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Abstract: The comprehensive relationship of backscattering coefficient (σ
0
) values from 

two current X-band SAR sensors (COSMO-SkyMed and TerraSAR-X) with canopy 

biophysical variables were investigated using the SAR images acquired at VV polarization 

and shallow incidence angles. The difference and consistency of the two sensors were also 

examined. The chrono-sequential change of σ
0 

in rice paddies during the transplanting 

season revealed that σ
0
 reached the value of nearby water surfaces a day before 

transplanting, and increased significantly just after transplanting event (3 dB). Despite a 

clear systematic shift (6.6 dB) between the two sensors, the differences in σ
0
 between 

target surfaces and water surfaces in each image were comparable in both sensors. 

Accordingly, an image-based approach using the “water-point” was proposed. It would be 

useful especially when absolute σ
0
 values are not consistent between sensors and/or 

images. Among the various canopy variables, the panicle biomass was found to be  

best correlated with X-band σ
0
. X-band SAR would be promising for direct assessments of 

rice grain yields at regional scales from space, whereas it would have limited capability 

to assess the whole-canopy variables only during the very early growth stages. The 

results provide a clear insight on the potential capability of X-band SAR sensors for 

rice monitoring. 
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1. Introduction 

Consistent and efficient observation of crops and agroecosystems is one of the most important 

applications of remote sensing. Timely assessment of crop conditions (e.g., planted area, growth, 

productivity, damage) is critical for diagnosis and decision making for precision crop management and 

food security, especially under recent conditions associated with climate change [1–4]. The negative 

impacts of agriculture, such as air and water pollution by N2O, e.g., [5] and NO3, e.g., [6] from farming 

practices, can be minimized based on geospatial information on actual crop and farmland status,  

e.g., [7]. Many studies have shown that the synthetic aperture radar (SAR) sensors have great potential 

for a wide range of agricultural applications due to their superior ability in timely observation of land 

surfaces, e.g., [8–13]. The rain or heavy clouds would affect SAR image data, especially in high 

frequency bands (e.g., Ka, Ku, or X), through the disturbance in signal-propagation and/or the physical 

changes in land surfaces [14]. However, the certainty of image acquisition at a desired timing as well 

as the stability of data quality are far superior in SAR than in optical sensors. 

Rice (Oryza sativa L.) is the most important staple crop in Asia. Under the cloudy weather 

conditions in monsoon Asia, SAR sensors are particularly useful for timely monitoring the growth  

and yield of rice. For classification purposes, SAR images in X and C-bands have already been  

used operationally for the assessment of rice-cropped areas because the extraction of rice fields is 

relatively robust due to the specular feature under flooded surface conditions, e.g., [15–17]. Similarly, 

information regarding cropping systems or agricultural management practices in rice growing regions 

may be obtained successfully from X and C-band SAR observations, e.g., [13,18–20]. 

However, quantitative assessments of ecophysiological or biophysical rice variables using satellite 

SAR signatures remain uncertain, although they are crucial for various agricultural applications. 

According to the review by Lopez-Sanchez and Ballester-Berman [11], various experimental studies 

based on ground-based scatterometers have shown the great potential of microwave remote sensing for 

the assessment of rice biophysical variables, e.g., [21–23]. For example, Inoue et al. [23] reported 

comprehensive results on the potential of various frequency bands based on a unique dataset of daily 

backscattering coefficients (σ
0
) taken in all of the combinations of five frequency bands (Ka, Ku,  

X, C, L), four polarizations (VV, VH, HV, HH), and four incidence angles (25°, 35°, 45°, 55°)  

during a full growing period of paddy rice. Despite such potentials, many studies using satellite  

SAR images have suggested only preliminary relationships between σ
0
 and rice variables such  

as plant height, e.g., [16,24,25]. The accuracies reported in such papers seem insufficient for 

routine/operational applications. 

One reason for such uncertainties in crop monitoring applications was the low spatial resolution  

of SAR images. In general, high spatial resolution (1–5 m) is required for many agricultural 

applications in Asian countries because of the small size of agricultural fields. SAR technology 

realized much higher spatial resolutions compared to real aperture radars; however, spatial resolutions 
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in previous generation of sensors (10 m~) were not enough for such applications and for precise 

biophysical investigations due to the degradation of resolution by de-speckling processes. Another 

limitation was the insufficient ground-based data relating to ecophysiological or biophysical status, 

which could lead to superficial relationships or misinterpretations. From eco-physiological aspects, the 

reported relationships of SAR signatures with plant variables are sometimes indirect or superficial, 

which implies the limited applicability. Although some polarimetric parameters such as entropy and 

alpha derived from multi-polarization images [19,26] may provide additional information on canopy 

and surface conditions, further investigations have to be based on the detailed biophysical rice 

measurements to achieve sufficient accuracy and robustness as well as a clear interpretation of the 

relationships. Moreover, physically-based backscattering models may be useful for the interpretation 

of measured data, e.g., [8,22,27], but they require significant improvement in structure and 

parameterization to retrieve biophysical variables with sufficient accuracy. Such investigations would 

require a more detailed sensitivity analysis based on accurate canopy biophysical measurements. 

Therefore, ecophysiological investigations based on high resolution SAR signatures and accurate 

concurrent measurements of biophysical variables are critical. The spotlight mode of recent high-resolution 

satellite SAR sensors (e.g., COSMO-SkyMed: CSK, TerraSAR-X: TSX, Radarsat-2) would allow such 

detailed and robust analyses. For example, a recent study using Radarsat-2 sensor (spotlight mode) 

elucidated the ability and inability of C-band SAR for rice monitoring, e.g., [13]. However, biophysical 

or ecophysiological investigations on the potential of X-band SAR for rice monitoring are not sufficient. 

Recent studies using CSK and TSX have suggested certain relationships with vegetation parameters  

and soil moisture [28–35], but consistent and accurate relationships are not established. In addition,  

some discrepancies have been recognized between σ
0
 values from CKS and TSX, e.g., [36,37].  

