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Abstract: Different rice crop information can be derived from different remote sensing 

sources to provide information for decision making and policies related to agricultural 

production and food security. The objective of this study is to generate complementary and 

comprehensive rice crop information from hypertemporal optical and multitemporal  

high-resolution SAR imagery. We demonstrate the use of MODIS data for rice-based system 

characterization and X-band SAR data from TerraSAR-X and CosmoSkyMed for the 

identification and detailed mapping of rice areas and flooding/transplanting dates. MODIS 

was classified using ISODATA to generate cropping calendar, cropping intensity, cropping 

pattern and rice ecosystem information. Season and location specific thresholds from field 

observations were used to generate detailed maps of rice areas and flooding/transplanting 

dates from the SAR data. Error matrices were used for the accuracy assessment of the 

MODIS-derived rice characteristics map and the SAR-derived detailed rice area map, while 

Root Mean Square Error (RMSE) and linear correlation were used to assess the TSX-derived 

flooding/transplanting dates. Results showed that multitemporal high spatial resolution SAR 
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data is effective for mapping rice areas and flooding/transplanting dates with an overall 

accuracy of 90% and a kappa of 0.72 and that hypertemporal moderate-resolution optical 

imagery is effective for the basic characterization of rice areas with an overall accuracy that 

ranged from 62% to 87% and a kappa of 0.52 to 0.72. This study has also provided the first 

assessment of the temporal variation in the backscatter of rice from CSK and TSX using 

large incidence angles covering all rice crop stages from pre-season until harvest. This 

complementarity in optical and SAR data can be further exploited in the near future with the 

increased availability of space-borne optical and SAR sensors. This new information can 

help improve the identification of rice areas. 

Keywords: rice; backscatter; characterization; crop calendars; phenology; flooding;  

X-band; COSMO-SkyMed; TerraSAR-X; MODIS 

 

1. Introduction 

Rice is a staple food for more than half of the world’s population and the most important crop in  

low-income and lower-middle-income countries [1,2]. Its contribution as a staple food and source of 

income and employment is crucial to food security [3]. In 2012, rice was cultivated on about 163 million 

hectares of land that produced approximately 719 million tons of rice with 90% of it originating from 

Asia [4]. The timely provision of accurate spatial information on the rice crop supports policies and 

decisions on agricultural production and food security in the region [5].  

Remote sensing can provide spatial and temporal information to characterize rice agro-ecological 

attributes [6], assess rice growth [7] and productivity [8]. It is also used to differentiate cropping patterns [9], 

detect cropping calendar [6] and the dynamic phenological stages of rice [10,11].  

Passive and active sensors have different spatial, temporal and spectral characteristics that acquire 

different types of information at various levels of detail on the ground. Medium-resolution optical images 

such as SPOT [12,13], Landsat TM [14–19] and ETM [20] have been used successfully for paddy field 

delineation. Flood damage assessment in rice areas and detection of changes in rice area extent, composition 

and field conditions due to crop rotation, natural vegetation transformation and natural disasters (i.e., floods 

or storm) are other applications of medium-resolution satellite optical images [21]. However, some studies 

based on SPOT-XS [13], Landsat TM and MOS-1 [22] reported difficulties in mapping the extent of rice 

area because of small field sizes and land cover heterogeneity in the area. Persistent and heavy cloud cover 

conditions also pose a problem when using relatively low-temporal-resolution images such as SPOT or 

Landsat TM [23], especially during the rainy season for vegetation mapping [24].  

Optical images with low spatial resolution such as MODIS, AVHRR and SPOT VEGETATION provide 

wide area coverage with a high temporal resolution. These satellite images are suitable for capturing the 

dynamic phenology of rice [11,25] and mapping and monitoring changes in cropping systems [26], cropping 

intensity [27], cropping patterns [28] and cropping calendars [6,29] by season using vegetation indices such 

as NDVI data. Several studies on the use of MODIS conducted in China [30,31] and South and Southeast 

Asia [32] showed that MODIS is effective for mapping, monitoring and characterizing rice-based cropping 

systems for vast areas. 
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Active sensors such as Synthetic Aperture Radar (SAR) use longer wavelengths (0.01 to 1 m) to 

acquire ground information. SAR penetrates clouds and obtains information regardless of weather and 

light conditions [8]. However, unusual weather such as intense localized events (rainfall or dense cloud 

cover) has been shown to affect high-frequency bands such as the X-band (2.4 to 3.8 cm) [33]. Despite 

this, SAR remains a reliable sensor for providing stable data quality and images at a chosen time [34]. 

