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Abstract: The vegetation in the forest-tundra ecotone zone is expected to be highly 

affected by climate change and requires effective monitoring techniques. Airborne laser 

scanning (ALS) has been proposed as a tool for the detection of small pioneer trees for 

such vast areas using laser height and intensity data. The main objective of the present 

study was to assess a possible improvement in the performance of classifying tree  

and nontree laser echoes from high-density ALS data. The data were collected along  

a 1000 km long transect stretching from southern to northern Norway. Different 

geostatistical and statistical measures derived from laser height and intensity values were 

used to extent and potentially improve more simple models ignoring the spatial context. 

Generalised linear models (GLM) and support vector machines (SVM) were employed as 

classification methods. Total accuracies and Cohen’s kappa coefficients were calculated 

and compared to those of simpler models from a previous study. For both classification 

methods, all models revealed total accuracies similar to the results of the simpler models. 

Concerning classification performance, however, the comparison of the kappa coefficients 

indicated a significant improvement for some models both using GLM and SVM, with 

classification accuracies >94%. 
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1. Introduction 

Particularly in the boreal regions, forest ecosystems are expected to be highly affected by increasing 

temperatures caused by climatic changes [1]. As ―the transition zone between forest and tundra at high 

elevation or latitude‖ [2], the forest-tundra ecotone entails a high sensitivity to these climatic changes, 

and alpine and arctic tree lines are expected to advance both to higher altitudinal and latitudinal areas 

because of changes in temperature, precipitation, and snow coverage [3]. Furthermore, anthropogenic 

factors in terms of herbivore activity and pastoral economy affect the tree limit beside the natural 

causes [4,5]. To monitor these abiotic and biotic changes, the development of suitable methods  

is essential [4]. 

A large proportion of the total land area in Norway is constituted by the forest-tundra ecotone.  

For such vast areas, cost-efficient motoring will most likely have to involve remote sensing techniques. 

However, the small size and sparse distribution of the objects of interest limit the monitoring capabilities 

of most available spaceborne optical remote sensing instruments because of their limited spatial 

resolutions. Trees located in the forest-tundra ecotone have an assumed height growth of 1 to 10 cm 

per year depending on locality and the prevailing microclimate, and a remote sensing technique with 

the capability to detect subtle changes in growth and colonization patterns in the forest-tundra ecotone 

is therefore needed. In this context, airborne laser scanning (ALS) may be a well-suited tool for 

monitoring changes regarding tree migration both further north and to higher altitudes. Several studies 

on the prediction of biophysical parameters have documented the suitability of ALS on a single-tree 

level at different scales [6–9]. Furthermore, Næsset and Nelson [9], Rees [10], and Thieme et al. [11] 

verified the capability of ALS to discriminate small pioneer trees in the forest-tundra ecotone using 

different laser point densities. Rees [10] demonstrated the utility of low-density laser data over 

hundreds of square kilometers with a point density of ~0.25 m
−2

 for the discrimination of individual 

trees with a minimum tree height of 2 m. Based on positive laser height values as a criterion for 

successful tree detection inside field-measured tree crown polygons, Næsset and Nelson [9] and 

Thieme et al. [11] verified the suitability of high-density laser data (6.8–8.5 m
−2

) for the detection of 

small pioneer trees irrespective of tree height. Detection success rates of over 90% for coniferous and 

at least 84% for mountain birch trees were reported for trees with tree heights ≥1 m [9,11], implying  

an adequate reliability of successful tree detection for tree heights exceeding 1 m. However, severe 

commission errors may occur using laser height values as the sole criterion for tree detection [9,12], 

which is reflected in the significantly lower detection success rates for trees lower than 1 m [9,11]. 

Nontree objects such as rocks, hummocks, and other terrain structures account for a large number of 

laser echoes above the ground surface, but the magnitude of nontree echoes with positive laser height 

values also depends on the properties of the terrain model, the sensor, and flight settings [12]. For a 

dataset with a terrain model that was derived with commonly adopted smoothing criteria, Næsset and 

Nelson [9] reported a commission error of 490%. Thus, the reliability of tree detection analysis using 

laser height values is highly dependent on these commission errors. However, in a multi-temporal 

context, terrain and terrain objects will remain stable while trees may increase in height and number 

over a sufficient time span. Thus, for monitoring the high rates of commission errors may not 

necessarily undermine the potentials of the technology. 
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With regard to forest inventory utilizing ALS data, it is more common to merely employ the height 

information of the laser echoes instead of using the full suite of available information. Spectral data, 

i.e., the intensity values of the laser echoes, are often neglected, however, this additional information 

may be useful to discriminate between tree and nontree echoes. Furthermore, the spatial structure and 

distribution of the individual laser echoes may be conducive to distinguish between different types of 

objects located on the terrain surface. Rossi et al. [13] stated that a variety of biological phenomena 

demonstrate spatial correlation or dependency, often emerging in patches [14]. Hence, the spatial 

variation of laser echoes classified as vegetation may differ around tree and nontree objects.  