Pettinato et al. [37] suggested that CSK data would be corrected against TSX (Stripmap mode) by 

adding about 4 dB in Ping Pong mode and about 2.5 dB in Himage mode, respectively. They also 

suggested that these values may vary with measurement configurations, i.e., mode, orbit, polarization, 

and incidence angle. Hence, the consistency of σ
0
 values between sensors has to be elucidated for rice 

monitoring applications. However, more importantly, the generality of relationships between canopy 

biophysical variables and σ
0
 values from different sensors is essential for the combined use,  

i.e., constellation of different satellite sensors for timely monitoring of agricultural applications.  

A recent preliminary analysis using CSK suggested that the X-band σ
0
 at VV polarization at a shallow 

incidence angle was closely correlated with the weight of rice panicle (ear) [12]. The study also 

undertook a comprehensive comparison of σ
0
 with a range of canopy biophysical variables during the 

maturing stage. However, the generality and consistency of such relationships for different sensors 

such as TSX are unknown. 

Thus, the objectives of this study were to examine the differences and consistency of the two  

high-resolution X-band SAR sensors (i.e., CSK and TSX) for rice monitoring, investigate the 

comprehensive relationship of σ
0
 values from CSK and TSX with canopy biophysical variables, and 

explore the unique capabilities of the X-band sensors for assessment of rice growth and yield. 
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2. Materials and Methods 

2.1. Study Site 

A study site was selected in one of the major rice-growing regions in northeast Japan (Tsugaru 

Plain, Aomori Prefecture; center: 40°36ʹ20.74ʹʹN, 140°33ʹ36.02ʹʹE). Figure 1 depicts a part of the  

study area with an optical image (WorldView-2) and a SAR image (TSX) taken on the same day  

(2 September 2011). Rice yield in Japan is usually high and stable thanks to the advanced management 

technologies, but sometimes suffers from serious meteorological disasters as shown by a yield map in 

1993 (Figure 1a) [38]. The area is flat and relatively uniform in its rice varieties grown and  

crop management practices. In general, rice is grown once a year during the summer season  

(May–September) in this region. The mean air temperature and total precipitation for the  

May–September period are 18.6 °C and 513 mm, respectively. 

Figure 1. Study area. (a) A yield map of rice over Japan in a year (1993) of serious cold 

damage; (b) A natural color image taken by WorldView-2 on 28 August 2011; (c) A σ
0
 

image taken by TSX on 6 September 2011. 
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Normally, rice plants are transplanted in late May. Paddy fields are flooded several days before 

transplanting, and puddling/reveling is practiced one or two days before transplanting. The dates  

for the panicle initiation stage, heading stage, and maturing stage are mid-July, early-August, and  

mid-September, respectively. A single rice variety (Oryza sativa L. japonica, variety: Tsugaru Roman) 

is grown in the study area. In general, a bundle of 3–5 seedlings (hill) of about 15 cm long are machine 

planted at a spacing of around 30 cm × 15 cm under flooded conditions. Figure 2 shows the rice 

canopies at the early vegetative and mid-maturing stages. The maximum leaf area index (LAI) usually 

occurs around two weeks before heading stage. At the maturing stage, the number of panicles is equal 

to that of stems, so plenty of panicles are distributed at the top layer of a canopy (Figure 2b). Paddy 

fields are irrigated continuously until the mid-maturing stage, so the soil surface of paddy fields is 

under flooded conditions during most growing periods. Even in some periods without surface water, 

the soil surface is smooth and fully saturated with water. Although each rice field is highly 

homogeneous (coefficient of variation, CV for plant height <5%; Figure 2), between-field variability 

in growth and yield is significant because of differences in the soil condition and farming management 

practices. The majority of paddy fields in the study area have a size of 30 m × 100 m, but the 

orientation of fields (i.e., row direction) is not identical. The field size in the region is typical for Japan 

and most Asian countries, although it is much smaller than in the United States or European countries. 

Figure 2. Examples of rice canopies in the study area; nadir and side view of typical rice 

canopies at vegetative stage (a) and maturing stage (b). The right hand stage was targeted 

mainly in this study. 
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2.2. Acquisition and Processing of CSK and TSX SAR Images 

Two X-band (9.65 GHz) satellite sensors, CSK and TSX, were used for the acquisition of  

high-resolution SAR images during four consecutive years. The main parameters of these images are 

summarized in Table 1. The overall information on crop conditions during each image-acquisition 

period is provided in the Table 1. In this study, we focused on the two specific growth stages, i.e., the 

transplanting period and the late maturing stage. The transplanting is one of the important events to be 

identified at a field scale for growth diagnosis and management from then onward. In addition, this 

event is useful to examine the response of X-band σ
0
 to a small change in paddy surfaces because 

transplanting causes a subtle but clear biophysical change on the surface. Accordingly, a TSX image 

was acquired during the transplanting season, i.e., on 26 May 2012. The late maturing stage was 

targeted because of two reasons; (1) it is an important growth stage for prediction of yield and/or grain 

quality; and (2) X-band was assumed to be effective to derive some unique information during the 

stage based on the previous study [23]. The second reason implies that the X-band σ
0
 is not suitable for 

estimating the whole canopy variables such as total biomass and leaf area during the most part of 

vegetative growth period because the volume scattering is easily saturated with a small volume  

of biomass, i.e., at an early growth stage [12]. In other words, from ecophysiological or agronomic 

points of view, acquisition of time-series images is not always useful to derive critical information  

for crop diagnosis. Hence, four X-band images were acquired during the late maturing stage, i.e., on  

5 September 2009 (CSK), 8 September 2010 (CSK), 6 September 2011 (TSX), and 3 September 2012 

(TSX), respectively. 

Table 1. Major configurations for SAR observations by the two X-band sensors: CSK and 

TSX. Range of canopy height, stem density and total dry biomass in plant-sampling fields 

are indicated for reference. 

 Sensor Mode Pass 
Date  

(yyyymmdd) 

Time 

LST 

Incidence 

Angle (°) 
Polarization 

Growth  

Stage 

Range of Major Biophysical Variables in 

Observed Fields 

Height (m) 
Stem Dens. 

