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Abstract: Geological structures, such as faults and fractures, appear as image 

discontinuities or lineaments in remote sensing data. Geologic lineament mapping is a very 

important issue in geo-engineering, especially for construction site selection, seismic, and 

risk assessment, mineral exploration and hydrogeological research. Classical methods of 

lineaments extraction are based on semi-automated (or visual) interpretation of optical data 

and digital elevation models. We developed a freely available Matlab based toolbox 

TecLines (Tectonic Lineament Analysis) for locating and quantifying lineament patterns 

using satellite data and digital elevation models. TecLines consists of a set of functions 

including frequency filtering, spatial filtering, tensor voting, Hough transformation, and 

polynomial fitting. Due to differences in the mathematical background of the edge 

detection and edge linking procedure as well as the breadth of the methods, we introduce 

the approach in two-parts. In this first study, we present the steps that lead to edge 

detection. We introduce the data pre-processing using selected filters in spatial and 

frequency domains. We then describe the application of the tensor-voting framework to 

improve position and length accuracies of the detected lineaments. We demonstrate the 

robustness of the approach in a complex area in the northeast of Afghanistan using a 

panchromatic QUICKBIRD-2 image with 1-meter resolution. Finally, we compare the 

results of TecLines with manual lineament extraction, and other lineament extraction 

algorithms, as well as a published fault map of the study area. 
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1. Introduction 

Detection and extraction of lineaments are commonly used for construction site selection  

(dams, bridges, roads, etc.) [1–4], seismic and risk assessment [5–11], water resources and 

hydrogeological investigations [12–16], mineral exploration [17–22], and in the study of the structural 

or tectonic history of a region [23–25]. Most of the tectonic features are associated with straight linear 

elements (further denoted as ―lineaments‖) on satellite images. Several regions cannot be studied in the 

field for various reasons such as being impassable or unsafe area [26,27]. The use of aerial photographs and 

satellite images in the regional scale study of linear features such as faults, fracture zones, shears zones, and 

lithological contacts has greatly reduced the effects of these limitations [17,27]. 

Traditionally, lineament mapping is based on a visual or semi-automatic interpretation (photo-geology). 

Lineaments are often extracted manually by digitizing, which is subjective, time consuming, expensive 

and requires expertise, training and adequate scientific skills. In addition, it cannot produce results for 

large scale areas [28]. Lineament extraction could be more advantageous if the results were 

reproducible. Automatic lineament extraction is therefore needed. 

 Increasing spatial and radiometric resolution in satellite images favors the development of 

automatic, or criteria-based, lineament extraction algorithms [29,30]. However, algorithms are usually 

slow and commonly generate false features that are related to artificial linear features such as roads 

and power lines [31]. Linear feature enhancement and detection mostly have been done in the spatial 

domain (based on direct manipulation of pixels in an image) by using Sobel [32], Prewitt [32,33], and 

LOG filters [12,34–36], as well as morphological filters [37] and frequency domain (based on 

modifying the spectral transform of an image). The binary edge maps that have been derived in the 

edge detection step have been used as inputs for extraction algorithms, such as edge following  

(graph searching [29]), edge linking operators (standard Hough Transform [27,35,38–40], and edge 

tracing algorithms (STA, START, and ALERT algorithm [41]). 

The success of automatic lineament extraction procedures depends on the reliability and accuracy of 

edge detection mechanism [28,42,43]. Until now it has been impossible to recognize or measure linear 

features of interest that have to be detected and to remove all remaining artifacts [43]. Selection of 

image preprocessing procedures and appropriate edge detection methods are very important in tectonic 

linear feature extraction, because they have significant effects on the accuracy of the final results.  

The main goal of this study is to develop a new MATLAB based toolbox (TecLines) for automatic 

lineaments mapping from satellite images and digital elevation models (DEM). TecLines contains a set 

of functions for detecting and extracting potential edges with integration between image frequency and 

spatial filtering, Tensor voting framework, Hough transformation and polynomial fitting methodology. 

The extraction of lineaments using the TecLines toolbox is performed in two main steps: edge 

detection and edge linking. Edge detection methods should ideally generate sets of pixels lying only on 

edges. In practice, these pixels seldom completely characterize edges because of unwanted noise and 

breaks. The general shape of the objects may be initially unknown, but in many cases they can be 
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approximated by piecewise linear segments. It is not easily feasible to fit linear segments to all the 

edges in an image and discard false segments. These problems are addressed in the edge-linking step. 