For example, Thieme et al. [15] were able to recognize field-measured trees and nontree objects 

identified using aerial imagery by investigating the spatial pattern of laser height and intensity values 

for small-sized Voronoi polygons and their neighborhood in an empirical study. Also a geostatistical 

analysis employing experimental variograms and cross-variograms revealed differences in the pattern 

for tree and nontree objects in that study [15]. In optical remote sensing, geostatistics are a common 

image analysis technique. For instance, standard statistical measures such as mean and standard 

deviation, and the variogram-derived mean semivariance are calculated for each pixel based on a 

moving window and further used for image classification purposes [16,17]. Thus, we hypothesize that 

standard statistical measures as well as a geostatistical component may have the potential to improve 

the classification of tree and nontree laser echoes in the forest-tundra ecotone. 

The main objective of this study was to assess the capability of geostatistical and standard statistical 

measures derived directly from high-density ALS data to improve the classification of tree and  

nontree echoes. For this purpose, the following variables were derived from laser height and intensity 

values using a moving window and tested as discriminators in different classification models:  

(1) a geostatistical measure represented by the variogram-derived mean semivariance; and (2) standard 

statistical measures represented by the arithmetic mean, the standard deviation and the coefficient of 

variation. Based on two different classification methods, the accuracy and performance of the diverse 

models were assessed and finally compared to simpler models from a previous study [18]. 

2. Materials and Methods 

2.1. Study Area 

The study area covered a 1000 km long and approximately 180 m wide longitudinal transect 

encompassing hundreds of mountain forest and alpine elevation gradients. The transect stretches from 

Mo i Rana in northern Norway (66°19′N 14°9′E) to Tvedestrand in the southern part of the country 

(58°3′N 9°0′E) (Figure 1). Sample plots were established in the forest-tundra ecotone, which is the 

transition between the mountain forest and the alpine zone. In most of the localities along the transect, 

the terrain was characterized by rounded forms with occurrences of hummocks, rocks and boulders, 

but also some steep slopes. The prevalent tree species were Norway spruce (Picea abies (L.) Karst.), 

Scots pine (Pinus sylvestris L.), and mountain birch (Betula pubescens ssp czerepanovii). 
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Figure 1. Overview of the study area with the 25 specific field sites (black points). The 

1000 km long transect (black line) stretches from to 66°19′N 14°9′E to 58°3′N 9°0′E. 

 

2.2. Field Data 

The field work in the transect was carried out at 25 different field sites allocated along the transect 

during summer 2008 in order to provide in situ tree data for analysis. 

Each field site consists of two to four sample plots to cover the width of the forest-tundra ecotone. 

Because the width of the forest-tundra ecotone varies between different locations, the number of 

sample plots in each site was determined in field based on both visual and practical judgment of the 

altitudinal range of the ecotone in each case. Furthermore, sample plots within field sites were laid out 

with 50 m interdistance to avoid overlap. These procedures resulted in a total number of 77 sample 

plots. Two Topcon Legacy E+ 20-channel dual-frequency receivers observing pseudo range and carrier 

phase of both Global Positioning System and Global Navigation Satellite System satellites were used  

as base and rover receivers for real-time kinematic differential Global Navigation Satellite Systems 

(dGNSS) navigation and positioning. For each field site, the closest suitable reference point of the 

Norwegian Mapping Authority was selected to establish the base station. For the selection of the sample 
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trees in the field, a modified version of the point-centerd quarter sampling method (PCQ) [19,20]  

was used with a maximum search distance of 25 m. This sampling method involves the division of a 

sample plot into four quadrants defined by the cardinal directions from the center of the sample plot.  

In each quadrant, the tree that was closest to the plot center in a specific tree height class was sampled 

independent of tree species. The tree height classes were defined as: (1) less than 1 m; (2) between 1 m 

and 2 m; and (3) taller than 2 m. Thus, a maximum of 12 trees could potentially be sampled in each 

plot. The cardinal directions were defined by using a Suunto compass, and both the closest tree and the 

maximum search limit were determined by using a surveyor’s tape measure in cases of doubt. 

For each sample tree, several tree metrics were recorded individually. Tree species was determined 

and tree height was measured using a steel tape measure for smaller trees and a Vertex III hypsometer 

for tall trees. Stem diameter was callipered at root collar and crown diameters were measured in the 

cardinal directions with a steel tape measure. Finally, the precise position for each tree was determined 

using the dGNSS-based procedure described above. 