(m−2) 

Biomass  

(kgDW m−2) 

1 CSK Spotlight D 20090905 17:29 54  VV Maturity 0.83–1.15 290–516 1.00–1.70 

2 CSK Spotlight D 20100908 17:33 54  VV Maturity 0.99–1.16 273–564 0.87–1.88 

3 TSX Spotlight A 20110906 17:30 50  VV Maturity 0.88–1.12 285–501 1.05–2.13 

4 TSX Spotlight A 20120903 17:30 50  VV Maturity 0.87–1.15 284–658 1.06–1.83 

5 TSX Spotlight D 20120526 5:42 44  VV 
Trans- 

planting 
0–0.15 0–285 0–0.005 

Details of measurement configurations such as polarization and incidence angles were determined 

based mainly on the results of our previous study [23]. According to the results from combinations of 

all five frequency bands (Ka, Ku, X, C, L), four polarizations (VV, VH, HV, HH), and four incidence 

angles (25°, 35°, 45°, 55°), the X-band at a high incidence angle proved to have a significant 

relationship with canopy variables such as panicle weight. The spotlight mode was considered the  

most suitable mode for investigating the relationship of SAR data with canopy biophysical variables, 

considering the degradation of resolution due to noise-reduction processing as well as the small field size 
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and the size of study area (100 km
2
; 10 × 10 km). Therefore, the spatial resolution (azimuth × ground 

range) for the selected mode was 1 m × 1 m for CSK, and 1.7 m × 1.48 m for TSX, respectively. The 

spatial resolution on the ground can be affected by the incidence angle to some extent, but the variability 

was small because of the small scene size. Since, in both X-band sensors, a single-polarization was 

selectable for the above spatial resolution and scene size, we selected the VV-polarization and shallow 

incidence angles, i.e., 54° (CSK) and 49.5° (TSX) for maturing period, and 44° (TSX) for 

transplanting period. Since the possible local time of satellite observation was limited to around 5:40 

and 17:30 in both sensors, we selected the evening observations (17:30) to avoid the effects of morning 

dew except for the transplanting season. Potentially, the difference of pass, i.e., ascending or 

descending, may affect the backscattering in response to row directions of paddy fields. Nevertheless, 

judging from the uniform canopy surfaces during the maturing stages (e.g., in Figure 2b), we assumed 

the effect would be negligible at these growth stages, especially at shallow incidence angles. 

All image data were converted to σ
0
 signatures based on the radiometric parameters provided for 

each dataset using Next ESA SAR Toolbox (NEST) 4B (European Space Agency, Paris, France). A 10 m 

resolution DEM dataset developed by the Geospatial Information Authority of Japan (GSI) was used 

for the basic geometric correction. To accurately identify the area of ground measurements, all images 

were georeferenced using high-resolution airborne images (1 m) obtained by the CASI hyperspectral 

sensor. A 3 × 3 enhanced Lee filter was applied to each image to reduce speckle noise because we 

found little difference between 3 × 3 and 5 × 5. Usually, the noise reduction sacrifices the spatial 

resolution, but the high-resolution capability of the sensors allowed the extraction of signatures for the 

area of interest (AOI) in each paddy field where the plant samples were taken. Actually, we found little 

difference between the average σ
0
 values for individual AOIs with and without noise reduction filters. 

The AOIs were selected carefully to ensure the homogeneity and to avoid the effects of field edge. 

2.3. Ground-Based Data Acquisition 

Since one of the focal points in this study is to investigate the comprehensive relationships  

of X-band σ
0
 with canopy biophysical variables, we obtained a range of ecophysiological or 

morphological canopy variables concurrently with the SAR observations during the four-year period.  

In addition, transplanting dates were identified in a large number of paddy fields by field-survey  

to investigate the response of σ
0
 to paddy surface conditions and water surfaces during the 

transplanting period. 

2.3.1. Biophysical Measurements of Rice Canopies 

Ground-based measurements were made concurrently with the SAR observation at 36, 24, 38, and 

33 paddy fields in 2009, 2010, 2011, and 2012, respectively. Hill density, plant height, and water depth 

were recorded for each field. Leaf chlorophyll content was estimated using a chlorophyll meter 

(SPAD502, Minolta). The fraction of photosynthetically active radiation (PAR) absorbed by the 

canopy (fAPAR) was determined based on the ascending and descending values of photosynthetic 

photon flux density (PPFD) measured at the top and bottom of a canopy using a line PPFD sensor  

(LI-191, Li-Cor). 
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Rice plants in individual fields were highly uniform, so five representative hills (a bundle of plants) 

were sampled from each paddy field to characterize the biophysical structure of the canopy. The wet 

and dry biomass of leaves, stems, panicles, and whole plants were determined by destructive 

measurements of the sampled plants. In addition, structural variables such as stem density, LAI, 

panicle size, leaf size (length, width, and thickness), number of leaves per stem, vertical position of 

panicles and leaves, and stem diameter were measured. These data were used for statistical analysis 

and as model inputs to a canopy backscattering model. 

2.3.2. Determination of Transplanting Date in Individual Rice Paddies 

Transplanting dates were identified in 640 individual paddy fields covered by the image (TSX on 

26 May 2012) based on daily field-survey throughout the transplanting season. In addition, the actual 

paddy surface conditions of individual rice paddies before and after the transplanting event were 

recorded with photographs (e.g., pictures in Figures 2 and 3). The field survey enabled us to identify a 

variety of paddy-surface conditions within the SAR image, i.e., from plowed (dry) to transplanted 

conditions through flooding, puddling and transplanting. These data were given to the field-polygons 

as attributes on geographic information system (GIS), and used to examine the response of σ
0
 to water 

surfaces as well as to paddy surfaces with and without rice plants. 

2.4. Analytical Approaches 

2.4.1. Extraction of σ
0
 Values from SAR Images and their Statistical Analysis 

In each SAR image, the σ
0
 values were extracted for the individual areas of interest in paddy fields 

(around plant-sampling point) as well as for nearby water surfaces (ponds and rivers), asphalt surfaces 

and urban areas. We assumed that the still-water surfaces, asphalt surfaces and urban areas would be 

most suitable as reference targets in image-to-image comparison because they would not be affected 

by vegetation, soil moisture, and wind conditions. Water and asphalt polygons were selected in 

uniform areas without disturbances. Urban polygons were selected in typical built areas without 

obvious temporal changes. The urban areas would include some asphalt surfaces, but we assumed 

them as another representative category of stable areas by taking much larger sizes. 