The goal of edge linking is to describe an edge as a linear segment of specified shape and estimate the 

missing edge pixels from the assumed equation of the curvilinear segment. Due to differences in the 

mathematical background of the edge detection and edge linking procedure as well as the breadth of 

topics, we present the approach in a two-part paper. We chose MATLAB because it provides a 

multipurpose environment for mathematical processing based on a high-level programming language. 

Additionally, the functions provided in MATLAB are easy to modify and open for improvements.  

The specific objective of the first part is to describe and assess the comprehensive edge detection 

procedure by integration of frequency domain filters, edge detection methods, and tensor voting 

framework. We introduce this part, with a focus on tectonic lineament extraction (binary edge maps 

with efficient thickness, length and pixel connectivity, and increased degree of accuracy of the edge 

detection). Finally, we validate this functionality using a synthetic image with known discontinuities 

and a high-resolution satellite image (QUICKBIRD-2) from an active tectonic area: the Andarab fault 

zone in NE Afghanistan. 

2. Data 

In this paper, we demonstrate the performance of the TecLines for edge detection, where validation 

has been performed on a synthetic and a real dataset.  

2.1. Synthetic Dataset 

In recent decades, several approaches for performance evaluation of edge detection methods have 

been proposed according to the presence or absence of ground truth data [44–50]. These approaches 

are based on the characteristic of the images (i.e., real images, synthetic images) [44,49–51]. Most of 

the edge detection methods that rely on ground truth use simple synthetic images [52–55], because it is 

easy to specify the ground truth edge locations [44,45]. In these cases, the edge detection can be 

quantitatively evaluated based on the known ideal detection considered to be the ground truth [55]. 

The synthetic DEM (Figure 1) used here is the result of landscape evolution algorithm created using 

set river incision and different uplift rates across tectonic faults. The drainage system adapts to the 

evolving surface conditions. 

2.2. Real Dataset 

Study Area and Data  

We evaluated the performance of TecLines on satellite images of the active Andarab fault zone, 

northeastern part of Afghanistan (Figure 2a). The selected area has a long history of damaging 

earthquakes [56]. Furthermore, it encompasses regions interpreted as deformed by primarily 

transtensional forces in the Trans-Himalayan orogenic belt [57,58]. The Andarab fault is dextral and 

coincides with an approximately 150 km long, east-west-trending valley north of the intersection 

between the Paghman and Hari-Rud faults. In the high valley of Darya, many evidences of recent 

tectonic movements were observed along the fault trace [57]. In this study, we used panchromatic band 
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of the Quickbird-2 (1 m spatial resolution) for 2 March 2006 (Figure 2b). This data is in UTM 

coordinate system, datum ―WGS84‖ and zone 42 N.  

Figure 1. The synthetic DEM that is the result of landscape evolution algorithm created 

using set river incision and different uplift rates across tectonic faults. The drainage system 

adapts to the evolving surface conditions. 

 

Figure 2. (a) location of the study area in Northeast Afghanistan. (b) panchromatic band of 

the Quickbird-2 (1-m spatial resolution) for 2 March 2006, of the study area.  

  

(a) (b) 

3. Methodology 

TecLines is a new MATLAB based framework that contains various functions for automatic 

detection and extraction of tectonic lineaments from satellite images and digital elevation models 

(DEM). Besides import and export functions that support the raster and vectors in standard file 

formats, TecLines provides functions for image filtering in the frequency and spatial domains to 

produce primary binary edge maps. Final binary edge maps in TecLines are produced by performing 

the computation of the Tensor voting framework. In addition, TecLines extract line segments from 

final binary edge maps by employing standard Hough transformation functions. A set of functions 

serves the grouping and merging line segments, which will be resulted in final lineaments maps. 
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Comparing results with published/non-published lineament maps and lineament analysis are also 

possible in TecLines. An overview of TecLines divisions can be found in Figure 3. 

Figure 3. Overview of the essential components of lineament mapping using TecLines. 

