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Abstract: In this study, a classification and performance evaluation framework for the 

recognition of urban patterns in medium (Landsat ETM, TM and MSS) and very high 

resolution (WorldView-2, Quickbird, Ikonos) multi-spectral satellite images is presented. 

The study aims at exploring the potential of machine learning algorithms in the context of 

an object-based image analysis and to thoroughly test the algorithm’s performance under 

varying conditions to optimize their usage for urban pattern recognition tasks. Four 

classification algorithms, Normal Bayes, K Nearest Neighbors, Random Trees and Support 

Vector Machines, which represent different concepts in machine learning (probabilistic, 

nearest neighbor, tree-based, function-based), have been selected and implemented on a 

free and open-source basis. Particular focus is given to assess the generalization ability of 

machine learning algorithms and the transferability of trained learning machines between 

different image types and image scenes. Moreover, the influence of the number and choice 

of training data, the influence of the size and composition of the feature vector and the 

effect of image segmentation on the classification accuracy is evaluated. 
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1. Introduction 

Extraction of information on the built environment from remote sensing imagery is a complex task, 

mainly due to the manifold combinations of surface materials and the diversity of size, shape and 

placement of the objects composing a typical image scene. It is increasingly being recognized that 

image domains beyond spectral information, such as geometrical, temporal or textural domains must 

be utilized in order to tackle the complexity of the information extraction. In this regard, algorithms that 

make use of the extended information content of image segments (also referred to as super-pixels or 

objects) have been adapted by the remote sensing community in recent years [1]. Such an object-based 

image analysis emerged primarily in the context of Very High Resolution (VHR) image analysis 

(Ground Sampling Distance (GSD) < 1–4 m), where it showed advantages over pixel-based 

approaches [2] for extracting detailed thematic information such as single buildings or streets [3,4]. 

An object-based image analysis can also be beneficial, when analyzing the built environment from 

Medium Resolution (MR) satellite images (GSD 15–60 m) [5,6], where different urban patterns are 

mainly defined by the placement of buildings, streets and open-spaces and therefore cannot sufficiently 

be described by just the spectral values of a single pixel. 

When segments are used as the basic spatial entity for analysis, a large number of image features 

can be generated to describe the objects of interest in an image. This includes spectral features such as 

mean and standard deviation values per image band, minimum and maximum pixel values, mean band 

ratios or mean and standard deviation of band indices such as the Normalized Difference Vegetation 

Index (NDVI) [7]. Textural features, which take into account neighborhood relations between pixels, 

can be effectively computed over the segments. Commonly used textural descriptors in remote sensing 

analysis include second-order texture features derived from the Gray-Level Co-occurrence Matrix 

(GLCM), such as angular second moment, entropy, contrast or correlation. A mathematical notation of 

the GLCM and the related second-order textural features is given in Haralick et al. [8]. A class of 

features unique to object-based approaches that has frequently claimed to provide major improvements 

in object recognition is geometrical features [1,9]. Geometrical features or shape descriptors can be 

generally divided into contour-based and region-based. Contour-based features are extracted from the 

contour of an object and include, amongst others, convexity, perimeter, compactness or major axis 

orientation. Region-based features are extracted from the shape region and include area, eccentricity or 

moment features like the Hu moments [10]. Reviews of shape representation and description techniques 

with mathematical explanations of the different mentioned descriptors can be found in [11,12]. 

To reduce the dimensionality of the feature space and preselect the most significant features for a 

specific classification task, dataset and classifier, several feature selection methods have been proposed 

in the literature [13,14]. The most commonly found method in remote sensing applications is a manual 

feature selection with conventional data exploration tools such as histograms or scatter-plots. This 

method requires a sound understanding of the classification task and the characteristics of the features 

under observation. However, increasing the number of features of manual methods becomes 

impracticable and more quantitative feature selection techniques are needed [15]. The ReliefF feature 

ranking algorithm for example has been widely used in other research fields such as medical imaging, 

and has been successfully applied to noisy and correlated datasets [14]. Despite its great potential, 

it has only rarely been used in remote sensing applications so far [16]. 



Remote Sens. 2014, 6 2914 

 

To partition a multi-dimensional feature space into homogeneous areas and therefore to label 

segments with respect to desired classes, several image classification algorithms are available, 

commonly categorized into parametric and non-parametric classifiers. Parametric classifiers assume a 

normally distributed dataset and statistical parameters are directly inferred from training data [4]. 

A parametric classifier, which has been widely used in remote sensing application, is the Normal 

Bayes classifier. Non-parametric classifiers do not assume a specific data distribution to separate a 

multi-dimensional feature space into classes. Most commonly used non-parametric classifiers include 

Decision Trees, Support Vector Machines and Expert Systems. It can be inferred from the literature 

that machine learning algorithms (both parametric and non-parametric) have mainly been used as  

per-pixel classifiers in remote sensing image analysis [4]. For the classification of image segments, 

many studies so far have used fuzzy set theory-based expert systems [17,18]. Expert systems are 

considered to have a great potential for image classification when also considering ancillary data [4]. 

However, a critical part of such systems is the development of rule sets to describe the classes of 

interest. Often threshold values need to be manually adjusted and classification rules are strongly 

bound to a particular image scene and image type. Only a few studies have designed generalized rule 

sets that aim at being transferable [3]. The application of machine learning algorithms in the context of 

an object-based image analysis has only rarely been tested [19] and further research in this direction is 

advocated. In particular, the potential of applying pre-trained learning machines to different image 

types and image scenes should be further assessed. While most pattern recognition methods in remote 

sensing are trained and tested on the same image distribution, real-world applications often involve 

changing visual domains (e.g., multi-temporal change detection, regional landuse/landcover mapping). 

In general, satellite image distributions could differ in combinations of partially uncontrollable or 

unknown factors, including atmospheric effects, sensor gain or seasonal variations in the image scene. 

Recent studies have proposed the use of domain adaptation [20], retraining [21] or multi-task 

learning [22] techniques to improve the transferability of pixel-based classifications in the spectral 

domain. The question of transferability of classifiers on an extended and partly domain-invariant feature 

space derived from an object-based image analysis remains still largely unanswered in remote 

sensing applications. 