In each image, more than 20 polygons were generated for each category based on the field-survey 

and optical satellite images. Consequently, the average size of polygons was 126,000 m
2
 for urban 

areas, whereas it was 5500 m
2
 for asphalt surfaces, 880 m

2
 for water surfaces, and 780 m

2
 for  

plant-sampling plots, respectively. These polygons were used to extract σ
0
 values from the four images 

obtained during the maturing stage. Additionally, a polygon dataset generated for all paddy fields in 

the study area (approximately 15,000 fields) was used to extract the field-average values of σ
0
 from the 

TSX image obtained during the transplanting season (26 May 2012).In order to avoid the edge effects 

as well as the possible effects of inaccuracy in polygon boundary, a 5 m buffer-area inside the polygon 

boundary was excluded to compute the representative field-average. 

An image analyzing system (Imagine 2011, ERDAS) and a geographic information system  

(ArcGIS 10.0, ESRI) were used for processing of image data. 
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Characteristics of the σ
0
 values from CSK and TSX, and their relationship with biophysical 

variables were analyzed statistically using correlation and regression methods. The first focal point of 

this study, i.e., the difference and consistency of CSK and TSX, was investigated using the σ
0
 data 

extracted for water surfaces, paddy fields, asphalt surfaces and urban areas. In addition, the σ
0
 data for 

640 individual fields with known transplanting date (see Section 2.3.2) were used to examine the basic 

response of X-band σ
0
 to rice paddies before and after the transplanting event. By this approach, a 

single SAR image can be used to derive the chrono-sequential response of X-band σ
0
 to the daily 

change of paddy conditions during the transplanting season, i.e., from coarse plowing to initial growth 

stage through flooding, puddling, leveling, and transplanting. 

On the basis of these analyses, the second focal point of this study, i.e., the comprehensive 

relationships of X-band σ
0
 with the biophysical rice variables, was investigated using each dataset 

from CSK and TSX. Since we found a systematic bias between the σ
0
 values from CSK and TSX, we 

made a simple linear correction using an approach similar to Pettinato et al. [37] (see Section 3.3). 

Then, we further examined the response of X-band σ
0
 to biophysical variables using the combined 

dataset (CSK + TSX) to explore more general and robust relationships. 

2.4.2. A Simple Canopy Backscattering Model in Support of Experimental Analysis 

A physically-based canopy scattering model was used to simulate the backscattering coefficient of a 

rice canopy. In general, such simulation studies allow us to examine the signal response to the change 

of canopy biophysical variables and the effects of sensor configurations such as frequency, 

polarization and incidence angle. Accordingly, the use of physically-based model is very useful to 

investigate the theoretical soundness of the experimental results. Here, we examined the response of 

canopy σ
0
 under observed biophysical conditions using the model. 

Details of the model structure are given in Wang et al. [27] and Karam et al. [39]. In brief, the 

model integrates the major scattering processes in a rice canopy with several assumptions; (1) the 

ground surface is a smooth surface with dielectric constant of water since paddy fields are flooded 

during the growing season; (2) a rice canopy consists of three layers (i.e., panicle-, leaf-, and  

stem-layers); (3) panicles and stems are expressed as short cylinders; (4) leaves are expressed as 

narrow and long ellipses; and (5) the leaf angle distribution is expressed by a specific probability 

distribution function with a few parameters. Accordingly, the total backscattering coefficient from a 

canopy (σtotal) is expressed as a linear combination of volume scattering from each component, its 

double bounce with ground, and ground surface scattering (in power unit):  

σtotal = σleaf + σleaf-ground + σstem + σstem-ground + σpanicle + σpanicle-ground + σground (1) 

where the σleaf, σstem, and σpanicle are volume scattering of leaves, stems, and panicles, respectively. The 

σleaf-ground, σstem-ground, and σpanicle-ground are double bounce between each component and ground. The 

σground is ground surface scattering [27]. 

The model has some inherent limitations due to the simplification of 3-D structure and biophysical 

characteristics of plant canopies. Predictive accuracies in forward simulations may not be high. 

Retrieval of canopy variables by model inversion may be still difficult. However, we assumed that  

the physically-based model would be useful to assess the relative response of σ
0
 components under a 
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given configuration of SAR sensor. The necessary inputs and parameters were derived from the 

ground-based measurements (see Section 2.3) and default values adapted to X-band. 

3. Results and Discussion 

3.1. Difference and Consistency of σ
0
 Values from CSK and TSX 

3.1.1. Response of σ
0
 to Transplanting and Water Surfaces 

First, we investigated the chrono-sequential change of σ
0
 values of rice paddies extracted from the 

TSX image acquired during the transplanting season. The transplanting season is most suitable to 

examine the response of X-band σ
0
 to subtle amount of vegetation and to water surfaces. According  

to the scatterometer results by Inoue et al. [23], X-band σ
0
 shows a remarkable increase with 

transplanting, and then saturates at the early growth stage. Figure 3 shows the σ
0
 values of 640 rice 

paddies on the axis of days after transplanting (DAT). Since the TSX image was obtained in the 

morning of DOY 147 (26 May 2012), the DAT = +1 and DAT = −1 correspond one day after and 

before the transplanting, respectively. In other words, the line for rice paddies in the graph traces the 

chrono-sequential change of σ
0
 from plowed conditions (left) to transplanted conditions (right), 

through inundated, puddled/smoothed, and flooded conditions. The σ
0
 value changes significantly with 

transplanting by about 3 dB on average. The upper pictures show some examples of paddies before and 

after transplanting. This graph clearly indicates that the paddy surfaces just before transplanting have 

nearly the same σ
0
 values as the average σ

0
 for water surfaces (dotted line; −23.8 dB). 