In this study, a total of 524 trees were used, i.e., 404 mountain birch, 67 Norway spruce and  

53 Scots pine. Tree heights ranged from 0.04 m to 7.80 m, and crown areas, computed as the ellipse 

defined by the crown diameters as the major and minor axes, from 0.001 m
2
 to 19.54 m

2
. A summary 

of the tree metrics is given in Table 1. 

Table 1. Summary of field measurements of trees. 

Tree Species Characteristics n Mean Min. Max. 

Mountain birch 

Height (m) 404 1.41 0.04 7.80 

Diameter (cm) 404 4.24 0.10 34.00 

Crown area (m
2
) 404 1.13 0.001 19.54 

Norway spruce 

Height (m) 67 1.67 0.07 7.00 

Diameter (cm) 65 
a
 6.54 0.20 19.10 

Crown area (m
2
) 67 1.45 0.006 5.69 

Scots pine 

Height (m) 53 1.33 0.10 5.10 

Diameter (cm) 53 5.00 0.30 18.90 

Crown area (m
2
) 53 0.81 0.002 7.28 

Note: 
a
 Missing values due to tree properties. 

2.3. Laser Data 

Airborne laser scanner data were acquired on 23 and 24 July 2006 with an Optech ALTM 3100C 

laser scanning system. 

A Piper PA-31 Navajo aircraft carried the laser scanning system at an average flying altitude of 

800 m above ground level. The flight speed was approximately 75 ms
−1

. The scan frequency was 

70 Hz, the maximum half angle was 7°, and the average footprint diameter was estimated to 20 cm. 

Furthermore, the pulse repetition frequency was 100 kHz and resulted in a mean pulse density of 

6.8 m
−2

. The 1000 km long transect was split into 98 individual flight lines to keep the flying altitude 

across the mountains and hence the pulse density as constant as possible. 
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Pre-processing of the laser scanning data was conducted by the contractor (Blom Geomatics, 

Norway). For all laser points, planimetric coordinates (x and y) and ellipsoidal height values  

were computed. 

For the derivation of the terrain model, laser echoes labelled as ―last-of-many‖ and ―single‖ (LAST) 

were used. Ground echoes were classified from the planimetric coordinates and the corresponding 

height values of the LAST echoes, and based on an iteration distance of 1.0 m and an iteration angle of 9°, 

a triangulated irregular network (TIN) was derived using the TerraScan software [21]. Moreover, a 

digital elevation model (DEM) was computed [22] using the LAST echoes classified as ground returns 

to compute the terrain-related variable slope [23]. Because of the small-sized objects in question, the 

DEM was derived with a cell size of 0.25 m. 

Laser echoes labelled as ―first-of-many‖ and ―single‖ (FIRST) were used for the analyses. For this 

purpose, FIRST echoes were projected onto the TIN surface to interpolate the corresponding terrain 

height values on these locations. Furthermore, the differences between the FIRST echo height values 

and the corresponding interpolated terrain heights were computed and stored. In this study, merely the 

FIRST echoes, hereafter referred to as laser echoes, with height values greater than zero were included 

because this criterion represents the sole indicator for the presence of objects on the terrain surface. 

The ALTM 3100C instrument may record up to four echoes per laser pulse with a minimum 

vertical distance of 2.1 m between two subsequent echoes of an individual pulse. However, this 

instrument property in combination with low vegetation in the present study resulted in very few 

pulses with more than a single echo. Hence, the LAST and FIRST datasets were almost identical for 

most of the sample plots. 

2.4. Computations 

For assessing the capability of discriminators represented by geostatistical and standard statistical 

measures derived from the laser echoes to improve the classification of tree and nontree echoes,  

a sequence of computations had to be conducted prior to the analysis. 

First, the field-measured crown diameters were used to compute elliptical tree crown polygons  

to select the tree echoes. Trees with a crown diameter value less than 1.0 m in at least one cardinal 

direction were assigned a tree crown polygon with a constant radius of 0.5 m. This was done to take 

into account the precision of the laser echoes (see Section 5). 

Furthermore, areas within the sample plots where it was ensured that there were no trees because of 

the basic properties of the PCQ sampling method were identified in order to find and select nontree 

laser echoes. These areas were those sectors of the four quadrants that were closer to the plot center 

than the closest recorded tree irrespective of tree size class. In this process, the crown polygon of the 

closest tree was erased from the nontree sector to ensure that only laser echoes emerging from nontree 

objects were included. 

The laser height and intensity values from the laser echoes were used for the computation of 

discriminators for the classification analyses. Concerning the laser height, the numerical height values 

were used directly. For laser intensity, the raw intensity values (IRaw) had to be normalised for the 

range R according to the following formula suggested by Korpela et al. [24]: 
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𝐼𝑅𝑎𝑛 =  
𝑅

𝑅𝑅𝑒𝑓
 

2.4

∙ 𝐼𝑅𝑎𝑤  (1) 

where RRef is an average reference range that was set to 800 m in this study. 