Studies have shown the successful use of SAR data for rice mapping, monitoring and yield  

estimation [23,35–37]. SAR’s sensitivity to rice texture variations and flooded conditions, and its 

capability to capture the unique temporal backscatter signature of rice when observed throughout the 

crop season, makes SAR suitable for mapping cultivated rice area and monitoring growth [38]. Capturing 

the flooding stage in SAR images is essential for the correct identification of rice fields [39]. SAR images 

acquired at the right time to capture flooding [39] and early and late growth stages [40] improve rice 

crop identification. The availability of high-spatial-resolution SAR images with multitemporal 

resolution of 11 to 16 days such as Terra SAR-X and Cosmo Skymed (CSK) can be used to capture 

small patches of rice paddies.  

Research on how the complementarity of both optical and SAR images can be used for comprehensive 

rice mapping to provide complete, timely and accurate spatial and temporal information on the rice crop 

is important in the agricultural sector. The use of low-resolution images such as MODIS can differentiate 

major land cover types [21] and provide an overview of the general situation on the ground. At a spatial 

resolution of 250 m, MODIS can be used for the delineation of land cover complexes with little 

information on the actual extent of individual land cover types. On the other hand, the use of a sensor 

with spatial resolution that is equal to or smaller than the size of the target fields can generate maps of 

currently irrigated croplands with high accuracy [41]. Rice maps derived from high-spatial-resolution 

SAR images, however, require multidate imagery to be acquired at the proper time for high accuracy.  

The objective of this study is to generate complementary and comprehensive rice crop information 

from hypertemporal moderate-resolution optical imagery and multitemporal high-resolution SAR based 

on remote sensing data and field data in the Philippines. The study relies on MODIS data to stratify and 

characterize rice areas at a small scale and X-band SAR data from TSX and CSK to identify cropped 

rice fields at a large scale and to extract details on the actual dates of flooding/transplanting during two 

consecutive seasons.  

2. Materials and Methods 

2.1. Study Area and Data 

The study area covers the provinces of Nueva Ecija and Pangasinan located in Central Luzon, Philippines. 

These provinces are two of the main rice-growing areas in the Philippines that cover 25,878 km2 (Figure 1). 

Nueva Ecija is the highest rice-producing province, while Pangasinan ranks third, with the highest 

rainfed production in Luzon.  

Nueva Ecija is characterized by a terrain that comprises mostly low alluvial plains in the west and in 

the southwest, and rolling uplands in the northeast. The topography of Pangasinan, on the other hand, is 

characterized by broad alluvial plains in the central part and mountainous regions in the northeast and in 

the west [42]. 
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The study area has a distinct wet season (WS) and dry season (DS), with maximum rainfall expected 

to occur from July to August. In general, the first or WS crop is sown in June, planted in late June or in 

July and harvested in late September or in October. The second or DS crop is sown or planted between 

late December and early January and harvested in April. Most rice farmers practice direct-seeding during 

the DS and transplanting in the WS.  

Land preparation (plowing, harrowing, leveling) in Nueva Ecija and Pangasinan generally takes  

3–4 weeks before planting. The majority of rice fields are prepared under flooded conditions in which 

fields have standing water of about 2–3 cm for about 3–7 days until the soil is soft enough for tillage [43]. 

This is followed by leveling to remove high or low spots and ensure even water distribution and better 

weed control. Rice fields are usually planted 1 or 2 days after leveling.  

In terms of rice production, irrigated rice is cultivated in areas where a national or communal 

irrigation system (NIS/CIS) is in place. These are large to medium-sized schemes supported by the 

National Irrigation Administration (NIA). Some small privately owned schemes also exist in the area. 

In general, two rice crops are cultivated annually in irrigated areas. Only one rice crop is cultivated 

during the WS in the remaining rainfed lowland areas, followed by fallow or a non-rice crop during the 

DS. There are very few upland rice areas characterized by unbounded fields with no water management. 

Nueva Ecija is dominated by irrigated rice areas, which comprise 78% (138,157 ha) of the total 

physical area; the remaining 22% are rainfed (38,387 ha). In Pangasinan, 55% (98,313 ha) of the rice 

areas are irrigated, while 45% (82,001 ha) are rainfed [44], where the water supply is from rain and 

through groundwater pumping. Hence, the dry season rice area in Pangasinan is more fragmented than 

the more contiguous rice areas under surface water irrigation in Nueva Ecija. 