The objectives of this study are to develop a method and the related software tools based on Free 

and Open-Source Solutions (FOSS) for the recognition of urban patterns in multi-spectral satellite 

images. Four machine learning classification algorithms (Normal Bayes, K Nearest Neighbors, 

Random Trees and Support Vector Machines) are implemented and thoroughly tested for their 

performance under varying conditions to optimize their usage and assess their applicability in the context 

of an object-based image analysis. In particular, the following research questions are addressed: 

 What are the most important image features for class separability? 

 How sensitive are learning machines to the size of the feature vector? 

 How does the number of training instances influence the performance of the learning machines? 

 How well can a trained learning machine be transferred between different image types and 

image scenes? 

 How does image segmentation influence the classification results? 
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The goal is to develop classifiers for the recognition of built-up areas from different MR and VHR 

image types that are able to maximize true positive and true negative detection rates, while minimizing 

the number of input features and training instances to reduce computation time and training efforts. 

It is furthermore desirable that a trained learning machine can be transferred between different image 

types and image scenes to reduce the effort of manually selecting training instances and therefore to 

maximize the level of automation of the classification procedure. 

2. Data Specifications and Preprocessing 

To train and test classification algorithms under varying conditions, six subsets of different  

multi-spectral satellite image types are used in the following (Figure 1a). Details about the specific 

images, including spectral, radiometric and geometric properties, acquisition date, subset area and 

applied image preprocessing steps are listed in Table 1. All images have been layer-stacked, 

georectified and when covering the same spatial subset have been co-registered to each other. In case 

of resampling operations, a nearest neighbor algorithm has been applied since it is the interpolator that 

alters the spectral values the least [23]. For image fusion of multi-spectral and panchromatic bands 

(pan-sharpening), the Brovey transform, which is implemented in GRASS [24], has been used. The 

Brovey transform [25] is a color transform algorithm that normalizes the lower resolution multi-spectral 

image bands and multiplies the result with a higher resolution (panchromatic) band. 

Figure 1. (a) Image subsets. (b) Image segmentations. (c) Reference datasets. 
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Figure 1. Cont. 

 

Table 1. Satellite images, their specifications and applied preprocessing steps. 

Image Type 
Spectral 

Res. (µm) 

Radiom. 

Res. (bit) 

Geom. 

Res. (m) 
Size (px) 

Date 

Coverage 
Preprocessing 

IK Ikonos 
0.45–0.9 

(4 bands) 
11 

1 (pan) 

4 (mul) 
800 × 500 

22.02.03 

Hobart 
pan-sharpened 

QB Quickbird 
0.45–0.90 

(4 bands) 
11 

0.6 (pan) 

2.4 (mul) 
1500 × 1200 

29.09.09 

Bishkek 
pan-sharpened 

WV2 WorldView-2 
0.45–0.89 

(4 bands) 
11 

0.5 (pan) 

2.4 (mul) 
1200 × 800 

12.10.11 

Karakol 
pan-sharpened 

MSS Landsat MSS 
0.52–1.10 

(4 bands) 
8 60 (mul) 1000 × 700 

22.08.77 

Bishkek 
- 

TM Landsat TM 
0.45–12.5 

(7 bands) 
8 

30 (mul) 

120 (TIR) 
1000 × 700 

08.07.09 

Bishkek 

resampled to 30m 

(TIR) 

ETM Landsat ETM 
0.45–12.5 

(7 bands) 
8 

15 (pan) 

30 (mul) 

60 (TIR) 

2000 × 1200 
14.08.01 

Bishkek 

pan-sharpened, 

resampled to 15 m 

(TIR) 

For each image subset, a reference dataset has been compiled. The images have been segmented 

using an efficient graph-based segmentation algorithm [26] (see also Section 3) (Figure 1b) and the 

resulting segments have been manually labeled based on visual interpretation of the satellite image to 

create the reference datasets (Figure 1c). For the VHR satellite images (Quickbird (QB),  

WorldView-2 (WV2) and Ikonos (IK) [27]), landcover classes were organized in two groups: 

(1) “built-up areas” (“buildings”) and (2) “not built-up areas” (“vegetation”, “bare soil”, “shadow”, 
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“other sealed surfaces”). For the MR images (Landsat Enhanced Thematic Mapper (ETM), Landsat 

Thematic Mapper (TM) and Landsat Multi-Spectral Scanner (MSS)), three landcover classes  

(“built-up areas”, “vegetation” and “other not built-up areas”) were organized in the two groups and 

reference datasets were created in the same way through manual labeling of image segments. 

3. Image Segmentation and the Scale of Analysis  

Image segmentation clusters the original image pixels into segments, based on one or more criteria 

of similarity in one or more dimensions of a feature space, and is a preliminary and crucial step in 

object-based image analysis [1]. An efficient graph-based image segmentation algorithm, which has 

been originally developed by Felzenszwalb and Huttenlocher [26], is used within this study. The 

algorithm measures the evidence for a boundary between two segments by comparing the feature vectors 

across the boundary with those between neighboring pixels within each segment. The brightness values 

of the image pixels in all spectral bands of the satellite image are used to define the input feature space 

for segmentation, and the L2 Euclidean distance is used to measure the dissimilarity. A threshold 

function with runtime parameters k (scale parameter) and m (minimum allowable segment size) allow to 

effectively set a spatial scale of analysis, since larger values for k and m favor larger segments. 

Ideal segments are considered as singular entities outlining objects of homogeneous appearance 

without over- or under-segmenting them. To define the scale of analysis, segmentation parameters 

must be adjusted and quantitative evaluation of the segmentation quality becomes important. In this 

study, segmentation parameters for the VHR images have been adjusted based on a comparison of the 

segmentation results with reference objects by using supervised segmentation quality measures [28]. 

In a set of segmentations, the parameter values that produced the best area-fit to the reference objects 

with the least number of segments where selected.  

