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Abstract: Remote-sensing techniques offer an efficient alternative for mapping mining 

environments and assessing the impacts of mining activities. Airborne multispectral data in 

the thermal region and hyperspectral data in the optical region, acquired with the Airborne 

Hyperspectral Scanner (AHS) sensor over the Sokolov lignite open-pit mines in the Czech 

Republic, were analyzed. The emissivity spectrum was calculated for each vegetation-free 

land pixel in the longwave infrared (LWIR)-region image using the surface-emitted 

radiation, and the reflectance spectrum was derived from the visible, near-infrared and 

shortwave-infrared (VNIR–SWIR)-region image using the solar radiation reflected from the 

surface, after applying atmospheric correction. The combination of calculated emissivity, 

with the ability to detect quartz, and SWIR reflectance spectra, detecting phyllosilicates 

and kaolinite in particular, enabled estimating the content of the dominant minerals in the 

exposed surface. The difference between the emissivity values at λ = 9.68 µm and 8.77 µm 

was found to be a useful index for estimating the relative amount of quartz in each land 

pixel in the LWIR image. The absorption depth at around 2.2 µm in the reflectance spectra 

was used to estimate the relative amount of kaolinite in each land pixel in the SWIR image. 
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The resulting maps of the spatial distribution of quartz and kaolinite were found to be in 

accordance with the geological nature and origin of the exposed surfaces and demonstrated 

the benefit of using data from both thermal and optical spectral regions to map the 

abundance of the major minerals around the mines. 

Keywords: AHS; airborne remote-sensing; LWIR multispectral remote-sensing; SWIR 

hyperspectral remote-sensing; Sokolov open-pit mine; land emissivity; mineral mapping 

 

1. Introduction 

Mining has a wide range of impacts from processes such as the generation of acid tailings,  

metal contaminants, and air pollution caused by smelting activities, leading to soil erosion, water pollution, 

vegetation disturbance, and habitat degradation. The monitoring and assessment of mining impacts, 

using only conventional field and laboratory measurements, is time-consuming and expensive.  

Remote-sensing techniques, using spaceborne, airborne and ground-based sensors, offer an efficient 

alternative for mapping mining environments and assessing the impacts of mining activities. With 

respect to mineralogy mapping, iron oxides, iron sulfates, hydroxyl-bearing minerals, and carbonates 

can be detected in the visible, near-infrared and shortwave-infrared (VNIR–SWIR) spectral region [1–6], 

enabling effective mapping of their spatial distribution. For example, ground-based and VNIR–SWIR 

imaging spectroscopy have been used to map the acidity level in mine environments, based on the 

distribution of jarosite and goethite, the indicative minerals for acid mine drainage (AMD) pollution [7–9]. 

On the other hand, the most abundant minerals in the Earth’s continental crust—feldspars and  

quartz—are featureless in the VNIR–SWIR spectral region and thus cannot be mapped based on 

spectral information across this region. The silicon–oxygen bond (Si–O) stretching vibrations in 

feldspars and quartz, as well as in other silicates, exhibit spectral features in the thermal infrared 

(TIR)-region, mainly in the longwave infrared (LWIR) 8.0–13 µm range [10–16]. 

Due to technological developments in Earth-observation remote-sensing tools, TIR remote sensing, 

combined with VNIR–SWIR hyperspectral remote sensing, is becoming a promising method for 

environmental studies; in particular, LWIR remote sensing is useful for mineral mapping studies [17–24]. 

Although the benefit of using both VNIR–SWIR and TIR remote-sensing data in environmental 

studies is well known, the number of studies devoted to this topic is still limited. The current study 

makes use of airborne multispectral LWIR data, along with airborne hyperspectral SWIR data,  

to assess the mineral content in exposed vegetation-free rocks and soils (henceforth land) in a lignite 

mining site in the Sokolov Basin, Czech Republic, as a case study. The mining, dumping and 

backfilling activities, as well as rehabilitation procedures, have changed the exposed surface.  