Figure 1. Pangasinan and Nueva Ecija showing rice area in the 1980s (green). The brown 

and blue boxes delineate coverage of CSK and TSX SAR products, respectively. MODIS 

tile h29v07 completely covers the area. The yellow line shows the boundary of irrigated 

areas as reported by NIA (2011) and the sites for ground data collection are in black dots.  
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2.1.1. MODIS Surface Reflectance 8-Day Composite 

MODIS is a sensor onboard the Terra satellite launched by NASA into space in 1999 [45]. The 

MODIS collection 5 product MOD09Q1 (Table 1) was used as the hypertemporal optical remote sensing 

data source for stratification and rice characterization, which is available at 8-day composite with 250-m 

spatial resolution. It is one of the MOD09 products that estimate ground surface reflectance corrected for 

the effects of atmospheric gases and aerosols. Each pixel contains the best observation values within the 

8-day period with low view angle and the minimum amounts of clouds, haze or cloud shadow and aerosol 

loading [46]. Each image contains red (band 1: 620 to 670 nm) and NIR (band 2: 841 to 876 nm), which 

were used to calculate NDVI (Equation (1)) [47]: 

 ܰ ܫܸܦ = ேூோିோ௘ௗேூோାோ௘ௗ (1)

Table 1. Characteristics of the series of satellite images acquired for rice mapping. 

Satellite Specifications Cosmo-Skymed (CSK) Terra SAR-X (TSX) Terra 

Sensor (mode) ScanSAR ScanSAR MODIS 

Product (mode) Huge region ScanSAR MOD09Q1 (h29v07) 

Dates of acquisition 

6 December 2012 25 May 2013 2006–2011 

22 December 2012 5 June 2013 - 

7 January 2013 16 June 2013 - 

23 January 2013 27 June 2013 - 

8 February 2013 8 July 2013 - 

24 February 2013 19 July 2013 - 

13 April 2013 30 July 2013 - 

- 1 September 2013 - 

- 12 September 2013 - 

- 23 September 2013 - 

Band/wavelength (cm) X (3.12 cm) X (3.11 cm) 
Red (620–670) 

NIR (841–876) 

Repeat cycle (days) 16 11 8-day composite 

Spatial resolution (m) 30 (experimental) 18.5 250 

Swath (km) width × length 200 × 200 100 × 150 2330 

Polarization HH HH - 

Look Right Right - 

Orbit Ascending Ascending Descending 

Incidence angle 40° 45° - 

2.1.2. SAR Data  

SAR multitemporal images from the Cosmo-SkyMed (CSK) ScanSAR Huge Region and TerraSAR-X 

(TSX) ScanSAR were used for the identification and mapping of rice areas and flooding/transplanting 

dates for the DS and WS. 

CSK is a constellation of four X-band SAR satellites that became fully operational in 2010 under the 

mandate of the Italian Space Agency (ASI). The CSK Huge Region mode provides standard products 

with a resolution of 100 meters [48]. However, an experimental product with 30-m spatial resolution has 
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been processed (Table 1) and provided for the purpose of this study. The experimental data were acquired 

for DS 2012 to 2013. The revisit period using the same satellite with the same observation angle is 16 days. 

TerraSAR-X (TSX) is a German X-band satellite operated by the German Aerospace Center (DLR) 

that was launched in June 2007 and became fully operational in 2008. TSX ScanSAR images were 

acquired in WS 2013. The revisit period is 11 days and the spatial resolution is 18.5 m [49] (Table 1).  

2.1.3. Stratification 

Stratified random sampling was used for the selection of rice monitoring sites. The classes derived 

from a MODIS unsupervised classification were used as the strata for the random selection of monitoring 

sites (c.f. Section 2.2). A pre-test of the survey questionnaire (Figure S1) and the associated fieldwork 

activities (including GPS coordinate collection and site observations) and the travel time to go from one 

monitoring site to another were used as the basis to determine the number of samples that could be 

accomplished in one day. Budget, person-days, labor constraints and nearness to the road were additional 

considerations. Based on these, a sample size of 11 per class was used which was derived using the 

sample size equation (Equation (2)):  

         
             

       

(8 20) /14

number of points inoneday number of working days
sample size

number of classes from MODIS ISODATAunsupervised classification

×=

= ×
 (2)

2.1.4. Field Data Collection  

During the 2012–2013 DS, 253 sites were visited, that is, 194 sites in rice areas and 59 in non-rice 

areas (Table 2). GPS coordinates were collected for each site. Interviews with farmers (Figure S1) were 

carried out to collect data on cropping systems, crop calendar (a sequential summary of periods of operations 

such as land preparation, planting and harvesting) [50] and rice ecosystem (irrigated or rainfed) [51]. 