Compared to VHR images where analysis scales can be defined by comparing the segmentations 

with reference objects, the delineation of reference objects in MR images is problematic due to their 

large GSD. Given a GSD in a range of 15–60 m for Landsat imagery, individual buildings cannot be 

detected. However, larger morphological units that are composed of a mixture of buildings, streets and 

open-space can be distinguished from this image type. Such units cannot be delineated solely based on 

geometrical properties, but are mainly defined by spectral and textural image properties. This makes 

the manual delineation of reference objects difficult and potentially strongly biased from an operator’s 

point of view. It emphasizes that segmentation quality needs to be assessed in an unsupervised way 

using image statistics. A generally accepted segmentation quality measure is based on the comparison 

of intra-segment homogeneity and inter-segment heterogeneity [29]. In a set of segmentations, the 

segmentation that minimizes intra-segment variability and maximizes inter-segment separability is 

defined as being optimal in terms of providing the most appropriate analysis scale for a given image 

scene. A global Moran’s I has been utilized to quantify inter-segment heterogeneity. The standard 

deviation of the brightness values of the input image bands, weighted by each segment’s size and 

summed over all the segments in the image scene, has been used for assessing intra-segment 

homogeneity [30]. Parameter values resulting in the segmentation with largest inter-segment 

heterogeneity and intra-segment homogeneity have been selected.  
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4. Classification Algorithms 

The classification algorithms, which have been implemented in this study, represent the state-of-the-art 

in machine learning and are based on different concepts (probabilistic, nearest neighbor, tree-based, 

function-based). The implemented classification algorithms are based on OpenCV solutions [31] and 

are briefly described in the following. Common to all the classifiers is that they make use of training 

samples. The basic structure of a training sample in remote sensing consists of a point-location with an 

associated class label, which has been identified and defined by an expert, usually based on either 

ground-truth knowledge or visual image interpretation. Once a training dataset is defined in its basic 

structure, it can be used to train a classifier on any kind of input image type and feature space. 

4.1. Normal Bayes (NB) 

Normal Bayes (NB) is a simple probabilistic classification model that assumes the normal 

distribution of the feature space for each class. This means that the whole data distribution function is 

assumed to be a Gaussian mixture with one component per class [31]. Based on selected training 

instances, the NB algorithm estimates mean vectors and covariance matrices for each class and utilizes 

them for predictions. A detailed mathematical description of the classification model can be found, 

for example, in Fukunaga [32].  

4.2. K Nearest Neighbors (KNN) 

The K Nearest Neighbors (KNN) classification model classifies for each unlabeled instance its k 

nearest neighbors in the multi-dimensional feature space spanned by a set of training instances and 

assigns a class value according to the majority of a particular class within this neighborhood. The k 

nearest neighbors are identified by a distance measure that compares the feature vectors of the 

unlabeled instance and the set of training instances provided to the classifier. Once a list of nearest 

neighbors is obtained, the prediction is based on voting (majority or distance-weighted) [33]. 

4.3. Random Trees (RT) 

Random Trees (RT) are also referred to as random forests and have been introduced by Leo 

Breiman and Adele Cutler [34,35] as an ensemble of decision tree (DT) classifiers. DT use a chain of 

simple decisions based on the results of sequential tests for class label assignment. The branches of the 

DT are composed of sets of decision sequences where tests are applied at the nodes of the tree and the 

leaves represent the class labels. To construct a DT, a training dataset is recursively split into 

increasingly homogeneous subsets based on tests that are applied to one or more values of the input 

feature vector. Prediction or label assignment is performed at the end nodes of the tree (leaves) by 

using an allocation strategy [36]. In RT, the input feature vector is classified with every tree in the 

forest where the final prediction is based on a majority voting. The trees are trained with the same 

parameters, but with different sets of training instances. The training sets are selected by using a 

bootstrap procedure on the original training dataset where for each training set the same number of 

vectors as in the original set is randomly selected with replacement. A random subset of the variables is 

used at each node of the trained trees to find the best split. The size of subsets generated at each node is 
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fixed for all the nodes and trees by a training parameter. None of the trees that are built are pruned [31]. 

The classification error for each tree is estimated from out-of-bag data, which is compiled by vectors that 

were left out during the training phase of the single tree classifiers by sampling with replacement. 

4.4. Support Vector Machine (SVM) 

A Support Vector Machine (SVM) is a classifier derived from statistical learning theory and was 

originally developed by Vladimir Vapnik [37,38]. SVM separates any two classes of interest by 

identifying an optimal linear separating hyperplane. A kernel function is used to project non-linearly 

separable classes from the original feature space to a higher dimensional space, where the non-linearly 

separable classes can be separated by a linear hyperplane. To choose the optimal separating hyperplane 

between two classes, SVM utilizes the maximum margin concept, which maximizes the margin 

between the separating hyperplane and the closest feature vectors. These feature vectors are called 

“support vectors”, meaning that the position of other feature vectors does not affect the hyperplane. 

Selecting this particular hyperplane maximizes the ability of the SVM to predict the correct class of 

previously unseen samples. Furthermore, a soft-margin parameter is introduced in SVM to deal with 

outliers in the data, which allows some data points to violate the separation through the hyperplane 

without affecting the final result. Therefore, the soft-margin parameter determines a trade-off between 

the size of the margin and the hyperplane violations. As the SVM classifier is dependent on a distance 

measure, it is important to account for the normalization of the feature variables by their average 

variance or covariance. To apply SVM to multi-class problems, a simple and commonly used 

generalization method is to train multiple, one-versus-all classifiers. Optimal SVM parameters are 

selected according to a standard ten-fold cross-validation method during the training phase of the 

classifier. Using a k-fold cross-validation moreover decreases the risk of over-fitting [39]. 

5. Performance Evaluation of Classification Algorithms  

To assess the performance of classifiers and to select the most appropriate classifier for a given task 

and image type (here, the recognition of built-up areas from MR and VHR satellite images), several 

experiments were carried out on the reference datasets. For performance evaluation, commonly used 

accuracy measures (sensitivity, specificity and overall accuracy) were estimated using a ten-fold  

cross-validation. Overall accuracy is defined as the total number of correctly classified segments 

divided by the total number of test segments. Sensitivity, also referred to as the true positive rate or 

producer’s accuracy, means the proportion of actual positives, which are classified as positives. 