 

3.1. Frequency Domain Filtering 

Image enhancement methods can contribute significantly to the automated extraction of linear 

features by using noise reduction and edges enhancement in the input images. There are two main 

categories for image enhancement methods: (1) spatial domain methods, such as Mean, Median, and 

Mode filters, and (2) frequency domain methods, such as Gaussian and Butterworth high, low, and 

band pass frequency filters. The main difference between both categories is that the spatial domain 

methods are usually applied locally, while the frequency domain methods are usually done in the 

global context. Unfortunately, there is no common principle for determining what is ―good‖ image 

enhancement. However, when image enhancement methods are used as a pre-processing phase for 

other image processing methods, then quantitative measures can determine which methods are  

most appropriate.  

In this study, we used Butterworth band-pass filter in the frequency domain Equation (1) in order to 

enhance edges by suppressing low frequencies and filter noise by attenuating high frequencies [20]. 

The Butterworth band-pass method has several advantages with respect to other methods such as the 

smooth transfer function without any discontinuity or clear cut-off frequency to reduce the sharp 

truncation effect and the easy control of the range of frequencies passes (bandwidth) dependently on 

the order of the filter. In addition, the Butterworth band-pass method can improve the performance of 

the Ideal band-pass method while reducing the ring and blurring effect. 
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𝐻𝐵 𝑓 =  
1

1 +  𝑓 𝑓𝐿  2𝑛
 ∙  

1

1 +  𝑓 𝑓𝐻  2𝑛
  (1) 

where 𝑓𝐿and 𝑓𝐻 are the low and high cut frequencies respectively, f is the distance from the origin, and 

n  is the order of the filter. The Butterworth filter is available in MATLAB but it shows some 

limitations. According to MATLAB documentation, numerical problems can happen for frequency 

filter orders as low as 6 when the transfer function coefficient form ([b, a] form) is used. These 

problems are due to round-off errors. The reason is that higher order filters may need extremely precise 

tap coefficients to get the desired performance. Therefore, numerical error in the calculation of the tap 

coefficients can destroy the performance. In fact, the computed filter is unstable. Accordingly, we 

implemented a new MATLAB based code to apply the band-pass filter on the satellite images.  

This code allows edge enhancement by frequency domain filtering at the specified band-pass 

parameters such as the order of the filter and the upper and lower frequency cutoffs of the filter  

for a given bandwidth that satisfies the rate of transmission at the cutoffs while maintaining the  

desired performance. 

3.2. Spatial Domain Filtering 

The principal physical edges correspond to significant variation in the reflectance, illumination, 

orientation and depth of scene surface [59]. Conceptually, edge detection refers to the process  

of identifying and locating sharp discontinuities in an image in three steps: differentiation, smoothing 

and labeling [36,60–62]. Several types of methods are available for edge detection in the spatial 

domain. These methods are classified in: gradient based method (first order derivative), laplacian 

based methods (second order derivative) and optimal edge detection methods [59,63]. We successfully 

tested and implemented in TecLines three common methods: Sobel and Prewitt [32,33] (gradient based), 

LOG [36,64,65] (Laplacian based), and Canny [60] (optimum) edge detection methods. In the  

gradient-based edge detection methods, the magnitude of the gradient vector reflects the strength of the 

edge, or edge response, at any given point. The effect of the noise in the signal will appear on the small 

local maxima in magnitude (edge strength), thus the resulting map of local maxima is thresholding to 

distinguish convincing edges [66–68].  

In the Laplacian based methods such as LOG method, the gaussian smoothing filter is used for 

decreasing the sensitivity to noise in the input image, in other words to slightly blur the image. Then, 

Laplacian is applied to detect regions of rapid intensity change. The disadvantages of these edge 

detectors are their sensitivity to noise also producing two-pixel thick edges [69]. 

The Canny edge detection method is an optimum method and provides a multi-stage algorithm to 

detect a wide-range of edges in images. Those should be at a minimum distance to the actual edge in 

the real image. In addition, the detected edges should have minimal response. In other words, the 

discovered edges should have only one response to a single edge and completely eliminate the 

possibility of multiple responses to an edge by using adaptive thresholds with hysteresis. 
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3.3. Morphological Image Processing 

Binary edge maps produced by Sobel, LOG, and Canny edge detection methods can have  

small-scale edges and isolated (or island) edge pixels. A common approach for improving these results 

is to use mathematical morphology methods to eliminate extra edge pixels. In this study, we used 

opening morphological filter using bwareaopen command in MATLAB. Morphological opening is  

an erosion followed by a dilation. Erosion eliminates small-scale details by removing outlying pixels 

and isolated pixels. Dilation restores all remained edges to their original size. The opening method 

presents many advantages because it relies only on the relative ordering of the pixel value, not on their 

numerical values. The opening is anti-extensive. In addition, opening is idempotent operation because 

it can be applied multiple times without changing the result beyond the initial application. 