These results agree well with the experimental study using a ground-based scatterometer [23] 

showing that high frequency bands (Ka, Ku, X) can detect the subtle changes of a paddy surface due to 

the transplanting of thin rice seedlings (15 cm long) spaced at 30 cm × 15 cm. The subtle change is 

almost negligible in terms of biomass and is therefore hard to detect using optical sensors, but the  

X-band would be able to detect the small change with transplanting (Figure 3). The absolute change of 

σ
0
 caused by transplanting was relatively small compared to the scatterometer results (~10 dB), but the 

difference may be attributable to differences in incidence angles as well as the sensitivity and noise 

level of the two systems. Spatial averaging may also affect the sensitivity in case of airborne or 

spaceborne SAR. The spatial averaging is effective in reducing the speckle noise, but would sacrifice 

the sensitivity. In general, the area size of spatial averaging should be balanced with the desired spatial 

resolution to obtain the sufficiently informative distribution of representative values of interest. 

In applications of SAR images to assessment of planted area, usually a set of two SAR images 

obtained just after transplanting (first image) and a few months later (second image) is used to 

discriminate between rice and non-rice fields. Since the sensitivity of σ
0
 to initial growth differences 

depends on the frequency (Ka > Ku > X > C > L), the lower frequency bands (C, L) would need a 

longer time (i.e., a larger amount of growth) to discriminate the planted area. However, our results 

suggest that the high sensitivity of X-band SAR sensors to transplanting would make it possible to 

determine the date of transplanting instead of simply determining whether a field is planted if a few 

consecutive images are available during the transplanting season. Determination of planting date is 

strongly required by crop growth models for accurate assessment and prediction of growth and yield. 

Hence, the results obtained here would be applicable to large areas in Asia where transplanting is a 
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common process in rice cultivation (e.g., 98.8% of rice area in Japan is by transplanting) according to 

the agricultural statistics [38]. However, note that, in rice production, there are several cultivation 

methods such as direct seeding. 

Figure 3. The σ
0
 values for various conditions of rice paddies plotted on the axis of days 

after transplanting (DAT). Date of transplanting was identified for 640 rice paddy fields 

within the image taken by TSX on 26 May 2012 (DOY 147). For example, fields for DAT 

+1 and −1 were under the conditions a day before and after transplanting, respectively. 

Upper pictures show the typical situation for the fields observed on DOY147. 

 

3.1.2. Intercomparison of σ
0
 from CSK and TSX 

Figure 4 compares the average σ
0
 values in four different types of surface (asphalt, urban area, rice 

canopy, and water) extracted from the CSK and TSX images during the maturing stage. This graph 

suggests that the σ
0
 values from each sensor are stable and consistent, respectively, even though all 

images were taken in different years. However, Figure 4a clearly shows that σ
0
 of CSK is higher than 

that of TSX. Judging from the near-parallel regression line to 1:1 line and the small error bars for all 

four categories, the bias between CSK and TSX would be a systematic difference. Figure 4b shows the 

relationship of σ
0
 values for rice, asphalt and urban surfaces against those for water surfaces. The 

average σ
0
 values of water surfaces from each sensor were consistent over the two years, i.e., −17.7 dB 

for CSK and −24.3 dB for TSX. This CSK-to-TSX difference (6.6 dB) may be specific to the 
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configuration (spotlight mode, VV, 50°–54°) in our study, but all data in Figure 4 suggest the stability 

of the signatures from both sensors. The CSK-to-TSX difference here is much clearer than those 

reported by Pettinato et al. [37] for the other modes (Himage, Ping Pong, and Stripmap modes). They 

concluded that σ
0
 from Stripmap-TSX was higher than σ

0
 from Himage-CSK by 3.15 dB, and σ

0
  

from Himage-CSK was higher than Ping Pong-CSK by 2.4 dB. These experimental results suggest  

that the CSK-to-TSX difference would vary significantly depending on acquisition modes and/or 

configurations. Some other preliminary studies on the discrepancy between the two sensors also 

support our insight, e.g., [36]. These differences may be attributable to some systematic differences in 

calibration procedures between the two sensors. 

Figure 4. Comparison of σ
0
 values in rice canopies, asphalt surfaces, urban areas, and 

water surfaces obtained by CSK and TSX sensors. (a) Comparison of average σ
0
 of the 

four categories in CSK and TSX images during the maturing stage; (b) Comparison of σ
0
 

for rice, asphalt and urban areas against σ
0
 for water surfaces. Dates of SAR observations 

are indicated in yyyymmdd along the “water-line” for CSK and TSX, respectively. The 

water-point is the intersection point between water-line and 1:1 line. 

 

Figure 4b indicates that the distance of data points for asphalt, rice and urban areas from the 1:1 line 

was stable despite differences in years and sensors. Overall, the distance was approximately 3.0, 8.4, 

and 10.1 dB for asphalt, matured-rice, and urban areas, respectively. Note that the lowest point for rice 

(−21 dB) for TSX represents the average σ
0
 just after transplanting (Date: 26 May 2012, see Figure 3). 

Accordingly, we can assume that the position of σ
0
 for various surfaces would move along the dotted 

arrows (vertical lines for water surfaces) in each image. This is also supported clearly by the temporal 

change of σ
0
 derived from the different analysis (Figure 3). Note that the TSX σ

0
 values for water 

surfaces indicated in Figures 3 and 4 are very close to each other (−23.8~−24.3 dB) despite the 

significant differences in season, year, and incidence angle. So, hereafter, we refer to the vertical line 

for water surfaces as “water-line”, and the intersection point between the water-line and 1:1 line is 

referred to as “water-point”. 
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Our results suggest that, even if the absolute σ
0
 values are not consistent between sensors and/or 

images, the difference of σ
0
 from the “water-point” would be used commonly for quantitative rice 

monitoring. Ideally, differences between sensors due to calibration problems should be solved 

systematically. However, this image-based approach is simple and robust, so it would be a useful 

approach in constellation-use of different SAR sensors towards timely and consistent crop monitoring. 

The “water-point” approach assumes that still-water surfaces are available within each image. This 

assumption may be applicable to most paddy rice-growing regions in monsoon Asia where a number 

of water bodies such as ponds, lakes, or rivers are found. Rippling waves due to strong wind can affect 

the σ
0
 to some extent, e.g., [11,23], but it would be possible to find still-water surfaces within each 

whole image as in our study. In general, vegetation and soil moisture conditions are critical 

confounding factors in selection of reference surfaces for image-to-image comparisons. Therefore, use 

of still-water surfaces as a reference for stable and minimum σ
0
 would be reasonable for this 

application. For the “water-point” method, the extraction of σ
0
 for still-water areas and identification 

of such areas in each image would be automated using the statistical frequency distribution of σ
0
 for 

the image and some indicators about the spatial extent of a specific value of σ
0
. 