The mineralogy of the dumps and backfill material is the most important parameter determining its 

physical and chemical properties. The proportion of clay and quartz contents affects the material’s 

texture and volume. In addition, depending on water saturation, high clay content may cause the 

material to swell, shrink, and present heavy plastic characteristics. Therefore, mapping the distribution 

of the dominant minerals in the area—quartz and kaolinite—is relevant for the management or 

monitoring of mining sites, as well as for assessing the quality of the material used for reclamation 
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projects. Whereas the hydroxyl-bearing mineral kaolinite, as well as other phyllosilicates, can be 

detected in the SWIR spectral region using the absorption feature at around 2.2 µm [25,26], quartz can 

only be mapped using the LWIR spectral region. 

2. Tools and Methods 

2.1. The Study Area 

The study was performed in the Sokolov Basin in the western part of the Czech Republic (Figure 1), 

in a region affected by long-term extensive lignite mining. The Sokolov Basin, containing rocks of the 

Upper Eocene, Oligocene to Miocene age, is 8–9 km wide and up to 36 km long, with a total area of 

about 200 km2. Large-scale underground and surface mining operations began in the late 19th century. 

The mining activity and natural outcrops expose varied lithostratigraphic units, defined in four 

formations [27]. The basal Stare-Sedlo formation consists of well-sorted fluvial sandstones, gravel and 

conglomerates, and it is exposed in the Erika sand pit. Overlying the Nove Sedlo formation is 

predominantly volcanic rocks with coal-bearing sediments, appearing in the Druzba, Jiri, and Medard 

opencast pits. The Sokolov formation also appears in these pits, characterized mainly by coal seams 

with volcanic ejecta originating from fissures and volcanic cones and sediments. The upper Cypris 

formation is characterized by laminated claystones with admixtures of Ca-Mg-Fe carbonates, sulfates, 

sulfides, analcite, Mg-micas, and bitumen, appearing in the Jiri, Druzba, and Lomnice opencast pits [27]. 

The Lomnice, Medard and Sylvester pits were exploited for decades and are now abandoned.  

In 2009, the uppermost part of the Sokolov formation was mined in two opencast pits, Druzba and Jiri, 

but only the Jiri mine is still active. Long-term mining required the removal of an up to 180-m thick 

overburden of Cypris clay, which was stockpiled and replaced after the lignite was extracted. Part of 

the removed overburden material was deposited in the outer dumps—Podkrusnohorska-vysypka, 

Smolnice, Litov, and Medard. 

Figure 1. Image of the Sokolov lignite mining area acquired with the HyMap airborne 

sensor during a campaign over this area in August 2010. 
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Today, a great deal of effort is being devoted to rehabilitation activities, including overburden 

backfilling of the open pits, revegetation of dumps, and the construction of recreational areas, such as 

an artificial lake in the former Medard open pit. 

2.2. Airborne Measurements 

The airborne data were acquired by the Airborne Hyperspectral Scanner (AHS), an imaging  

80-band line-scanner radiometer with 63 bands in the VNIR–SWIR-region, 7 bands in the midwave 

infrared (MWIR)-region and 10 bands in the LWIR-region [28]. The AHS has been used in several 

campaigns to derive surface temperature and surface emissivity over agricultural areas, forests and 

sand dunes [29,30]. Two flight campaigns were conducted, in collaboration with the Spanish Aerospace 

Institute (INTA): a daytime campaign on 19 July 2011, and a nighttime campaign on 22 July 2011. The 

days prior to the daytime data acquisition were characterized by dry conditions without any 

precipitation and temperatures higher than 25 °C. The nighttime data were also collected after a dry 

day, on a clear night with no precipitation, after postponement due to heavy rain. Each flight campaign 

included 10 flight lines (Figure 2) acquired at an altitude of 2 km above ground level, resulting in a  

5-m pixel size. 