3.4. Tensor Voting Framework 

Tensor voting is a non-iterative methodology to the inference of statistically salient features from 

possibly sparse and noisy data. In the tensor voting framework [70], the input data is encoded as 

elementary second order, symmetric, non-negative definite tensors (position/orientation pairs), then 

support information (including proximity and smoothness of continuity) is propagated by vote casting 

According to these principles for each possible dimension, each input token, where the input token is 

an unstructured point cloud with no priori orientation, encodes a local potential orientation [71]. 

Therefore, every token is a location where an orientation is defined. The representation is in the form 

of a second order, symmetric, non-negative definite tensor which essentially indicates the saliency of 

each type of perceptual structure (curve, junction or region in 2-D) the token may belong to its 

preferred normal and tangent orientations [71,72]: 

T =   λ1 − λ2 e1e1
T +  λ2(e1e1

T +  e2e2
T) (2) 

The tensor can specify its preferred tangent, normal orientation, as well as saliency corresponding to 

its perceptual structures. In Figure 4, the major axis e1 is the preferred normal orientation of a potential 

curve segment. The magnitude of the stick component  λ1 − λ2  indicates curve saliency. 

Figure 4. Tensor decomposition. 

 

Tensor voting was implemented using tensor fields to pre-compute and store the votes from both 

stick and ball voters in receivers at various distances and angles (Figure 5) [70–72]. Vote orientation 
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corresponds to the smoothest local curve continuation from voter to the recipient, while vote strength 

decays exponentially with distance and curvature. The second order vote also is a stick tensor and has 

a normal lying along the circular arc from voter O to recipient P (Figure 5). According to the Gestalt 

principles, vote orientation corresponds to the smoothest local curve continuation between two points, 

O as a voter and P as a recipient, while vote strength decays exponentially with distance and curvature. 

The magnitude of the vote is described by a function of confidence in spherical coordinates that the 

voter O and the receiver P indeed belong to the same perceptual structure. This magnitude can be 

calculated according to [70]: 

DF S, K, σ = e
−(

S2+CK2

σ2 )
 (3) 

where S is the distance between voter (O) and receiver (P), K is the curvature, σ is the scale of voting, 

which determines the effective neighborhood size and C as a function of the scale controls the degree 

of decay with curvature (Figure 5). In the feature extraction process, a saliency map is produced for 

each feature type, which is assigning a second order symmetric tensor that estimates the structure of 

the feature type and the associated saliency. The characteristics of the elementary tensors in 2-D are 

shown in Table 1. 

Figure 5. Second order vote casting by a stick tensor located at the origin [71]. Where S is 

distance between voter (O) and receiver (P), K is the curvature, σ is the scale of voting, 

which determines the effective neighborhood size and C as a function of the scale controls 

the degree of decay with curvature. 

 

Table 1. Elementary tensors in 2-D, where n and t represent the normal and tangent vector 

respectively and the geometric features extracted after 2-D tensor voting [71,72]. 

Feature λ1λ2 e1e2 Tensor Saliency Normal Tangent Normal Tensor 

Point 1 1 Any orthonormal basis Ball λ1 all2 > 1 None Any orthonormal basis None 

Curve 1 0 n t Stick  λ1 − λ2 > λ2 e1 e2 e1 

In TecLines, we wrote and implemented a set of MATLAB based functions for tensor voting to 

compute the gradient vector and the tensor matrix at the edge pixels of the binary image, which were 

extracted by edge detection methods. Then, voting tensor field generated by casting votes on all the 

edge pixels of the image were used to construct the stick saliency map. Finally, we extracted the 

distinguished edge pixels based on the stick saliency map. 
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3.5. Accuracy Measurements 

There are specific statistical measures that we can use to assess erroneous measures [48,73,74].  