For the computation of the geostatistical and statistical measures, each of the 77 sample plots was 

overlaid with equally spaced grid points with an interdistance of 1 m. A moving window consisting of 

a circular buffer with a radius of 3 m was employed to select laser echoes for the estimation of the 

different geostatistical and statistical measures at each grid point both based on the laser height and 

intensity values. A radius of 3 m was chosen so that the moving window would be larger than the 

largest tree crown in the data material. Thereafter, each laser echo was assigned the computed 

measures of its closest grid point (Figure 2). 

Figure 2. Illustration of a PCQ sample plot (left, further described in the text, Section 2.2.) 

and a detailed demonstration of the computation of the geostatistical and statistical 

measures (right). Tree locations and the respective crown areas are represented in the  

three tree height classes: <1 m (black ellipses), 1–2 m (dark grey ellipses), and >2 m  

(light grey ellipses). Using a circular 3 m radius moving window (black dashed circle), 

laser echoes (black points) were selected for the computation of the geostatistical and 

statistical measures for each grid point (white points). The geostatistical measure was 

estimated using different lags (light grey dashed circles). 

 

Semivariograms were employed as the geostatistical discriminator and were used in the analysis as 

a mean to characterize differences in the behavior of spatial correlation of laser height and intensity 

values for those tree and nontree echoes with positive height values. 

A measure for the spatial correlation of a variable is derived from the calculation of the 

semivariances of multiple pairs of observations as a function of their separation distance [25] and is 

referred to as an experimental variogram. The separation distances used for estimation are represented 

by various distance classes which are referred to as lags. The semivariances of a dataset are computed as 
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𝛾  𝑕 =
1

2𝑛 𝑕 
  𝑧 𝑥𝑖 − 𝑧 𝑥𝑖 + 𝑕  2

𝑛 𝑕 

𝑖=1

 (2) 

where 𝛾  𝑕  is the estimated semivariance for distance (lag) h, z is the data value at a given location and 

n(h) is the number of data points separated by h [13]. In the present study the lags were defined as 

distance intervals. 

The semivariances and hence the spatial variability of a variable can be illustrated by a 

semivariogram, which is usually referred to as a variogram. In case of spatial dependence, a univariate 

experimental variogram is characterized by an increase in semivariance with distance h which may 

level off at the so called sill or increase ad infinitum. In this study, the mean value of the semivariances 

of an experimental variogram was used in the analyses. This mean value was denoted SV (Table 2). 

Table 2. Geostatistical and statistical measures used for classification. 

Based on Discriminator Abbreviation 

Laser Height 

Mean Semivariance HSV 

Arithmetic Mean HAM 

Standard Deviation HSD 

Coefficient of Variation HCV 

Laser Intensity 

Mean Semivariance ISV 

Arithmetic Mean IAM 

Standard Deviation ISD 

Coefficient of Variation ICV 

For computation of the experimental variograms specifically, variograms were calculated individually 

for each grid point of the 77 sample plots using the gstat spatial package [26] in the statistical 

computing software R [27]. The distance classes used for computation were defined to reflect the fact 

that lags closer to zero are expected to provide more information than lags further away. These lags 

were used: 0 m, 0.25 m, 0.5 m, 0.75 m, 1 m, 1.5 m, 2 m, 2.5 m, and 3 m. Furthermore, second-order 

stationarity was assumed which implies a constant mean, variance and covariances depending on 

separation only [28]. Isotropy was assumed for the spatial distributions of the laser height and intensity. 

In addition to the geostatistical discriminator, statistical summary measures were employed.  

The arithmetic mean (AM) as the sum of values of a set of observations divided by the number of 

observations, the standard deviation (SD) as the square root of the averaged squares of the 

observations’ deviations from their mean, and the coefficient of variation (CV) as the ratio between the 

arithmetic mean and the standard deviation were derived both from laser height and intensity values 

respectively (Table 2). 

2.5. Analysis 

Generalised linear models (GLM) and support vector machines (SVM) were employed as 

classification methods in the analyses. Simple models (Table 3) from a study conducted by  

Stumberg et al. [18] were extended with the geostatistical and statistical measures to evaluate their 

potential for an improved classification performance. The two simple models included the laser height 
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and intensity values for the GLM and the additional terrain variable slope for the SVM. A summary of 

the different discriminating geostatistical and statistical variables is given in Table 4. 

Table 3. Models used classification with GLM and SVM. 