Specificity, also referred to as true negative rate or user’s accuracy, is the proportion of actual 

negatives, which are classified as negatives. A random stratification procedure was used on the 

reference datasets to produce ten unique datasets for training (80%) and testing (20%) for each image 

type and image scene. Accuracy measures were averaged for each classification and the same training 

and testing datasets were used to train and test the four classifiers under different conditions, thus 

making it possible to assess the relative performance and consistency of the algorithms for a given 

task. The conditions for training and testing the classifiers were varied depending on the evaluation 

criteria which include the impact of feature selection, the impact of number and choice of training 
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instances, the transferability of trained learning machines between different image types and image 

scenes and the effect of image segmentation on the classification results. 

The following experiments have been carried out for each image subset on the basis of the same 

segmentation result that has been used to create the according reference dataset. In this way, only the 

labeling performance of the classifiers is evaluated and not the real map accuracy, which can be 

considered a product of both the segmentation and classification results. The real map accuracy would 

include also geometrical accuracy of extracted objects originating from the segmentation stage. The 

influence of the segmentation on the classification performance is evaluated separately in 

Subsection 5.5. Since reference labels are based on visual image interpretation, derived accuracy 

measures give indication on the labeling performance of learning machines relative to the performance 

of an experienced human operator. In the context of this work, this is desirable as it allows to isolate 

thematic labeling performance from geometric segmentation performance and information content of 

the image from real-world objects. 

5.1. What are the Most Important Image Features for Class Separability? 

A large set of image features used to describe segments in the spectral, textural and geometrical 

domain has been implemented based on custom C/C++ solutions and OpenCV functions. A large 

number of features may be beneficial in describing the segments with respect to classes of interest. 

However, redundant or irrelevant features that provide little information for a specific classification 

task can have a negative effect on machine learning models and can lead to a decrease in classification 

performance [15]. Moreover, the size of the feature vector clearly influences the computation time for 

feature calculation and for training the classifier. During the training stage of a classifier, machine 

learning algorithms themselves already select features and ignore irrelevant or redundant ones. 

However, it has been shown that in practice, the classification performance can be improved by a 

preselection of features before training [15]. In the following, the instance-based feature ranking 

algorithm ReliefF [40] was utilized to rank sets of features derived for different image types based on 

how well they distinguish between instances that are near to each other. An instance in this context is 

composed of a feature vector and an associated class label. ReliefF iteratively selects randomly m 

times an instance R from the data and finds its k nearest neighbors H from the same class (nearest hits) 

and k nearest neighbors M from the other classes (nearest misses). The feature values of R are 

compared to H and M and a quality score is adjusted with every iteration for the features depending on 

how well they separate the classes. If the feature values of R and H are different and therefore the feature 

separates instances from the same class, the quality score for this feature is decreased since this is not 

desirable. On the contrary, if the feature values of R and M are different and therefore the feature separates 

instances from different classes, which is desirable, the quality score is increased for this feature [14]. 

The ReliefF algorithm which is implemented in the open-source data mining software WEKA 3 [41] 

was used on the QB, TM and MSS reference datasets. The number of nearest neighbors has been set to 

k = 10 as suggested in [42] and the number of iterations has been set to m = all instances. Figure 2 

gives an overview of the derived features for the different reference datasets grouped into spectral, 

textural and geometrical features and ranked by their importance in distinguishing between the different 

landcover classes. A description of the implemented image features can be found in Tables 2 and 3, 
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where the total number of features per image type is dependent on the number of spectral bands. 

Therefore, 72 spectral, textural and geometrical features were calculated for 1750 reference segments 

of the QB image. For the 1500 reference segments of the Landsat TM image, 109 features were 

calculated, and for the 900 reference segments of Landsat MSS, 73 features were derived. 

Figure 2. Features for the Landsat Thematic Mapper (TM), Landsat Multi-Spectral 

Scanner (MSS) and Quickbird (QB) reference dataset grouped into spectral, textural and 

geometrical features and ranked by their importance for distinguishing built-up from not 

built-up areas. For each image type, the ten most important features are highlighted. 

A description of the features can be found in Tables 2 and 3. 

 

The feature ranking reveals that for all image types, clearly the spectral features are the most 

important, followed by textural features, whereas geometrical features show the least importance for 

class separability (Figure 2). Expressed in terms of an average quality score per feature class, spectral 
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features (e.g., mean and standard deviation values per image band, NDVI, etc.) account for 51%, 

textural features (e.g., GLCM entropy, GLCM contrast, etc.) for 35% and geometrical features 

(e.g., contour convexity, perimeter, etc.) for 14% of the total score on the TM dataset. Amongst the ten 

most important features for the TM, spectral and textural features are equally well represented, while 

geometrical features are not represented. For MSS, the average quality score per feature class splits into 

67% spectral, 22% textural and 11% geometrical. Moreover, eight out of the ten most important features 

are spectral, while the most important image bands seem to be band 3 (0.7–0.8 µm) and 4 (0.8–1.1 µm). 

The ranking of the features derived for the QB reference dataset shows a distribution of the average 

quality score into 60% spectral, 28% textural and 12% geometrical. Looking at the ten most important 

features of QB, all four image bands show high importance for built-up area recognition, both in the 

spectral and the textural domain. Important features that appear for all the image types are NDVI and 

the mean spectral values of band 4 (Near Infra-Red (NIR)) calculated over the segments. 

Table 2. List of image features (part I of II). All image features are computed per segment. 

Feature ID Image Feature Description Feature Class Implementation 

mean_bx Mean spectral value in image band x spectral OpenCV 

std_bx Standard deviation in image band x spectral OpenCV 

ndvi_mean 
Mean value of NDVI; 

   Red RedNDVI = NIR NIR +    

ndvi_std Standard deviation of NDVI spectral custom C/C++ 

max_pixel_bx Maximum brightness value in image band x spectral custom C/C++ 

min_pixel_bx Minimum brightness value in image band x spectral custom C/C++ 

wB 

Weighted brightness, with I being the number of 

image bands, J being the number of pixels per segment 

and p being the brightness values of the pixels; 

1 1

1 I J

i, j
i= j=

wB = p
I J   

spectral custom C/C++ 

asm_bx 

Angular Second Moment derived from the GLCM* in 

band x; 
1

0

N

j=i,
2ji,

P=ASM  textural custom C/C++ 

contrast_bx 

Contrast derived from the GLCM* in band x; 

 2
1

0

jiP=CONT
N

j=i,
ji, 



 textural custom C/C++ 

dissimilarity_bx 

Dissimilarity derived from the GLCM* in band x; 

DIS= ∑
i,j=0

N −1

Pi,j∣i− j∣ textural custom C/C++ 

entropy_bx 

Entropy derived from the GLCM* in band x; 

ENT= ∑
i,j=0

N −1

Pi,j (−ln Pi,j)
textural custom C/C++ 

glcm_correlation_bx 

Correlation derived from the GLCM* in band x; 

  
  

1

0
2 2

N
i j

i, j

i, j=

i j

i μ j μ
CORR = P

σ σ

  
 
 
 
  

  textural custom C/C++ 
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Table 2. Cont. 