Figure 2. (A) RGB image (R = 0.650 µm, G = 0.560 µm, B = 0.471 µm) and (B) daytime 

LWIR image (band 10.14 µm) of the Sokolov lignite mining area acquired with the AHS 

sensor; (C) Nighttime LWIR image (band 10.14 µm) with three regions of interest (ROIs) 

and (D) nighttime LWIR at-sensor radiance of the three ROIs. 
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2.2.1. LWIR-Region Data 

Due to cloud coverage in the daytime image, herein we refer to the cloud-free nighttime LWIR data. 

The at-sensor radiance at wavelength λ (Lsλ) consists of three components: 

Lsλ = ελLbbλ(T)τλ + (1 − ελ)Ldλτλ + Lpλ (1)

where ελLbbλ(T)τλ is the surface emission at wavelength λ with ε as the surface emissivity, Lbb(T) as the 

radiance from a blackbody at surface temperature T, and τ as the atmospheric transmission;  

(1-ελ)Ldλτλ is the surface reflection of the radiance incident on the surface from the atmosphere at 

wavelength λ with Ld as the down-welling radiance; Lpλ is the path radiance from atmospheric emission 

and scattering that reaches the sensor directly at wavelength λ. 

Calculation of the emissivity spectrum of the surface, which represents its chemical and physical 

properties, from the measured at-sensor radiance spectrum using Equation (1), will assist in identifying 

the mineralogical nature of that surface. As a rule of thumb, the emissivity (ε) of land ranges from  

0.7–1 in the entire LWIR region, and the down-welling radiance (Ld) is about one-third of the  

surface-emission radiance [31]. Therefore, the reflected down-welling radiance at wavelength λ,  

(1 − ελ)Ldλτλ, is very small and its contribution to the at-sensor radiance is negligible, reducing  

Equation (1) to: 

Lsλ = ελLbbλ(T)τλ + Lpλ (2)

with τλ and Lpλ as gain and offset values, respectively, calculated from the water and conifer regions of 

interest (ROIs) (Figure 2) as follow: the at-sensor radiance of the water and conifers, with emissivity ~1 

in the entire LWIR region, was fitted with a tangent blackbody radiation curve, as shown in Figure 3,  

by applying an IDL algorithm. This algorithm calculates the temperature for each pixel by applying the 

at-sensor radiance value of the first wavelength to Planck’s law. Once the temperature is known,  

the algorithm calculates the blackbody radiation curve for every wavelength. Then, the algorithm 

checks that the blackbody radiation curve is higher than the at-sensor radiance at each wavelength.  

If the calculated curve is not higher at one of the wavelengths, the process is repeated for the second 

wavelength and so forth. In some cases, all calculated blackbody radiation curves tangential to the  

at-sensor radiance are lower at all wavelengths. In this case, an approximated blackbody radiation 

curve needs to be calculated. The algorithm finds the maximum value of the at-sensor radiance, 

calculates the blackbody radiation curve accordingly, and checks if it is higher at all wavelengths.  

If it is not, it adds 0.05 K to the temperature and calculates the blackbody radiation curve again in an 

iterative function until it finds the curve that is higher at all wavelengths, which will serve as the 

approximate blackbody radiation curve. The values of the tangent blackbody radiation and the 

emissivity of water and conifers at each wavelength λ, shown in Figure 3, were applied to their 

respective at-sensor radiances, resulting in two equations with the two unknowns, gain and offset. 

Solving the two equations resulted in gain and offset values for each λ (Figure 4). 

The gain and offset values, assuming they are equal at all pixels across the image, were applied to 

each land pixel, the at-sensor radiance was fitted with a tangent blackbody radiation curve, which was 

calculated using the IDL algorithm, and the emissivity at wavelength λ was calculated according to:  
  



Remote Sens. 2014, 6 7010 

 

ελ = [Lsλ − (Offset)λ]/[Lbbλ(T)(Gain)λ] (3)

The emissivity spectrum of each land pixel in the resultant emissivity image was then analyzed. 