Classification Models 
a
 

Basic models GLM 
HI_HSV, HI_HAM, HI_HSD, HI_HCV, HI_ISV, 

HI_IAM, HI_ISD, HI_ICV 

Additional models GLM HI_HSV_HAM 

Basic models SVM 
HIS_HSV, HIS_HAM, HIS_HSD, HIS_HCV, HIS_ISV, 

HIS_IAM, HIS_ISD, HIS_ICV 

Additional models SVM 
HIS_HSV_HAM, HIS_HSV_HSD, HIS_HAM_HSD, 

HIS_HSV_HAM_HSD 

Note: 
a
 HI and HIS indicate the simple models for GLM and SVM, respectively. For further abbreviations  

see Table 2. 

Table 4. Summary of the discriminator variables. 

Class Variable Mean Min. Max. 

Tree 

Height (m) 1.59 0.04 6.49 

Mean semivariance 0.95 0.00 6.28 

Mean 1.25 0.08 4.24 

Standard deviation 0.91 0.00 2.58 

Coefficient of variation 0.80 0.00 2.24 

Intensity 51.62 4.24 90.95 

Mean semivariance 114.36 0.00 603.08 

Mean 53.80 34.21 76.58 

Standard deviation 10.86 0.00 22.80 

Coefficient of variation 0.21 0.00 0.48 

Slope (°) 16.49 1.05 49.89 

Non-tree 

Height (m) 0.17 0.01 4.72 

Mean semivariance 0.04 0.00 4.02 

Mean 0.19 0.04 4.17 

Standard deviation 0.12 0.00 2.46 

Coefficient of variation 0.51 0.00 2.64 

Intensity 56.22 0.51 110.82 

Mean semivariance 60.14 0.00 1462.73 

Mean 56.10 10.65 94.01 

Standard deviation 7.56 0.00 38.26 

Coefficient of variation 0.14 0.00 1.04 

Slope (°) 16.54 0.005 79.68 

Geostatistical and statistical measures that revealed a significant improvement of the model 

compared to the simple model when used individually were subsequently combined in extended 

models using all possible combinations (Table 3) to assess a potential contribution of these 

combinations for the discrimination between tree and nontree echoes. 
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2.5.1. GLM 

GLM are commonly used in regression analysis, however, GLM also represent a suitable tool for 

binary classification problems predicting probabilities on a transformed scale [29]. GLM are defined 

by three elements consisting of the random component identifying the response variable y and its 

probability distribution, the link function connecting the random component to the systematic 

component that is again specifying the independent variables x [29,30]. In the present study, a logit 

link function was employed to relate the different combinations of the independent variables x to the 

binary response variable y (tree/nontree). Thus, the following model was fitted: 

𝑙𝑜𝑔  
𝜋(𝑡𝑟𝑒𝑒 )

1−𝜋(𝑡𝑟𝑒𝑒 )
 = 𝛼 +  𝛽1𝑥1 + ⋯+ 𝛽𝑘𝑥𝑘   (3) 

In the statistical computing software R, the different GLM models (Table 3) were fitted using the 

glm function of the stats package [27]. In the next step, the probabilities of the laser echoes for being  

a nontree echo were predicted from the fitted models. Finally, different thresholds (from p = 0.05 to  

p = 0.95 in 0.05 steps) for these probabilities were employed to classify the laser echoes into tree and 

nontree echoes for each model. For each threshold used during classification, the Cohen’s kappa 

coefficient [31] was estimated to identify the classification with the highest kappa coefficient. 

2.5.2. SVM 

SVM, which were developed by Cortes and Vapnik [32], are a suitable tool for classification, 

regression, and novelty detection [33,34]. By solving a quadratic optimization problem using a training set, 

SVM determine the hyperplane with the maximal margin of separation between two classes. In the 

process, the relevant information used during classification is comprised by the support vectors 

representing points located on the margin boundaries. Points located on the opposite side of the margin 

indicate overlapping classes and are reduced in influence by weighting. The error term is controlled by 

a so called cost or penalty parameter C and a kernel function allowing for a nonlinear separator defines 

the hyperplane. In the present study, the C-support vector classification was used with the radial basis 

function as the kernel, where γ represents a parameter regulating the radial basis function. 

The different models (Table 3) were fitted with the svm function of the e1071 package [35] and a 

prediction of the laser echoes being a tree or nontree echo was performed for each. Using the tune.svm 

function of the e1071 package [33,35], the best hyperparameters C and γ were determined prior to 

classification and outside the leave-one-out cross-validation procedure. 

2.6. Accuracy Assessment and Classification Performance 

A leave-one-out cross-validation was used to assess the classification performance of the modeling 

with GLM and SVM. In the validation, each entire field site (i.e., several individual plots) was treated 

as either being part of the training dataset or the validation dataset. Thus, in each sequence of the 

cross-validation, models were fit with data from all sites apart from one of the sites, and the fitted 

models were used for classification on the single site that was excluded from the model fitting. 