Feature ID Image Feature Description Feature Class Implementation 

glcm_meani_bx 

Mean derived from the GLCM* in band x; 

μ i= ∑
i,j=0

N −1

i (Pi,j )
textural custom C/C++ 

glcm_variancei_bx 

Variance derived from the GLCM* in band x; 

σ
i 2= ∑

i,j=0

N −1

Pi,j (i−μi )
2 textural custom C/C++ 

homogeneity_bx 

Homogeneity derived from the GLCM* in band 

x;
 

1

2
0 1

N
i, j

i, j=

P
HOM =

+ i j




  textural custom C/C++ 

* With i being the row number and j being the column number of the GLCM. Pi,j being defined as follows, 
1

0

N

i, j i, j i, j
i, j=

P =V V


 where V 

is the value of the GLCM. 

Table 3. List of image features (part II of II). All image features are computed per segment. 

Feature ID Image Feature Description Feature Class Implementation 

cont_area Area of the segment in pixel counts geometrical OpenCV 

cont_perimeter Perimeter of the contour outlining the segment geometrical OpenCV 

convhull_perimeter Perimeter of the convex hull of the contour outlining 

the segment 

geometrical OpenCV 

cont_convexity Convexity of the contour outlining the segment; 
convhull_perimeter

cont_perimeter
conv =  

geometrical custom C/C++ 

cont_paxe1 Principal axes 1 of the contour outlining the segment geometrical custom C/C++ 

cont_paxe2 Principal axes 2 of the contour outlining the segment geometrical custom C/C++ 

cont_paxes_ratio Ratio of principle axes; with C being the covariance 

matrix of a contour 

geometrical custom C/C++ 

cont_compactness Compactness of the contour outlining the segment; 

2 cont_area

cont_perimeter

π
comp =  

geometrical custom C/C++ 

hu_moments1 Hu Moment 1 geometrical OpenCV 

hu_moments2 Hu Moment 2 geometrical OpenCV 

hu_moments3 Hu Moment 3 geometrical OpenCV 

hu_moments4 Hu Moment 4 geometrical OpenCV 

hu_moments5 Hu Moment 5 geometrical OpenCV 

hu_moments6 Hu Moment 6 geometrical OpenCV 

hu_moments7 Hu Moment 7 geometrical OpenCV 

rect_height Rectangular height geometrical OpenCV 

rect_width Rectangular width geometrical OpenCV
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5.2. How Sensitive are Learning Machines to the Size of the Feature Vector? 

The performance of machine learning systems, which includes classification accuracy, 

generalization ability, computational efficiency and learning convergence, can be negatively affected 

by a failure of the system to discard irrelevant or redundant features [43]. In practice, every classifier 

deals differently with the dimensionality of the feature space and the decision as to which features to keep 

and which to discard may vary drastically, depending on the choice of the classifier and the structure of the 

input data. Therefore, the following experiment aims at choosing for any given classifier and image type a 

reduced number of features that are relevant and concise enough to achieve high classification accuracies 

while keeping the computation times short. Given are ten unique (stratified randomly sampled) training 

datasets for each image type with a size of 1400 (QB), 1200 (TM) or 720 (MSS) instances. Each instance 

has a maximum dimensionality of 72 (QB), 109 (TM) or 73 (MSS) features and is labeled with one out 

of five (QB) or three (TM and MSS) classes. For the classification accuracy assessment, the classes are 

clustered into two groups (“built-up areas” and “not built-up areas”). The feature vector for each image 

type has been ordered following the outcomes of the ReliefF feature importance ranking. The goal is to 

test, in a cross-validation on ten unique and stratified randomly sampled testing datasets for each 

image type (with 350 instances for QB, 300 instances for TM and 280 instances for MSS), the 

performance and consistency of a classifier while the number of features is iteratively increased along 

the ranked feature vector. For each classifier, the feature subset that produces the highest average 

accuracies with the least number of features is selected.  

Figure 3. ROC curves for the classification of QB, TM and MSS, depicting the 

performance of different classifiers under varying sizes of the feature vector. 

 

From Figure 3, it can be seen that all classifiers show a good overall performance on the different 

image types while the size of the feature vector is varied. Figures 4–6 show the results for the different 

classifiers and indicate that for each combination of classifier and image type, there exists an optimal 

operating point where classification accuracies are maximized while the size of the feature vector is 

minimal. In the case of the SVM and RT classifiers, shifting the operating point from the optimum by 

adding more features does not significantly change the resulting accuracies and the classification 

performance stabilizes with the increasing dimensionality of the feature space. For KNN and NB, the 

classification accuracies decrease from the optimal operating point as the dimensionality is further 

increased. This effect is generally known as the Hughes phenomenon [44]. For SVM, the optimal 

feature subset identified for the recognition of “built-up areas” consists of the first 21 features of the 

ranked feature vector for QB, the first 27 features for TM and the first 22 features for MSS (Figure 2). 
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For the other classifiers, the optimal dimensionality of the feature space could be identified as 37 (QB), 

40 (TM) and 33 (MSS) for RT; 33 (QB), 18 (TM) and 3 (MSS) for KNN; and 6 (QB), 26 (TM) and 2 

(MSS) for NB. Averaged over all image types, NB (11) requires the least number of input features to 

achieve high classification accuracies. KNN (18), SVM (23) and RT (36) need more features to 

achieve similarly high accuracy values. Even though KNN and NB outperform SVM and RT in terms 

of the minimum size of the feature vector needed to achieve maximum accuracy values, the 

undesirable Hughes phenomenon becomes evident for KNN and NB on all image types. With respect 

to KNN and NB, SVM and RT show stable classification performance with increasing dimensionality 

of the feature space once the optimal operating point is reached. 