3.2. Relationships between the X-Band σ
0
 and Canopy Biophysical Variables 

3.2.1. Analysis Using the Datasets for CSK and TSX 

The results of a comprehensive statistical analysis on the relationship of the X-band σ
0
 with canopy 

biophysical variables are shown in Figure 5. The preliminary results for the CSK sensor (Figure 5a) 

from Inoue and Skaiya [12] are included for comparison of the two different sensors. Overall, the σ
0
 

from TSX had a close positive relationship (at significance level of 0.01) with a larger number of 

canopy variables (13) than CSK σ
0
 (6). Among them, five variables (Stem FW, Panicle FW and DW, 

Total FW and DW) were common to TSX and CSK. The major target variable in this study, i.e., the 

panicle weight, was included in them as we presumed from the results by Inoue et al. [23]. Majority of 

the whole-canopy variables such as LAI, stem density, height, and fAPAR was not adequately 

correlated with σ
0
 values. The poor sensitivity of X-band σ

0
 to the whole-canopy variables is 

reasonable because it saturates at an early stage of rice growth. Ecophysiological and morphological 

variables such as chlorophyll content (SPAD), water content, and leaf length and width were poorly 

correlated with σ
0
. These results suggest the inherent limitation of X-band σ

0
 to detect the actual 

difference of biophysical variables because of its shallow penetration depth into a canopy. We believe 

that these negative results are also useful since the scientific knowledge on both ability and inability  

is critical for appropriate targeting in future research. Hopefully, other analytical techniques such as 

polarimetry, and multiangular measurements might provide useful information. 

In Figure 5, we found that the most significant relationship common to CSK and TSX sensors was 

that between σ
0
 and the panicle biomass. The panicle dry weight (panicle DW) was most closely 

correlated with σ
0
, and the fresh weight (panicle FW) was the second most closely correlated. 

Considering the various confounding factors under field conditions such as row orientation, and soil 

surface and wind conditions, the correlation coefficient was considered to be high (significance level: 

0.005). In general, scattering at the top layer of a canopy is dominant in the X-band, so that the X-band 
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σ
0
 is strongly affected by the size and number of panicles, rachis branches, rice grains, and flag leaves 

within the surface layer of a canopy. This is clearer in VV than in HH owing to the difference in 

extinction process. The high sensitivity of X-band σ
0
 to panicle biomass may be explained by the fact 

that rachis branches with several grains have nearly the same size as the wavelength of the X-band  

(3 cm). This finding for satellite sensors is well supported by a detailed scatterometer study on the 

ground [23]. The authors demonstrated that the X-band as well as the Ka-band (1.9 cm) and Ku-band 

(0.9 cm) were also highly sensitive to the panicle biomass, which may be for the same reason. The 

water content and inclination angle of panicles may affect σ
0
, but the influence on the variability of σ

0
 

may be minor because the panicles tend to be uniform at this growth stage. 

Figure 5. Correlation of σ
0
 from CSK (a) and TSX (b) sensors with biophysical and 

morphological variables in rice canopies at maturing stage. SPAD: chlorophyll index by 

SPAD502; FW: fresh biomass; DW: dry biomass; W: water content; Layer-1, 2, 3: 

thickness of layers for panicles (1), leaves (2), and stems (3), respectively. The correlation 

coefficient (r) at significance level of 0.01 and 0.05 is 0.33 and 0.25, respectively. 

 
  



Remote Sens. 2014, 6 6009 

 

 

3.2.2. Analysis Using the Combined CSK and TSX Dataset 

On the basis of the analysis in Figure 4, a systematic difference between CSK and TSX was 

corrected by subtracting the difference (6.6 dB) from the original σ
0
 values of CSK to create a 

combined dataset. Figure 6 shows the results of a comprehensive statistical analysis using the 

combined dataset. 

Figure 6. Correlation of σ
0
 with biophysical and morphological variables in rice canopies 

at maturing stage using the combined CSK + TSX dataset after offset correction. 

Abbreviations are the same as in Figure 5. The correlation coefficients (r) at significance 

levels of 0.01 and 0.05 are 0.25 and 0.19, respectively. 

 

Figure 7 shows scatter plots for the relationship of σ
0
 with four selected biophysical variables (stem 

density, LAI, leaf length, and 3-D leaf density). The σ
0
 values for the nearby water surfaces are shown 

on the y-axis for reference.  



Remote Sens. 2014, 6 6010 

 

 

Figure 7. Relationships of X-VV σ
0
 with (a) stem density; (b) LAI; (c) leaf length; 

and (d) 3-D leaf density. Combined data from the two sensors after offset correction were 

used. The σ
0
 values for the water surfaces are given on the y-axis for reference. ** indicate 

the statistical significance at 0.01. 

 

The results in Figures 6 and 7 provide interesting facts and useful insights. The overall tendency of 

the correlation coefficient in Figure 6 was similar to those for individual sensors (Figure 5). The most 

significant relationship was found for the panicle biomass. It is obvious that the differences in canopy 

height and fAPAR during the maturing stage were not detectable by σ
0
 because of the poor 

relationship between these variables. Figure 7 depicts a clear gap between the water surfaces and rice 

canopies even for the smallest values of stem density or LAI. These results were considered to be 

reasonable given that the high-frequency bands, especially at VV and shallow angle, are not able to 

penetrate into a rice canopy, especially during the maturing stage when large amounts of leaves, stems, 

and panicles are distributed near the canopy surface [23]. Accordingly, the X-band σ
0
 is most sensitive 

to the difference in the surface layer of a canopy during the maturing stage. In this stage, the most 

drastic change at the surface layer, i.e., grain filling, occurs without much change in the other parts. 