The difference between edge pixels obtained by edge detection methods and a reference map (ground truth) 

can be inferred [75,76]. True positive is the number of correctly detected edge pixels, false positive is 

the number of pixels erroneously classified as edge pixels, and false negative is the amount of pixels 

that were not classified as edge pixels [77,78].  

𝑇𝑃 =
 𝐸𝐼𝑀 ∩ 𝐸𝐺𝑇𝑃  

 𝑃 
 (4) 

𝐹𝑃 =
 𝐸𝐼𝑀 ∩ −𝐸𝐺𝑇𝑃  

 𝑃 
 (5) 

𝐹𝑁 =
 −𝐸𝐼𝑀 ∩ 𝐸𝐺𝑇𝑃  

 𝑃 
 (6) 

where TP is the total number of true positive edge. FN and FP are total number of false negative and 

false positive edges, respectively. 𝐸𝐼𝑀  𝑎𝑛𝑑 𝐸𝐺𝑇𝑃  are the total number of edge pixels in the image and 

reference dataset, respectively. P is the subset of positions in the image at which edges occur. 

Accuracy requires that edges should be detected as close as possible to their correct positions. In a 

given image, the edge positions and numbers can be vary according to resolution and procedures [75]. 

In this study, by comparing the edges detected using TecLines with a reference map, the accuracy was 

computed as follows.  

𝐴𝑐 =

𝑇𝑃
𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 +

𝑇𝑃
𝐸𝐺𝑇𝑃

2
 × 100 

(7) 

where Ac stands for accuracy. The value of Ac for accurate edge detection methods should be close to 

100%. In order to evaluate the performance of the proposed edge detection procedure a reference 

dataset is required. The references dataset for both synthetic and QuickBird 2 images are determined 

based on manual extraction (Figure 6), because it is easy to distinguish geological and non-geological 

lineaments by visual interpretation [35,41,51,79,80].  

4. Testing and Evaluating TecLines 

4.1. Performance Evaluation of the Edge Detection Methods on a Synthetic DEM 

Accuracy assessment is based on 21 known lineaments, which have been shown by 1180 edge 

pixels in the synthetic DEM (Figure 6b). The range of parameters to be used in edge detection 

procedure should be large enough to cover a wide range of detection results. We implemented 27 sets 

of parameter combinations of sigma, low and high thresholds for Canny edge detection method, where 

sigma ∈ (300, 500, 700), low ∈ (0.01, 0.05, 0.1), and high ∈ (1, 3, 5) In the opening morphological 

filter, minimum number of connected neighboring for each pixel was 4, 8, and 24 pixels. In the first 

step, we extract edges from original dataset without anterior Butterworth band-pass filtering (Figure 7a). 

The accuracy assessment shows that 30% of the known lineaments are detected as true positive edge 

pixels and 70% are detected as false negative edge pixels. The percentage of pixels that are false 
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positives is about 45%. The tensor voting framework is applied to improve the result by considering 

the adjustment between increasing the information and decreasing the noise in the detection procedure. 

As seen in Figure 7b, the results after tensor voting framework demonstrate an increase in accuracy. 

40% of the known lineaments are correctly detected. The percentage of pixels that are detected as false 

negative edge pixels is around 60%.  

Figure 6. (a) The reference lineament map for real dataset that is based on manual 

extraction from panchromatic band of QuickBird-2; (b) The reference map of the synthetic 

DEM consists in the digitized traces of the modeled faults (black line). 

  

(a) (b) 

In the next step, we used a synthetic DEM preprocessed using a Butterworth band-pass filter in 

frequency domain. Due to local intensity changes in the image, edges are better detected in the west  

of the image (Figure 7c). The accuracy assessment of the Canny method shows that 78% of the  

known lineaments are detected as true positive edge pixels and 22% are detected as false negative  

edge pixel. Drainage patterns witness the critical relationship between streams, tectonic, and erosion 

changes [26,81,82]. Tectonic activity disrupts drainage networks. Studying the nature of this disruption 

can give clues about the magnitude and orientation of the original tectonic activity [83–85]. Thus, they 

are potential instruments for tectonic-geomorphology analysis [26,86]. The result of the visual analysis 

shows that nearly 60% of the streams are also detected as edge pixels. Due to noise, the results also 

include many fragmented edge pixels that lead to the extremely low accuracy.  