For each model fitted for prediction irrespective of the classification method, the total percentage of 

correct prediction and the Cohen’s kappa coefficient [31] were estimated to assess the classification 
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performances. In the comparison between the simple models, i.e., HI for the GLM and HIS for the 

SVM (Table 3), and the respective extended models, the difference between two independent kappa 

coefficients was estimated using a statistics suggested by Cohen [31] that evaluates the normal curve 

deviate to assess the significance of such a difference: 

𝑧 =
𝜅1 − 𝜅2

 𝜎𝜅1
2 + 𝜎𝜅2

2

 
(4) 

where 𝜅1 and 𝜅2 are the two independent kappa coefficients, and 𝜎𝜅1
 and 𝜎𝜅2

 represent the respective 

standard errors. Kappa coefficients were evaluated quantitatively according to the grading suggested 

by Landis and Koch [36]. 

3. Results 

Classifications of the laser echoes into tree and nontree echoes using GLM and SVM models 

including geostatistical and statistical measures revealed total accuracies of at least 93.6% (Table 5) 

and 94.7% (Table 6), respectively. 

Table 5. Performance of the different models used for classification with GLM. 

Model 
a p Accuracy Kappa Z 

b  

HI_HSV 0.85 0.947 0.605 2.333 * 

HI_HAM 0.85 0.946 0.606 2.482 * 

HI_HSD 0.80 0.943 0.590 1.255  

HI_HCV 0.75 0.936 0.526 3.469 ** 

HI_ISV 0.75 0.948 0.570 0.285  

HI_IAM 0.70 0.948 0.565 0.626  

HI_ISD 0.65 0.949 0.573 0.029  

HI_ICV 0.70 0.949 0.565 0.577  

HI_HSV_HAM 0.85 0.946 0.606 2.480 * 

HI 0.75 0.949 0.573   

Notes: Level of significance: * <0.05. ** <0.005. 
a
 HI indicates the simple model. For further abbreviations 

see Table 2. 
b
 As received by the comparison between two independent kappa coefficients, i.e., the simple 

model HI and the respective extended model. 

Furthermore, kappa coefficients were improved by at least 0.032 (Table 5) and 0.034 (Table 4) 

using GLM and SVM, respectively, compared to the results of the precedent classification study 

conducted by Stumberg et al. [18]. 

3.1. GLM 

The classifications of the laser echoes using GLM revealed total accuracies between 93.6% and 

94.9% (Table 5). The corresponding kappa coefficients ranged from 0.526 to 0.606 indicating 

moderate fits for all the estimated models (Table 5). 

The total accuracies differed with 1.3 percentage points between models (Table 5). Models 

including geostatistical or statistical measures derived from the laser intensity values (HI_ISV, HI_IAM, 
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HI_ISD, and HI_ICV) had slightly higher accuracies, of which the models including the standard 

deviation or the coefficient of variation (HI_ISD and HI_ICV) had the highest accuracies of 94.9%. 

Table 6. Performance of the different models used for classification with SVM. 

Model 
a C 

b γ 
c Accuracy Kappa Z 

d  

HIS_HSV 100 0.1 0.957 0.666 4.995 ** 

HIS_HAM 1000 0.1 0.956 0.655 4.183 ** 

HIS_HSD 100 0.1 0.957 0.660 4.539 ** 

HIS_HCV 100 0.1 0.951 0.605 0.352  

HIS_ISV 1000 0.1 0.953 0.613 0.901  

HIS_IAM 1000 0.1 0.947 0.576 1.772 ' 

HIS_ISD 100 0.1 0.953 0.608 0.570  

HIS_ICV 1000 0.1 0.950 0.605 0.353  

HIS_HSV_HAM 100 0.1 0.955 0.643 3.186 ** 

HIS_HSV_HSD 100 0.1 0.957 0.664 4.875 ** 

HIS_HAM_HSD 100 0.1 0.954 0.634 2.556 * 

HIS_HSV_HAM_HSD 1000 0.1 0.952 0.621 1.552  

HIS 1000 0.1 0.953 0.600   

Notes: Level of significance: ' <0.1. * <0.05. ** <0.005. 
a
 HIS indicates the simple model. For further 

abbreviations see Table 2. 
b
 Cost or penalty parameter. 

c
 Parameter regulating the radial basis function.  

d
 As received by the comparison between two independent kappa coefficients, i.e., the simple model HIS and 

the respective extended model.  

Assessing the corresponding kappa coefficients, higher kappa coefficients were found for models 

including the geostatistical measure and/or the statistical measures represented by the arithmetic mean 

and the standard deviation derived from the laser height values (HI_HSV, HI_HAM, HI_HSD, and 

HI_HSV_HAM). The two models including the arithmetic mean, (HI_HAM) and the mean semivariance 

and the arithmetic mean (HI_HSV_HAM), respectively, revealed the highest kappa coefficient of  

0.606 (Table 5). 