In addition to the drastic change in panicle biomass, a significant change of 3-D geometry occurs 

during this period. Young panicles are near vertical at the heading stage, but bow down to the mixture 

of vertical and horizontal components at the full-maturity stage. However, it may be reasonable to 
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assume that VV is more sensitive to the difference of panicle biomass compared to HH because the 

vertical component is dominant during the most part of maturing stage. The vertical and horizontal 

components are similar at the full-maturity stage, but still the difference of sensitivity between VV and 

HH would be minor, according to the scatterometer results by Inoue et al. (2002) [23]. 

The total biomass, stem density, or stem biomass had a certain positive relationship with σ
0
. 

However, their correlations would be indirect or superficial ones caused by the close ecophysiological 

relationship between such whole canopy variables and the panicle biomass. Interestingly, despite the 

no sensitivity of microwaves to the plant pigments (greenness), a negative significant correlation was 

found in green LAI and SPAD (Figure 6). This superficial correlation can also be explained by the 

negative ecophysiological relationship between the panicle growth and the leaf senescence. Both LAI 

and SPAD have relatively lower values in more matured canopies (larger panicle biomass). 

The difference in water content cannot be detected by X-band σ
0
 because of the poor sensitivity  

(at most r = 0.35 for leaf W). Figure 6 also suggests that X-band σ
0
 is not sensitive to most of the other 

structural and morphological variables, such as leaf size and layer thickness although the sensitivity 

may be somewhat different for the other polarizations [26]. Above results suggest that the X-band 

SAR would have limited capability to assess variables related to the whole canopy only during the 

very early growth stages. 

3.2.3. Examination of the Close Relationship of σ
0
 with Panicle Biomass 

The close relationship between σ
0
 and the panicle dry biomass are examined based on the scatter 

plots for the individual CSK or TSX datasets and the combined dataset of CSK + TSX (Figure 8). This 

scatter plot for the two sensors over the four years strongly suggests a robust relationship between  

X-band σ
0
 and the panicle dry biomass despite the obvious difference in absolute σ

0
 values from the 

two sensors. The most important finding here is that the two regression lines for CSK and TSX  

(Figure 8a) are nearly parallel and accordingly the regression line for the CSK + TSX dataset  

(Figure 8b) keeps similar slope and correlation coefficient. The statistical probability was more than 

99.5% significant. 

These results strongly support the soundness of the image-based approach using the “water-point” 

proposed in previous Section 3.1.2, because the regression line in Figure 8b is equivalent to that for a 

combined CSK + TSX dataset of difference σ
0
 values between canopies and water surfaces in each 

image. Therefore, the approach based on the distance from the “water-point” along “water-line” 

(depicted in Figure 4) would be promising for quantitative monitoring of canopy biophysical variables 

using different sensors. In general, the panicle biomass (yield) had a close positive relationship with 

whole canopy variables such as total biomass. Accordingly, the total biomass, LAI, and fAPAR have 

been important targets for remote sensing studies because they are the key variables for plant 

productivity, e.g., [2,8,19,24]. However, from an ecophysiological point of view, yield is not always 

determined by the total biomass or LAI. For example, rice grain yield can be severely reduced despite 

the large canopy biomass or LAI because of abiotic and biotic stresses on reproductive organs. Sterility 

due to extreme temperatures or panicle blast sometimes causes significant yield reductions in monsoon 

Asia, e.g., [40]. In such cases, canopy biomass cannot be used as an effective indicator for estimating 

grain yield. However, even in such cases, the direct relationship found in this study may be a robust 
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basis for estimating grain yield. Timely observation of rice canopies by X-band SAR sensors would 

provide an interesting opportunity to directly assess grain yield. 

The relatively high correlation between the total biomass and σ
0
 found in this study (Figures 5  

and 6) would be indirect or superficial, and attributable to the close relationship between the total 

biomass and panicle biomass [12], because the scattering process in the top canopy layer is dominant 

in the X-band, e.g., [22,23]. The sensitivity of σ
0
 to the panicle biomass was twice that of the 

sensitivity to the total biomass (5.5 and 2.5 dB∙kg
−1

, respectively). Since a recent report clearly showed 

that C-band σ
0
 is promising for assessing LAI and fAPAR [13], a synergistic use of C- and X-bands 

would be more powerful for monitoring both the whole-canopy productivity and grain yield. 

Figure 8. Relationship of X-VV σ
0
 from CSK and TSX with the panicle dry biomass.  

(a) Comparison using the original σ
0
 from the two sensors; and (b) comparison using the 

combined data from the two sensors after offset correction. *** indicates the statistical 

significance at 0.005. 

 

3.2.4. Analysis Using a Simple Canopy Scattering Model 

The most interesting result, i.e., the relationship between X-band σ
0
 and panicle biomass, was 

investigated using a physically-based canopy scattering model (Equation (1)). Figure 9 shows the 

comparisons between simulated σ
0
 values (VV, 52°) and panicle-related variables. The panicle-related 

scattering component, σpanicle + σpanicle-ground, was moderately correlated with the depth of the panicle 

layer (Thickness of Layer-1; Figure 9a) and panicle biomass (Panicle DW; Figure 9b). The σtotal was 

also positively related with panicle biomass with somewhat lower coefficient. The difference in these 

correlation coefficients is reasonable because the σtotal is affected not only by panicle variables but also 

by many other factors such as leaves, whereas the σpanicle + σpanicle-ground is mainly determined by panicle 

variables. Overall, these results suggest that the experimental results obtained in Figure 8 would not 

contradict the backscattering processes integrated in the model. Although the absolute level of σ
0
 from 

the simulation did not agree well with the measurements, these simulation results may be useful to 

check the relative response of σ
0
 to the changes in canopy conditions. 
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Figure 9. Simulated response of X-VV σ
0
 at an incidence angle of 52° to a measured 

panicle variables. The sum of σ
0
 components related to scattering of panicle is plotted 

against the measured layer thickness of panicle layer (a) and the panicle DW (b); 

respectively. The total canopy σ
0
 is plotted against panicle DW in (c). * and ** indicate the 

statistical significance at 0.05 and 0.01, respectively. 