As seen in Figure 7d, 93% of the known lineaments are correctly detected after performing tensor 

voting framework. The percentage of false negatives is less than 7%. However, these results consist of 

many discontinuous edges, instead of edge contours. Results show that employing a Butterworth band-pass 

filtering prior to Canny edge detector improves the its performance. Additionally, using the  

tensor-voting framework both improved binary edge extraction and merged neighboring edges with 

similar direction. The overall accuracy with the proposed approach is about 52% and is higher than the 

overall accuracy achieved by the other methods (Table 2). In particular, a comparison with true positive 

edge pixels directly validates the superiority of the implemented edge detection procedure based on 

frequency band-pass filtering, edge detection, and tensor-voting framework implemented in TecLines. 
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Figure 7. (a) and (b) preliminary binary edge map produced by Canny edge detection 

method and binary edge map obtained by tensor voting framework; (c) preliminary binary 

edge map produced by Canny edge detection method with prior Butterworth band-pass 

filter; (d) Final resulting binary edge map was obtained by tensor voting framework. 

  

(a) (b) 

  

(c) (d) 

4.2. Performance Evaluation of the Edge Detection Methods on a Satellite Image 

In the first step, we applied a Butterworth band-pass filter in the frequency domain. We used 0.2 as 

an upper-lower cutoffs frequency and 6 for order numbers of filter such that these preserved as many 

significant edges (tectonic linear features) present in the truth as possible (Figure 8). Frequencies 

above and below these cutoffs are in the stop-band. Therefore, TecLines cannot find it in the edge 

detection step. Clearly, using a wide bandwidth and high order number of filter can decrease this 

assumption and preserve small edges but also increase the number of the wrong edges resulting from 

noises. After filtering in frequency domain, we used Sobel, LOG and Canny methods to detect linear 

features (edges). We used a 3 × 3 pixel masking window size in order to ensure the detection of 

sufficiently small feature and preserve image details. We classified image pixels in two groups: edge 
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points (marked as 0) and non-edge points (marked as 255). We used a fixed threshold of 60 for Sobel 

filter. We selected a sigma (standard deviation of the noise) of 1.2 and a threshold of 20 for LOG filter. 

We set the hysteresis thresholding to 0.25 and sigma to 0.08 for Canny filter. The number of edge 

points produced in thresholding procedure can be modified on a case-by-case basis. The preliminary 

binary edge maps produced by Sobel, LOG and Canny filters are shown in Figure 9. 

Table 2. Quantitative measures and overall accuracy obtained by TecLines for synthetic 

digital elevation models (DEM). True positive (TP) is the number of correctly detected 

edge pixels. False positive (FP) is the number of pixels erroneously classified as edge 

pixels. False negative (FN) is the amount of pixels that were not classified as edge pixels. 

Method 𝐓𝐏 𝐅𝐏 FN Overall Accuracy (%) 

Without Butterworth  

band-pass filtering 

Canny 360 26,370 820 15.9 

Canny + TVF 480 17,380 700 21.6 

With Butterworth  

band-pass filtering 

Canny 920 12,240 260 42.4 

Canny + TVF 1098 8339 82 52.3 

We used opening morphological operation in order to thin the edges. This operation removes  

all pixels that are below a threshold of connected pixels. The minimum number of connected neighbors for 

each pixel was set to 4 pixels. The final binary edge maps are produced after removing all residual pixels. 

Figure 8. (a) Quickbird-2 (1 m spatial resolution) for 2 March 2006 of the study area 

shown in pseudo color; (b) Filtered image after Butterworth band-pass filter. Colors 

represent the image brightness digital number (DN) values.  

  

(a) (b) 

We used the tensor-voting framework to improve edge detected map accuracy and merge 

neighboring edges with similar direction. This provides better results than other methods for detecting 

common edges. It should be noted that using tensor-voting framework could lead to loss of small edges 

surrounded by bigger ones. After the voting process, a saliency map is produced by assigning a second 

order symmetric tensor that estimates the structure of the feature type and the associated saliency 

(Figure 10). Then, edges are extracted based on that certain orientations of the features coexist at a 

given location (Figure 10). If we compare the extracted edges with and without the use of tensor voting 

framework it appears that the extracted edges become more apparent and continuous after tensor 
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voting. This technique allows the production of longer and smoother edge lines than the common edge 

detection methods. 