Figure 3. The at-sensor radiance and a fitted tangent blackbody radiation curve for the 

water and conifer ROIs (primary y-axis) and the emissivity spectra of water and conifers based 

on the Johns Hopkins University spectral library [32] and resampled to the AHS spectral 

configuration (secondary y-axis). 

 

Figure 4. The gain (primary y-axis) and offset (secondary y-axis) spectra, as calculated 

from the water and conifer data. 
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2.2.2. VNIR–SWIR-Region Data 

The AHS image was atmospherically corrected by applying the ACORN software [33], resulting in a 

reflectance image. The reflectance spectrum in the SWIR region (2.0–2.4 µm) of each land pixel, in 

cloud-free areas in the image, was then analyzed. 

2.3. Ground Measurements 

2.3.1. LWIR-Region Ground Measurements 

Samples of material from land surface (0–2 cm depth) were collected at selected points in the study 

area. These samples were measured with an SR-5000N ground spectroradiometer, with 82 bands in the 

8–13 µm region, at CI-Systems, Israel [34]. The samples were placed in Petri dishes, exposed to the 

sun (with an outdoor air temperature of 35 °C) for about an hour, and then one sample at a time was 

placed on a 45°-inclined stand at a distance of about 3 m from the spectroradiometer, and its at-sensor 

radiance was measured. The emissivity spectrum of each sample was then calculated according to 

Equation (1), with Lbb(T) as the fitted tangent blackbody radiation curve and down-welling radiance (Ld) 
as measured with a mirror (Figure 5), and with τλ = 1 and Lpλ = 0. 

Figure 5. The at-sensor radiance with the tangent blackbody radiation curve for two land 

samples and the at-sensor radiance of a mirror. 
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sedimentation method [35]. The oriented clay specimens were analyzed after air-drying and after 

saturation for 10 h with ethylene-glycol vapor at 60°C. Their diffraction data were acquired in the 

angular range of 2–50° 2ϴ with steps of 0.05° 2ϴ. Mixed-layered minerals were identified by 

comparing the analyzed XRD patterns of the ethylene-glycolated oriented clay fraction with the 

modeled XRD patterns obtained by NEWMOD code [36]. 

In addition, a technical quantitative silicate analysis (ČSN 720100) was conducted. The analysis 

quantified the abundance of the different elements in each sample, presented as their oxides SiO2, 

Al2O3, TiO2, FeO, Na2O, K2O, and MgO. 

3. Results and Discussion 

3.1. LWIR-Region Results 

The calculated emissivity spectra of some land ROIs, as calculated from the nighttime AHS data 

(henceforth airborne emissivity), are shown in Figure 6. 

Figure 6. (A) Emissivity image, band 10.14 µm, with locations of some land ROIs;  

(B,C) Airborne emissivity spectra of the land ROIs as calculated from the LWIR image 

data. The name of each ROI represents its location and a serial number: BO—Bozicany, 

PKV—Podkrusnohorska-vysypka, MD—Medard, and DR—Druzba. 
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An emissivity feature was observed in the spectrum of each land ROI between λ = 8.31 µm and  

λ = 10.14 µm. This feature was relatively pronounced for some ROIs, e.g., BO1 and MD1, and less 

pronounced for others, and its minimum was shifted to longer wavelengths for ROIs such as PKV4 and 

DR3. Similar behavior was observed in the emissivity spectra of the same land samples calculated 

from the ground measurements (henceforth ground emissivity), as shown in Figure 7. 

Figure 7. (A) The land samples; (B,C) Ground emissivity spectra of the land samples; 

(D,E) Ground emissivity spectra after resampling to the AHS spectral configuration. 
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Comparison of the airborne emissivity spectra (Figure 6) with their analogous ground emissivity 

spectra (Figure 7) showed that although they are not exactly the same, they exhibit the same patterns 

among samples, i.e., a larger emissivity feature for some land samples and a smaller and/or shifted 

feature for other samples. This pattern can be expressed as: 

ΔԐ = Ԑλ =9.68 µm − Ԑλ=8.77 µm (4)

where ΔԐ is the difference between the emissivity (Ԑ) values at λ = 9.68 µm and λ = 8.77 µm.  

