration 

(ETb) from remote sensing and simulated ETactual data, by enhancing the classification scheme 

employed in the literature. A new selection of input parameters was proposed and the analysis of 

different classifiers provided the best results for the k–means technique.  

The main outcome was the improvement of the definition of the bias between the two ETactual 

datasets, i.e., the ability to differentiate bias curves of different classes, reduction of the standard 

deviation of the data and achievement of the expected variability of the maximum bias.  

This paper proposed new tools to evaluate the variability of the biases between remote sensing and 

simulated ETactual data. However, the comparison of ETb in Europe and Africa with existing literature 

showed the need of further research to fully understand the final ETb values found. 
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