Figure 4. Influence of the size of the feature vector on the classification accuracy for QB. 

Mean and range of accuracy measures from the ten-fold cross-validation are shown for 

each iteration. 

 

Figure 5. Influence of the size of the feature vector on the classification accuracy for TM. 

Mean and range of accuracy measures from the ten-fold cross-validation are shown for 

each iteration. 
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Figure 6. Influence of the size of the feature vector on the classification accuracy for MSS. 

Mean and range of accuracy measures from the ten-fold cross-validation are shown for 

each iteration. 

 

5.3. How does the Number of Training Instances Influence the Performance of the Learning Machines? 

The dimensionality of the feature space influences the size of the training data to be captured in that 

the number of training instances per class should be significantly larger than the number of features. A 

ratio of at least ten times more training instances than features is recommended in the literature [14]. 

The following experiment aims at finding for each classifier the minimum number of training instances 

that is needed to produce stable and high average accuracy values. A similar experimental set up as 

described in Subsection 5.2 is used with the ten unique training datasets for each image type. The size 

of the feature vector has been adjusted for each classifier and image type individually based on the 

results of the experiments described in Subsection 5.2. The goal is to test the performance and 

consistency of the classifiers while the number of training instances per class is iteratively increased. 

Figure 7. ROC curves for the classification of QB, TM and MSS, depicting the 

performance of different classifiers under varying numbers of training instances. 
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Figure 8. Influence of the training set size on the classification accuracy for QB. Mean and 

range of accuracy measures from the ten-fold cross-validation are shown for each iteration. 

 

Figure 9. Influence of the training set size on the classification accuracy for TM. Mean and 

range of accuracy measures from the ten-fold cross-validation are shown for each iteration. 

 

From Figure 7, it can be seen that all classifiers show a good overall performance on the different 

image types while the number of training instances is varied. Besides the slightly poorer performance 

of KNN on the QB dataset, the classifiers perform comparably well. Figures 8–10 show, however, that 

for each combination of classifier and image type an operating point exists where classification 

accuracies are maximized while the number of training instances is minimal. Using a smaller number 

of training instances than is defined at this operating point negatively affects the classification 

accuracies, whereas an increase in the number of training instances beyond this operating point flattens 

out the variations in the accuracy values and leads to generally high average accuracies for all 

classifiers on all datasets. The position of the optimal operating point and therefore the minimum 

number of instances needed to train a powerful classifier varies between the different learning 

algorithms and input image types. SVM, when trained on the QB dataset, needs the least number of 
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training instances (60 instances per class) to perform well. RT needs just slightly more instances 

(80 instances per class), whereas KNN (130 instances per class) and NB (220 instances per class) need 

significantly more to reach comparable accuracy values. For the TM dataset, SVM needs at least 110, 

RT 130, KNN 310 and NB 200 instances per class to reach the optimal operating point. When applied 

to the MSS dataset, SVM should be trained with at least 130, RT with 150, KNN with 230, and NB 

with 120 instances per class. Averaged over all image types, SVM needs the least number of training 

instances per class (80), followed by RT (120), KNN (127) and NB (162).  

Figure 10. Influence of the training set size on the classification accuracy for MSS. Mean 

and range of accuracy measures from the ten-fold cross-validation are shown for each iteration. 

 

5.4. How well can a Trained Model be Transferred between Different Image Types and Image Scenes? 

Table 1 shows the properties of different VHR and MR image types. Despite differences in spatial 

resolution, it can be seen that there is a clear superimposition of the spectral resolution between the 

different VHR and MR image types, respectively. Since the feature vectors derived for different image 

types indicate that the most important features for classification of “built-up areas” are of the spectral 

and textural domain, it should be possible to transfer a trained classifier from one image type to 

another, given that spatial and spectral resolution of the image types are in a comparable range. The 

goal of the following experiments is therefore to evaluate the performance of a classifier when trained 

on one image type and applied to another. 

In a first experiment, the transferability between different VHR image types (QB, WV2 and IK) is 

evaluated. From the manually labeled reference datasets, ten unique training (1400 instances) and 

testing (350 instances) datasets have been randomly sampled for each image type. The number of 

training instances has been chosen based on the results of the experiment described in Subsection 5.3. 

and has been set large enough to not cause a negative influence on the performance of any of the tested 

classifiers. The size of the feature vector has been adjusted for each classifier individually based on the 

results of the experiment described in Subsection 5.2. Therefore, each instance has a dimensionality of 

21 features for SVM, 37 features for RT, 33 features for KNN and 6 features for NB. The actual 

experiment iteratively trains a classifier on one image and tests it on the others. Only comparable 
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spectral bands between the different image types have been used in order to compose identical feature 

vectors and to allow a transfer of trained learning machines. Figure 11 shows the performance of the 

classification algorithms for different training-testing scenarios on VHR image types.  

Figure 11. Classifier performance for different training-testing scenarios on VHR image types. 

 

The same experiment has also been carried out for MR image types (TM and ETM). Ten unique 

training (1200 instances) and testing (300 instances) datasets have been randomly sampled for each 

image type from the reference datasets. Each instance has a dimensionality of 27 features for SVM, 40 

features for RT, 18 features for KNN and 26 features for NB. The number of training instances and size of 

feature vectors have been adjusted based on the results of the experiments described in Subsections 5.2 and 

5.3. Figure 12 shows the results for the different classifiers tested on the MR images. 
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Figure 12. Classifier performance for different training-testing scenarios on MR image types. 