Comparing the kappa coefficients of the nine estimated models to the simple model (HI) that revealed 

the best classification performance using GLM in the study conducted by Stumberg et al. [18],  

no significant contribution was found for the geostatistical and statistical measures derived from the 

laser intensity values (Table 5). All kappa coefficients indicated equivalent classification performances 

for these models, however, neither suggesting significantly worse performances. 

Using the geostatistical and statistical measures derived from the laser height values, a significant 

contribution could be found for the mean semivariance and the arithmetic mean (Table 5). All three 

models including these two discriminators individually or in combination (HI_HSV, HI_HAM,  

and HI_HSV_HAM) revealed significantly improved classification performances compared to the simple 

model HI. Furthermore, the inclusion of the standard deviation or the coefficient of variation, 

respectively, showed a similar or significantly worse classification performance than the simple model 

HI (Table 5). 
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3.2. SVM 

For the SVM classification method, the twelve different models revealed total accuracies ranging 

from 94.7% to 95.7% (Table 6). Furthermore, the kappa coefficients ranged between 0.576 and 0.666, 

indicating moderate fits for four models and substantial fits for eight models, respectively (Table 6). 

The twelve models had a maximum difference in total accuracy of 1.0 percentage points (Table 6), 

where most models consisting of geostatistical or statistical measures derived from the laser height 

values (HIS_HSV, HIS_HAM, HIS_HSD, HIS_HSV_HAM, HIS_HSV_HSD, and HIS_HAM_HSD) revealed 

slightly higher accuracies. The highest accuracy of 95.7% was found for models including the mean 

semivariance and/or the standard deviation (HIS_HSV, HIS_HSD, and HIS_HSV_HSD). 

Furthermore, the corresponding kappa coefficients were higher for models including the mean 

semivariance, the arithmetic mean, and the standard deviation derived from the laser height values, 

both individually and in combination with one another (HIS_HSV, HIS_HAM, HIS_HSD, HIS_HSV_HAM, 

HIS_HSV_HSD, and HIS_HAM_HSD). The highest kappa coefficient of 0.666 was found for the model 

only including the mean semivariance, indicating a substantial fit (Table 6). 

The comparison between the kappa coefficients of the simple model HIS revealing the best 

classification performance in the study carried out by Stumberg et al. [18] and the twelve different 

models was used to assess the capability of the different geostatistical and statistical measures to 

improve previous classification. 

No significant contribution could be found for any of the models consisting of the geostatistical and 

statistical measures derived from the laser intensity values (Table 6). The kappa coefficients for the 

models consisting of the mean semivariance, the standard deviation or the coefficient of variation 

(HIS_ISV, HIS_ISD, and HIS_ICV) indicated equivalent classification performances for the models. 

However, the kappa coefficient of the model including the arithmetic mean (HIS_IAM) suggested a 

significantly worse performance compared to the simple model HIS. 

For the laser height derived geostatistical and statistical measure, a significant contribution was 

found for six models including the mean semivariance, the arithmetic mean, and the standard deviation 

individually or in combination with one another (Table 6). All these models (HIS_HSV, HIS_HAM, 

HIS_HSD, HIS_HSV_HAM, HIS_HSV_HSD, and HIS_HAM_HSD) had kappa coefficients of at least  

0.634 improving the simple model HIS by at least 0.034 and ameliorating the moderate fit into a 

substantial fit. Merely the two models including the coefficient of variation or the combination of the 

mean semivariance, the arithmetic mean, and the standard deviation revealed no significant 

contribution to the basic model HIS, however, neither indicating a significantly worse classification 

performance. Furthermore, the mean semivariance represented the discriminator with the highest 

significant contribution to the basic model HIS. 

4. Discussion 

The classification into tree and nontree echoes including geostatistical and statistical measures 

revealed total accuracies that are equivalent to the results obtained by Stumberg et al. [18] for both 

GLM and SVM. Furthermore, the accuracies of the GLM and SVM classifications are in accordance 

with other studies on the discrimination of small individual trees in an environment as the forest-tundra 
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ecotone. On an individual tree basis, these studies reported success rates of at least 90% for trees 

exceeding a height of 1 m [9,11,12]. These rates are comparable to the results of the present study even 

though individual laser echoes were used in this case. 