The ΔԐ values were positive for some land samples and negative for others (Figure 8), as calculated 

from either the airborne data or the ground data. 

Figure 8. The ΔԐ values of land samples as calculated from the airborne data and from the 

ground data. * Ground ΔԐ values marked with □ symbols, as opposed to those marked with 

X symbols, were calculated by neglecting the reflected down-welling radiance, as done 

with the airborne data. Both series of ground ΔԐ values are identical. 
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Table 1. Mineralogy of the land samples according to XRD analysis and their ΔԐ values 

calculated from the airborne data. 

Sample 
Mineral Composition from Major to  

Minor (Trace Minerals Are not Included) 
 ΔԐ 

BO1 Quartz Quartz-rich 0.136 

BO2 Quartz, Muscovite, Kaolinite 
 

0.096 

BO3 Quartz, Kaolinite, Muscovite 0.037 

PKV1 Quartz, Muscovite, Kaolinite 0.034 

PKV2 Quartz, Albite, Orthoclase, Muscovite, Clinochlore, Kaolinite 0.020 

PKV3 Kaolinite, Quartz, Muscovite, Anatase −0.032 

PKV4 Kaolinite, Anatase, Quartz, Goethite Quartz-poor −0.030 

Figure 9. Emissivity spectra of some silicates based on the Arizona State University 

spectral library [37] and resampled to the AHS spectral configuration. 
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The results of the quartz-content mapping can be associated with the lithology of the surface and the 

source of the exposed land. The quartz-rich land in the western and northern parts of the Medard 

abandoned pit (Figure 10) belongs to the quartz-rich outcrop of alluvial sediments of the Sokolov 

fomation. This is a large, up to 30-m thick alluvial cone of the river flowing from the west into the 

Sokolov Basin in the Miocene. The eastern part of Medard is affected by material transported from the 

Druzba pit, as described in Section 3.2. The quartz-poor land in the Jiri and Druzba pits corresponds to 

the outcrops of clays and claystones of the Cypris formation and to artificial redepositions of material 

removed during the mining processes. The same material is observed in the outer dump sites of 

Podkrusnohorska-vysypka and Smolnice. A concentration of quartz-rich land in the northern part of 

the Jiri pit belongs to kaolinized granites and gneisses containing a large amount of quartz, variable 

amounts of kaolinite and a little admixture of muscovite. The abandoned Erika sand pit contains sand, 

sandstone, gravel and conglomerates rich in quartz, accompanied with pebbles of quartz-rich 

geological units (mica schists) and with kaolinite-coated quartz grains. The blue and red spots at the 

Bozicany kaolinite pit (Figure 10) are associated with quartz-poor and quartz-rich piles, respectively. 

During the mining operations, kaolinite was washed from the kaolinized granite, redeposited and 

resorted, while the quartz sand was left behind. The large spot close to Vresova is a small quarry of 

weathered granites. 

Figure 10. Quartz content in exposed land in the Sokolov lignite mining area. 
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3.2. SWIR-Region Results 

To extend the mineral classification and to map the major non-quartz mineral content of the  

land, i.e., kaolinite, other phyllosilicates or other silicates, the reflectance image in the SWIR region 

was analyzed. The SWIR spectra of some land ROIs are shown in Figure 11. 

Figure 11. (A) SWIR spectra of some land ROIs as derived from the reflectance image 

(solid lines) and from laboratory measurements with the Analytical Spectral Devices 

(ASD) FieldSpec Pro spectroradiometer (Analytical Spectral Devices, Inc.) after 

resampling to the AHS spectral configuration (dotted lines); (B) Continuum removal (CR) 

spectra of the ROIs between 2.134 and 2.227 µm; and (C) between 2.134 and 2.181 µm. 
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spectrum between 2.134 and 2.181 µm (henceforth CR2.165µm), indicates the amount of kaolinite in the 
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land. The values of CR2.196µm and CR2.165µm were calculated for each land pixel in the reflectance 

image, and some examples are shown in Table 2. A bigger CR2.196µm value indicated a larger amount 
of phyllosilicate and together with a bigger CR2.165µm value, indicated a larger amount of kaolinite, 

from either the reflectance image or the laboratory measurements. 