 

For the VHR image types, all classifiers show an overall good performance when trained and tested 

on the same image type. The best overall performance for all classifiers can be observed on the WV2 

image (Figure 11, WV2WV2). On the IK (Figure 11, IKIK) and QB (Figure 11, QBQB) datasets, 

KNN performs slightly worse than the others. Trained on IK and applied to QB (Figure 11, IKQB), 

SVM shows a stable performance, RT performs slightly worse, KNN experiences even a slight 

performance improvement, and NB shows almost random classification behavior. Applying the same 

trained models to WV2 (Figure 11, IKWV2) leads to a comparable behavior of NB, SVM and RT, 

with RT showing even improved performance with respect to the image it has been trained on, while a 

performance decrease can be observed for KNN. When trained on QB and tested on IK (Figure 11, 

QBIK), SVM and RT show comparable performance with respect to when they are trained and tested 

on the same image type. Tested on WV2 (Figure 11, QBWV2), both learning machines show a 

performance increase. KNN shows a performance increase on both the IK and the WV2 image. NB 

shows a significant decrease in performance when transferred to other image types with almost a 

random classification performance on the WV2 test image. Training on the WV2 image and testing on 

IK (Figure 11, WV2IK), all learning machines, except SVM, experience a significant performance 

decrease with respect to the image used to train them. QB (Figure 11, WV2QB) shows comparable 

behavior of SVM, RT and KNN, however, with a significant decrease in accuracy. Tests of NB on the 

QB image show similar results as for the WV2 image on which it had been trained. Using the range R 
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of the Area Under the Curve (AUC), calculated for each classifier over all VHR image types, as a 

measure of transferability, SVM (R=0.226) appears to be the best performing classifier in terms of 

transferability, followed by RT (0.243), KNN (0.311) and NB (0.793). 

In addition, for the MR image types, a generally high performance can be observed for all 

classifiers when trained and tested on the same image type. The best overall performance for all 

classifiers can be observed for the TM dataset (Figure 12, TMTM). For the ETM dataset (Figure 12, 

ETMETM), SVM and RT perform best, followed by NB and KNN. However, when trained on TM 

and tested on ETM (Figure 12, TMETM), a significant performance decrease appears for all 

classifiers. SVM, RT and KNN still perform well, whereas NB shows the worst performance when 

transferred. In addition, models trained on ETM and applied to TM (Figure 12, ETMTM) show a 

decrease in performance for all the classifiers. Nevertheless, SVM, KNN and RT still perform 

reasonably well, whereas NB shows almost random classification behavior. The range R of the Area 

Under the Curve (AUC) for each classifier identifies SVM (R=0.143) as best performing classifier in 

terms of transferability also for MR images, followed by KNN (0.148), RT (0.249) and NB (0.338). 

5.5. How does Image Segmentation Influence the Classification Results? 

To test the performance of the classifiers with respect to variations in the image segmentation and 

to evaluate the influence of the segmentation stage on the succeeding object-based classifications, the 

following experiment was set up. The classifiers are trained and tested on the reference datasets with 

parameters being tuned according to the outcomes of the experiments described in Sections 5.2 and 

5.3. The trained learning machines are applied to a total of 26 segmentations of the same image they 

were trained on, resulting in 260 classifications per image type when using a 10-fold cross-validation. 

Segmentation parameters were iteratively varied in order to produce segmentations with increasing 

average segment size.  

Figure 13. ROC curves for the classification of QB, TM and MSS, depicting the 

performance of different classifiers under varying segmentation inputs. 
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Figure 14. Influence of the segmentation inputs on the classification accuracy for QB with 

increasing average segment size from left to right. Mean and range of accuracy measures 

from the ten-fold cross-validation are shown for each iteration. 

 

Figure 15. Influence of the segmentation inputs on the classification accuracy for TM with 

increasing average segment size from left to right. Mean and range of accuracy measures 

from the ten-fold cross-validation are shown for each iteration. 

 

Figures 13–16 show the results for the different classifiers tested on the QB, TM and MSS images. 

From Figure 13 a good performance of all classifiers can be observed over all segmentations. Only NB 

seems to be strongly affected by changes in the segmentation prior to classification, especially on the 

TM and MSS datasets. The highlighted operating points in Figures 14–16 identify the segmentation 

parameter combinations that were used to produce the segments for the reference datasets. These 

combinations were identified independently based on the segmentation quality assessments described 

in Section 3. For all the classifiers on all the image types the optimal segmentation parameters 

coincides with the operating point of best classification performance. It can also be seen that parameter 

combinations beyond the identified operating point, which produce segmentations with larger average 
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segment size, negatively affect the classification performance. In addition, a smaller average segment 

size negatively affects the classification results. This effect becomes more prominent with NB than 

with SVM, RT and KNN, indicating a lower sensitivity of the latter to the segmentation stage. 

In addition, the stronger fluctuations of the NB accuracies, especially on the QB and MSS datasets, 

indicate this performance difference between the classifiers. 

Figure 16. Influence of the segmentation inputs on the classification accuracy for MSS 

with increasing average segment size from left to right. Mean and range of accuracy 

measures from the ten-fold cross-validation are shown for each iteration. 

 

6. Discussion 

An extended set of spectral, textural and geometrical features has been implemented and tested 

within this study for the task of urban pattern recognition from multi-spectral satellite images. For the 

tested scenarios, spectral and textural features showed the highest importance when distinguishing 

“built-up areas” from “not built-up areas”. Geometrical features deployed a low importance for class 

separability for the analyzed image types and classification task (Figure 2). For MR image analysis, 

this was to be expected due to the spatial resolution, whereas for VHR image analysis the result is in 

contrast to other studies [1]. A possible explanation could be that distinct rectangular shaped building 

footprints are often partly covered by vegetation in the satellite image and can therefore not adequately 

be described by geometrical features such as convexity or compactness. However, this should be 

further investigated with focus on the possible influence of the segmentation and the influence of the 

specific scene properties. Moreover, the feature set is not exhaustive and implementation of additional 

features may further constrain the results. NDVI and the mean spectral values of band 4 (NIR) 

calculated over the segments proved to be important features for all the image types. Particularly 

interesting is also the importance of TM band 6 (thermal IR) for class separability. As stated in 

Southworth [45], it has often been ignored in (pixel-based) landcover classification applications, 

mainly because of its low geometrical resolution (120 m GSD). Given the observation that the average 

segment size for built-up area recognition in MR satellite images is generally larger than 120 m × 120 m, 
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the lower GSD of the thermal IR band did not negatively influence the geometric outline of the objects 

of interest, but added additional spectral content when included in the classification of the segments. 