Kappa coefficients indicated a significant improvement when including geostatistical and 

statistical measures for some models in comparison to the classification performances reported by 

Stumberg et al. [18] both using GLM and SVM. However, geostatistical and statistical measures 

derived from laser intensity values revealed no significant contribution to any GLM or SVM model 

and actually a significantly worse performance for the SVM model including the arithmetic mean was 

obtained. By investigating the respective distributions of values of the different measures for tree  

and nontree echoes (Table 4), these results seem reasonable. Particularly the summary values of  

the arithmetic mean and the coefficient of variation based on laser intensity values do not differ 

considerably, suggesting a relatively similar behavior for both tree and nontree echoes or even 

indicating an unprofitable effect of this discriminator on the classification performance. Also, for the 

laser height derived standard deviation and coefficient of variation, similar distributions of values  

of the different measures were found for tree and nontree echoes, thus suggesting almost no 

discriminating effect for the coefficient of variation in particular (Table 4). These findings are reflected 

in the similar or significantly worse classification performances of both GLM and SVM models 

including these discriminators. However, regarding the standard deviation in context with SVM,  

this measure reveals a significant contribution individually or in combination with the mean 

semivariance or the arithmetic mean indicating a positive effect of a nonlinear classification method on 

this specific measure. The values distributions for the arithmetic mean and the mean semivariance 

(Table 4) show obvious differences for tree and nontree echoes. This behavior supports the significant 

improvement of the simple models extended with these discriminators individually or in combination 

with each other for both classification methods. Furthermore, the superior performance of the 

geostatistical measure represented by the mean semivariance for both the GLM and SVM classification 

methods is in line with results obtained by Thieme et al. [15]. They found experimental variograms 

helpful to characterize and distinguish between tree and nontree object in a forest-tundra ecotone 

environment. Also Jakomulska and Clarke [17] reported a beneficial contribution of variogram-based 

measures for the classification of vegetation classes including grassland, rocks and woodland, 

however, based on optical airborne imagery. Other geostatistical features or features related to 

variation and structure of the laser echoes could further improve the classification. This was however 

not considered in the present study, but could be subject to further investigations. 

In the present study the time difference between the acquisition of the ALS data and the field 

registrations will most likely have caused small differences between the two datasets. This would be 

due to tree growth and mortality or other external factors affecting the trees. We do however expect the 

errors introduced by this to be small. 

5. Uncertainties, Errors and Accuracies 

The ALTM 3100C instrument used to acquire the ALS data in the present study has an expected 

precision of around 0.1 m vertically and 0.2–0.3 m horizontally [37]. The expected accuracy of the 

geo-referenced center points at the field plots was 3–4 cm. This is derived from the expected accuracy 
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of the reference points of 3 cm and the expected horizontal accuracy of the field recordings relative to 

the base station of about 2 cm. Errors and accuracies of the field measurements were not assessed in 

the present study, but we expect them to be small. The way the tree and nontree echoes were selected 

in the present study could cause some uncertainties related to the significant contribution of the mean 

semivariance (i.e., the height variation among the neighboring echoes). The observed effect could 

partly be attributed to the fact that the nontree echoes—due to the sampling procedure—could only be 

reliably selected from areas with presumably less echo height variation than in the areas from which the 

tree echoes where selected. This could have affected the analysis, but the impact of this is unknown. 

6. Conclusions 

To conclude, the classification of tree and nontree echoes based on previous models from the study 

conducted by Stumberg et al. [18] that were extended with geostatistical and statistical measures using 

both GLM and SVM revealed a significant contribution of the majority of the laser height-derived 

measures, with detection accuracies of >94% for the GLM models, and >95% for the SVM models. 

Adding a geostatistical measure represented by the mean semivariance derived from the laser height 

values significantly improved the results compared to the basic model of both the GLM and the SVM 

classification methods, respectively. For this discriminator, total accuracies of at least 94% could be 

obtained irrespective of the classification method or being used individually or in combination with 

other statistical measures. The mean semivariance estimated from the laser intensity values, however, 

did not reveal a significant contribution to the classification performances. 

With regard to the statistical measures, the arithmetic mean derived from the laser height had a 

significantly positive effect on the classification performances for both classification methods when 

being used individually and in most combinations with other measures. The laser intensity-derived 

arithmetic mean, however, revealed an equivalent performance for GLM and a worse performance 

using SVM. Concerning the standard deviation, no significant contribution could be found using GLM 

for neither the laser height nor intensity-derived values. Employing SVM, a significant improvement 

was merely obtained for the discriminator derived from the laser height. The coefficient of variation 

revealed no significant contribution to neither of the basic models HI and HIS. With regard to the laser 

height-derived coefficient of variation used in GLM, the classification performance was worse than the 

basic model HI. 

In general, the highest improvement of a basic model was found for the HIS model using SVM 

extended by the mean semivariance. This result in combination with the supporting outcome of the 

GLM classification suggests a high potential of the mean semivariance as a geostatistical discriminator 

for tree and nontree echoes. However, further investigation into the characteristics of the geostatistical 

measure as well as its capability is needed for being able to fully understand and utilize the power of 

this discriminator. 
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