Figure 9. Preliminary binary edge maps resulting from Sobel (a), LOG (b) and Canny (c) 

methods and morphological filtering. We used a fixed threshold of 60 for Sobel, a sigma 

(standard deviation of the noise) of 1.2 and a threshold of 20 for LOG, and the hysteresis 

thresholding to 0.25 and sigma to 0.08 for Canny. 

  

(a) (b) 

 

(c) 

Accuracy Measurements 

The accuracy was computed by comparing the edges detected using TecLines to the set of edges in 

the reference dataset (ground truth), The reference dataset is based on visual image interpretation and 

manual extraction. We analyzed the results before and after tensor voting framework. The results are 

shown in Table 3. This table shows that the tensor-voting framework significantly improves the true 

positive percentage in all of three edge detection methods. The number of false positive pixels is also 

drastically reduced. The highest overall accuracy was achieved by applying a combination of the 

Canny method and tensor voting framework and reaches about 74.5%. The accuracy of sobel and LOG 

methods were also improved after performing tensor-voting framework. 
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Figure 10. (Left Pannel) Saliency density maps produced individually for (a) Sobel,  

(b) Log, and (c) Canny edge detection methods, respectively. The saliency density maps 

were constructed by using voting tensor fields that are generated from casting votes on all 

of the edge pixels. (Right Pannel) final extracted edge map by using tensor-voting 

framework after (a) Sobel, (b) Log, and (c) Canny filtering. 

  

(a) 

  

(b) 

  

(c) 
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Table 3. Quantitative measures obtained by TecLines for panchromatic band of 

QuickBird-2. True positive (TP) is the number of correctly detected edge pixels. False 

positive (FP) is the number of pixels erroneously classified as edge pixels. False negative 

(FN) is the amount of pixels that were not classified as edge pixels. 

Method 𝐓𝐏 𝐅𝐏 FN Overall Accuracy (%) 

Sobel 3726 8657 2464 42.7 

Sobel + TVF 4333 1075 1857 64.8 

LOG 3838 9721 2352 43.1 

LOG + TVF 4271 1684 1919 60.62 

Canny 4147 6293 2043 46.5 

Canny + TVF 4891 795 1299 74.5 

5. Conclusions 

The aim of this work is to develop a MATLAB based toolbox (TecLines) in order to extract 

discontinuities from satellite images and digital elevation models. The high edge detection accuracy 

achieved by using TecLines shows that the proposed edge detection procedure can be used for 

geological purposes using high-resolution satellite images and DEM. The combined process of 

Butterworth band-pass filter in the frequency domain, edge detection methods in spatial domain and 

tensor voting framework slightly improves the edge detection accuracy. Consequently using the  

tensor-voting framework, the accuracy of edge detection is improved by 20% to 30%. We show that 

the combination of Sobel or LOG methods and tensor voting framework have similar overall accuracy 

for both the QuickBird and the synthetic images. However, the combination of the Canny and  

tensor-voting framework is considered more effective for edge detection. There are several important 

points that should be taken into account for further investigation. The percentage of achieved accuracy 

of edge detection methods largely depends on the gradient thresholds. The values of thresholds are still 

based on trial and error. For low thresholds, more edges will be detected but the resulting image will 

be increasingly susceptible to noise and trigger the detection of irrelevant features. A high threshold 

may miss subtle edges, or result in fragmented edges. Therefore, it is recommended to investigate 

further interactive thresholding in future edge detection methods. The outcome of this study is based 

on the panchromatic band of the QuickBird 2, which has a very high spatial resolution (1 m resolution). 

The proposed edge detection procedure is also adequate for medium resolution satellite images such as 

Landsat. The Landsat images have some advantages over QuickBird 2, such as free to availability, 

more coverage area, as well as shorter repeat intervals. While these results for edge detection 

procedures from satellite images are promising, the further mathematical approach presented in part 2 

is still needed to extract linear segments from edges. In the second part of TecLines paper series, we 

describe the procedure of edge linking using the Hough transform and polynomial curve fitting using 

B-spline and Tavares methods. The quantitative representation of the binary edge maps can be 

exported as shape files, Geotiff and ENVI headers. Users can write their own MATLAB functions in 

order to expand the TecLines capabilities. The proposed toolbox is available from the TecLines 

website [87]. This provides new opportunities for education and research in tectonic lineament analysis. 
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