For all classifiers and on all image types, an increase in the accuracies could be observed when the 

number of training instances was increased until an optimal operating point is reached (Figures 8–10). 

A further increase of the training dataset size beyond this operating point does not further improve 

classification accuracy, but stabilizes it. The optimal operating point, defining the minimum number of 

training instances needed to train a powerful classifier, varied significantly between the different 

classifiers and compared with the average number of input features for the classifiers, the best ratio of 

the number of training instances to features was achieved by RT (3.3) and SVM (3.5). KNN (7.1) and 

NB (14.7) required significantly more training instances with respect to the size of the feature vector to 

achieve similar classification accuracies. A possible explanation for why SVM is not strongly affected 

by changes in the number of training instances and the dimensionality of the feature space, could be 

that it exploits the concept of margin maximization for classification where adding more training 

instances may not significantly change the composition of support vectors to span the separating 

hyperplane. In addition, SVM does not require an estimation of the statistical distribution of classes to 

perform a classification, as is the case for NB. For standard statistical classifiers like NB, an increase 

in the dimensionality of the feature space increases the difficulty to estimate from a limited number of 

training instances the multi-dimensional probability density functions. Therefore, NB is strongly 

affected by the size of the feature vector and the training dataset. 

When trained and tested on the same image type, all classifiers performed comparably well given a 

large enough training dataset and an optimized size and compilation of the feature vector (Figures 11 

and 12). However, when trained on one image type and tested on other image types, large differences 

with respect to the generalization ability and therefore the transferability could be observed between 

the different classifiers. SVM showed the best transferability for all VHR and MR image types. RT 

seemed almost as transferable as SVM, whereas KNN showed a rather unstable behavior when 

transferred between image types. The worst performance was observed for NB, which showed an 

almost random classification performance on several image types and clearly lacked generalization 

ability, indicating the need for a training dataset that closely describes the statistical distribution of the 

specific image type and image scene to be classified. The results of this experiment showed clear 

differences in the generalization ability of the different classifiers. However, in order to further 

strengthen the results, an extended number of image scenes per image type should be considered. Also 

the effects of techniques to enhance the transferability of classifiers like retraining, domain adaptation 

or multi-task learning should be evaluated in the context of an object-based image analysis. 

Image segmentation clearly affected the succeeding classification stage and optimal operating 

points for all classifiers coincided with independently assessed optimal segmentation parameter values. 

SVM, RT and KNN proved to be less sensitive to differences in the segmentation input with respect to 

NB. Quantitative segmentation accuracy assessment and parameter tuning are therefore important 

steps to be undertaken when following an object-based image analysis approach, especially when 

parametric classifiers such as NB are used. 

Performance evaluations on the QB image showed for all classifiers comparably low sensitivity 

values (Figures 4 and 8), which could be an indication that the classification scheme of the reference 

dataset is not well adjusted. Since a large variety of roof materials is usually present in the built 
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environment, a more refined description of the landuse/landcover class “buildings” depending on the 

roof material may be a valuable solution to increase the sensitivity of all classifiers. In this context, the 

generally large variability of spectral signatures within the built environment and regional differences 

in predominant roof materials may also lead to limitations for the transferability of trained learning 

machines and should be taken into account when approaching global classification tasks. Using 

different training datasets between regions that show specific roof material compositions (e.g., tiled 

roofs in large parts of Central Europe, thatched and metal roofs in rural South East Asia) should be 

further evaluated especially for the VHR image analysis. 

7. Conclusions  

This paper described a method for the recognition of urban patterns at different spatial scales in MR and 

VHR multi-spectral satellite images using machine learning algorithms in the context of a state-of-the-art 

object-based image analysis. Moving towards a more pattern-oriented approach, which effectively 

makes use of image domains beyond the spectral content on the pixel level, proved to be a valuable 

solution when extracting information on the built environment. Particular emphasis was given to an 

extensive performance analysis of the classification algorithms under varying conditions in order to 

optimize their usage and assess their applicability to urban pattern recognition tasks. The actual 

characteristics of the method, including transferability and stability to changes in image type and 

algorithm parameters were assessed and a performance evaluation framework with focus on object-based 

image analysis has been proposed to complement the information provided by commonly used 

accuracy assessments of the final map product. SVM and RT appeared to be the best performing 

classifiers on all image types according to the predefined performance requirements. KNN and NB 

showed good performance in some configurations, but mainly lacked the ability to generalize and 

showed unstable behavior under varying training-testing scenarios. 

Combining quantitative feature selection with machine learning classification algorithms allowed 

for a high degree of process automation and showed great flexibility regarding transferability of the 

method to diverse image types and image scenes. In this context, also segmentation parameter tuning 

proved to be an important step in an object-based image analysis. In comparison to widely used expert 

systems based on fuzzy set theory, local expert knowledge can be integrated easily into the processing 

flow by training data selection for which a user does not necessarily need to have detailed knowledge 

of remote sensing image analysis. Moreover, the use of machine learning allows for easy adjustment 

and transfer of the method not only to different datasets coming from past and present satellite missions, 

but also to datasets from upcoming future space-borne missions such as the Sentinel-2 super-spectral 

satellite of the European Space Agency (ESA) [46] or Digital Globe’s WorldView-3 VHR satellite. 

Performance analysis and algorithm optimization to the lately released Landsat-8 super-spectral MR 

imagery are currently on going.  

The results of this study indicate great potential of the implemented classification and performance 

evaluation framework to be integrated into an automated processing chain from data acquisition to 

user-ready built-up area products. A real-world application of the SVM algorithm, optimized and 

trained within this study for built-up area recognition from MR and VHR images, can be found in 

Wieland, et al. [47]. The study uses multi-source imaging to assess an exposed building stock and its 
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population as input for a probabilistic seismic vulnerability assessment [48]. The proposed method for 

training and optimizing classifiers has also successfully been applied to the recognition of more refined 

urban patterns which outline areas of predominant building types from Landsat TM data, as is 

described in Wieland et al. [49] and Tyagunov et al. [50]. Future work will focus on assessing the 

feasibility of developing an automated processing chain to derive urban information products from 

multi-spectral satellite images at multiple scales with large (regional or global) coverage. 
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