Table 2. The mineralogy of land samples according to XRD analysis and samples with their 

CR2.196µm and CR2.165µm values as calculated from the SWIR reflectance image (in parentheses 

are the values from the laboratory measurements with the ASD spectroradiometer). 

Sample 
Mineral Composition from Major to Minor 

(Trace Minerals are not Included) 
 CR2.196 µm CR2.165 µm

  

PKV4 Kaolinite, Anatase, Quartz, Goethite Kaolinite-rich 
0.198  

(0.340)  

0.052  

(0.130)

PKV3 Kaolinite, Quartz, Muscovite, Anatase  

 

 

 

Kaolinite-poor 

0.164  

(0.181) 

0.047  

(0.044)

PKV1 Quartz, Muscovite, Kaolinite 
0.129  

(0.139) 

0.018  

(0.021)

PKV2 
Quartz, Albite, Orthoclase, Muscovite, Clinochlore, 

Kaolinite 

0.094  

(0.094) 

0.008  

(0)

The content of phyllosilicates and kaolinite according to the CR2.196 µm and CR2.165 µm values, as well 

as the content of quartz according to the ΔԐ values, in the Jiri active pit and in the Medard abandoned 

pit are shown in Figure 12. 

ROI 1 in Figure 12 represents the quartz-rich land at the northern rim of the Jiri pit, belonging to the 

kaolinized granite with large amount of quartz (Figure 12A), a variable amount of kaolinite and a little 

admixture of muscovite (Figure 12C,E). Kaolinite, the dominant mineral in the Cypris formation, 

prevails in Jiri’s quartz-poor land, especially at the bottom layers of this formation close to the lignite 

seam, as represented by ROIs 2 and 3. Toward the younger upper layers, away from the lignite layer, 

kaolinite is less abundant and is accompanied by other phyllosilicates, including muscovite, 

represented by ROI 4, other silicates (analcite, zeolites, feldspars) and therefore less phyllosilicates,  

as represented by ROI 5, carbonates (calcite, dolomite, ankerite and siderite), anatase, a small amount 

of quartz and many other minerals, mostly of volcanic origin. The eastern border of Medard Lake  

(the abandoned Medard pit) contains material of the Cypris formation transported from the Druzba pit. 

The elongated strips of quartz-rich land, represented by ROIs 6 and 7 in Figure 12, are depositions  

of weathered granite from the upper parts of the Cypris formation, which are being used for  

the construction of roads, dams and piers for the recreational boats in the planned Medard Lake. 

Quartz-poor transported land—ROIs 8, 9—is from the lower parts of the Cypris formation and 

therefore rich in kaolinite. 
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Figure 12. Content of quartz in Jiri (A) and Medard (B) areas; (C,D) Content of 

phyllosilicates; and (E,F) content of kaolinite. Some selected land ROIs are numbered. 

 

In addition, ground truth validation was conducted to confirm the quartz and kaolinite contents 

estimated from the calculated ΔԐ and CR2.165µm values, respectively. The ΔԐ and CR2.165µm values of 

selected ROIs were compared with the chemical analysis results of land samples collected from these 

ROIs, as shown in Figure 13. A higher concentration of silicon (Si) in the sample (large %SiO2 value, 

Figure 13A) indicated a higher concentration of quartz, which also exhibited a larger ΔԐ value.  