 

In general, physically-based scattering models are based on many assumptions. Accordingly, the 

real canopy structures are greatly simplified. Moreover, it is difficult or often impossible to measure 
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the accurate model-inputs in real canopies. Hence, we have to note that some discrepancies in absolute 

values and sensitivity between the experimental results in Figure 8 and the simulation results in  

Figure 9 suggest the limitations of the present model. The accurate measurement and modeling of 3-D 

distribution of rice panicles and their scattering processes would be one of the most interesting but 

challenging tasks in the future. 

3.3. Overall Capability of X-Band σ
0
 and its Improvement for the Assessment of Biophysical Variables 

Our experimental results based on datasets from two sensors over four years suggest a clear and 

consistent relationship between X-band σ
0
 and canopy biophysical variables. Because of the limited 

capability of the current sensors, the present analysis was based on the dataset at VV polarization and 

an incidence angle of around 50°. However, these results provide clearer insights regarding the 

capability of the other configurations, with the support of the comprehensive results previously 

obtained under a wide range of configurations [23]. 

The availability of multi-polarization measurement is still limited in most current satellite/modes. 

For this reason, the present study focused on a specific polarization (VV) considering the necessary 

spatial resolution and scene-size (coverage). However, full-polarimetric images will be available in 

high-resolution mode in the near future. More sensitive components of the signatures may then be 

explored for a more accurate assessment of the biophysical variables. Use of multi-polarization has 

proven effective for improving the accuracy of classification [13,18,19]. 

In this analysis, field or canopy conditions such as row orientation and ground surface conditions 

were not taken into consideration. Therefore, the accuracy of the assessment of biophysical variables 

from SAR signatures could be further improved by reducing the effects of confounding factors such as 

variability in incidence angle, row direction, and soil roughness. 

Backscattering signals from vegetated surfaces are affected by many factors, including plant 

biomass, structure (e.g., leaf size, stem density, LAI), soil moisture, and roughness, as well as  

their interactions with sensor configurations, such as frequency, polarization, and incidence angle. 

Therefore, process-based models that take account of such factors are also useful for understanding 

and/or predicting the microwave backscattering processes in plant canopies, e.g., [22,27,39,41]. As 

mentioned in the previous Section (3.2.3), rice canopy structures are not incorporated sufficiently in 

physically-based models to examine the detailed interactions between biophysical variables and σ
0
. 

Future improvement of physically-based models would contribute to better interpretation and 

assessment of canopy biophysical variables. 

The synergistic use of SAR and optical sensors is also effective in improving accuracy, e.g., [42,43]. 

For example, supplemental information for each field, such as shape, orientation, and fractional 

vegetation cover, can be obtained based on the segmentation of high-resolution multispectral images, 

e.g., [44,45]. In addition, the synergistic use of SAR sensors with different frequency such as L-, C- 

and X-band would be promising since they are sensitive to different canopy variables [13,20,23,26]. 

Although rice-cropping technologies in Japan are well modernized, the productivity of high-quality 

rice is still not stable, especially under recent climate change. The spatial and temporal variability is 

large (i.e., approximately 0–150% of the national average; e.g., Figure 1a), mainly due to adverse 

weather conditions. This variability is much larger in many other rice-growing countries in Asia. 
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Hence, especially under monsoon conditions in Asia, microwave remote sensing has great potential for 

monitoring and predicting rice growth and yield for precision management and food security. 

4. Conclusions 

Our analytical results based on datasets from two satellite X-band SAR sensors (Cosmo-SkyMed 

and TerraSAR-X) over four years elucidate a clear and consistent relationships between the two 

sensors, as well as the potential of X-band σ
0
 sensors for monitoring rice biophysical variables. 

The chrono-sequential change of σ
0
 in a rice paddy during the transplanting season (i.e., from 

plowed dry conditions to transplanted conditions through flooded and puddled/smoothed surface 

conditions) was revealed using a single SAR image. Results clearly indicated that paddy surfaces a few 

days before transplanting would have nearly the same σ
0
 values as water surfaces, and then the σ

0
 

would change significantly (about 3 dB) with transplanting. 

For both the CSK and TSX sensors, the backscattering coefficients σ
0
 in rice paddies, water 

surfaces, asphalt surfaces, and urban areas were stable and consistent for two consecutive years. 

However, a clear systematic shift (6.6 dB) was found between the two sensors. This difference would 

be attributable to calibration issues, and the difference would vary depending on acquisition modes. 

Most importantly, we found that the differences in σ
0
 between target surfaces and water surfaces in 

each image are comparable in all images from both sensors despite the obvious differences in absolute 

σ
0
 values. On average, the difference σ

0
 was 3.0 dB for asphalt, 8.4 dB for rice paddies, and 10.1 dB 

for urban areas, respectively. Accordingly, an image-based approach using the “water-point” has been 

proposed. This approach would be used commonly for quantitative rice monitoring, even if the 

absolute σ
0
 values are not consistent between sensors and/or images. 

The X-band σ
0
 from both sensors were correlated with stem fresh weight, panicle biomass, and total 

biomass at high statistical significance. Among the various biophysical and morphological variables, 

the panicle biomass was found to be best correlated with X-band σ
0
 at VV polarization. This relationship 

was supported by simulations using a physically-based canopy scattering model. These results based on 

two different sensors clearly support the results of preliminary study by Inoue et al. [12] that X-band 

SAR would have potential for direct assessments of rice grain yields at regional scales from space. A 

close correlation was also found between the total biomass and σ
0
, but this may be an indirect 

relationship because of the close relationship between total biomass and panicle biomass. X-band σ
0
 

did not appear to be very sensitive to most of the other structural and morphological variables, such as 

leaf size and layer thickness, during the maturing stage of paddy rice. These results suggest that the  

X-band SAR would have limited capability to assess the whole-canopy variables only during the very 

early growth stages. 

Because of the limited capability of current sensors, the present analysis was based on a dataset at 

VV polarization and an incidence angle of around 50°. However, our experimental results based on 

detailed ground-based measurements would provide useful insights on the potential and limitations of 

satellite SAR sensors in general for agricultural and ecosystem applications. The constellation-use of 

multiple SAR sensors would greatly contribute to timely acquisition of crop information for precision 

farming and for decision making for food security. 
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