It should be mentioned that the %SiO2 value is affected by the presence of all silicates and not only by 

quartz. However, in a quartz-rich sample, the relative amount of Si is larger, resulting in a larger %SiO2 

value. The CR2.165µm value of a land sample was compared with the ratio of aluminium to potassium 

(Al/K) (%Al2O3/%K2O, Figure 13B); in a kaolinite (Al2Si2O5(OH)4)-rich sample, the Al/K ratio is 

larger than in a sample that is rich in other common minerals, i.e., quartz, muscovite 
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(KAl2(AlSi3O10)(F,OH)2) or K-feldspar. As a general trend, samples with larger %Al2O3/%K2O values 

exhibited larger CR2.165µm values (Figure 13B). Both the %Al2O3/%K2O and CR2.165µm values indicated 

a relatively large amount of kaolinite. The correlation between the measured %SiO2 values and the 

calculated ΔԐ values was good with an R2 value of 0.91 (Figure 14A), and that between the 

Log10(%Al2O3/%K2O) and CR2.165µm values was relatively good with R2 = 0.72 (Figure 14B).  

This validation confirmed the estimation of the relative amounts of quartz and kaolinite in exposed 

land based on the calculated ΔԐ and CR2.165µm values. 

Figure 13. (A) Comparison of measured %SiO2 values (primary y-axis) and calculated ΔԐ 

values (secondary y-axis) of different land samples; (B) Comparison of measured 

%Al2O3/%K2O values (primary y-axis) and calculated CR2.165µm values (secondary y-axis) 

of the different land samples; logarithmic values were used for the graphic presentation. 

For several samples, the CR2.165µm values could not be calculated due to cloud cover during 

data acquisition. The name of each sample represents its location and serial number:  

BO—Bozicany, LI—Litov, PKV—Podkrusnohorska-vysypka, and DR—Druzba. 
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Figure 14. (A) Correlation between the measured %SiO2 values and the calculated ΔԐ 

values; (B) Correlation between the measured Log10(%Al2O3/%K2O) values and the 

calculated CR2.165µm values. 

 

4. Summary and Conclusions 

The current study demonstrates the ability to map the relative amounts of quartz and kaolinite in 

exposed land of the lignite mining area in the Sokolov Basin. Mining, dumping and backfilling 

activities, as well as rehabilitation processes, change the nature of the exposed surface. Use of the AHS 
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airborne multispectral data in the LWIR spectral region, with the ability to detect quartz, along with 

the hyperspectral data in the SWIR spectral region, with the ability to detect phyllosilicates and in 

particular, kaolinite, with support from ground/laboratory measurements, enabled mapping the spatial 

distribution of the dominant minerals. The emissivity spectrum of each land pixel in the LWIR image 

was calculated and the reflectance spectrum of each land pixel was derived from the VNIR–SWIR 

image after applying atmospheric correction. The difference between the calculated emissivity values 

at λ = 9.68 µm and λ = 8.77 µm (ΔԐ) was used to estimate the relative amount of quartz in each land 

pixel. The depth of the absorption at about 2.2 µm in the SWIR reflectance spectrum (CR2.165µm) was 

used to estimate the relative amount of kaolinite in each land pixel. The resultant mineral classification 

was in good agreement with the mineralogy of the exposed surfaces based on their geological nature 

and origin. For example, the quartz-rich land classified in the surroundings of the abandoned Medard 

pit represents the local outcrops of alluvial sediments that are rich in quartz, whereas kaolinite-rich 

material on its eastern border represents the kaolinite-rich material transported from the Druzba pit. 

Another example is the quartz-poor and kaolinite-rich land in the bottom layers of the Jiri pit close to 

the lignite seam, which changes to quartz-poor and kaolinite-poor land further away from the lignite 

representing younger upper land layers. A validation procedure showed a quite good correlation 

between the measured concentration of Si in land samples and the calculated ΔԐ with R2 = 0.91,  

and between the measured Al/K ratio and the calculated CR2.165µm with R2 = 0.72. This indicates that 

the ΔԐ and CR2.165µm values can be used to estimate the relative amounts of quartz and kaolinite  

in exposed land. 

Overall, this study shows that merging remote-sensing data from LWIR and SWIR spectral regions 

may be efficient for mapping the spatial distribution of major minerals in exposed surfaces, and can be 

used to track mining activities and rehabilitation processes in mining environments. 
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