Cropping system included sequential cropping information such as cropping intensity (the number of 

crops planted on the same field within a cropping year: single, double or triple) [6] and cropping pattern 

(temporal sequence of crops planted in an area for the WS and DS within a cropping year [52]: rice-rice, 

rice-other, other-rice, rice-fallow, fallow-rice). 

Table 2. Number of rice fields and non-rice areas visited for data collection. 

Areas 
With Farmers’ Interviews 

and GPS Coordinates 

Without Farmers’ Interviews (Only 

GPS Coordinates and Observation—

Used for Rice/Non-rice) 

Total 

Rice 166 28 194 

Non-rice 59 - 59 

Field monitoring was carried out to determine the actual condition of rice fields at the time of every SAR 

acquisition. Separate data sets during the DS (33 fields) and WS (36 fields) were monitored (Table 3). The 

selected rice fields were observed and the field conditions such as land preparation status (plowed, 

harrowed, leveled, flooded, saturated), crop establishment, growth stages and weather condition at the 
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time of the field visit were recorded. Actual dates of flooding and transplanting were acquired through 

interviews with farmers for the WS 2013.  

Table 3. Number of rice fields used for the accuracy assessment of rice-based cropping 

system characteristics and rice area delineation. 

Sensor 
Cropping System Information Tested  

for Accuracy 

Number of Sites Used 

for Accuracy Assessment 

of MODIS  

Number of Sites Used for 

Accuracy Assessment of SAR 

within TSX-Covered Area 

MODIS 

Rice or non-rice  109 - 

Cropping intensity:  

Single or double crop  

(regardless of the crops planted) 

81 - 

Single or double rice  81 - 

Cropping pattern (rice-rice, rice-fallow, 

fallow-rice, rice-other crop)  
81 

- 

 

Cropping calendar WS  

Cropping calendar DS 

81 

81 

- 

- 

Irrigated or rainfed  81 - 

SAR 
Rice or non-rice (points within the  

TSX- covered area)  
- 240 

 Flooding/transplanting DS - 33 

 Flooding/transplanting WS - 36 

2.2. MODIS-Based Rice System Stratification and Characterization 

Figure 2 shows the integrated flow chart for rice stratification and characterization using MODIS data 

and rice crop identification using SAR data. Hypertemporal MODIS NDVI images were processed to 

generate strata that reflect differences in practiced cropping systems. 

MODIS 8-day composite images from 2006 to 2011 were used for deriving 276 NDVI images. Linear 

stretching was applied to generate the digital NDVI numbers (DN), where −1, the minimum NDVI value, 

was assigned to 0 and the maximum NDVI value of 1 to 255. The upper envelope of the NDVI time 

series was derived using the adaptive Savitzky-Golay filter in TIMESAT [53–55] (Figure S2) and the 

resulting time series was classified using the ISODATA [56] clustering algorithm through unsupervised 

classification [9,57–59]. 

Each ISODATA run was evaluated using the divergence distance measure [60] that assesses the clustering 

signature separability. The highest positive deviation from the trend in average divergence indicates a 

solution in number of classes that can be extracted from the time series [9,59]. The extraction of 115 classes 

provided an optimal stratification for the NDVI time series. As described, the temporal signatures of the 115 

NDVI classes (Figure S3) were evaluated for merging the likely non-rice class into one.  

Differentiation of the rice and non-rice strata based on their temporal NDVI profiles was carried out 

using the existing 1980s rice area map, visual interpretation of Google Earth imagery, experts’ 

knowledge and opinion exchanges among authors. The field data were randomly divided into two parts. 

One part (144 points) was used to define the classes, that is, to assign the corresponding rice-based 
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cropping system characteristics (collected on the ground and from farmers’ interviews) to each of the 

eight NDVI classes. 

Figure 2. Flow chart of data processing method. The asterisk (*) indicates the use of MODIS 

in determining the dates for acquisition of ScanSAR images. 

 

2.3. SAR-Based Rice Crop Identification and Planting Period Mapping 

2.3.1. Basic Processing of Multitemporal SAR Images 

SAR images were acquired over the study area for the DS (2012 to 2013) and WS (2013) to identify 

rice areas and determine flooding/transplanting dates based on time-series analysis of the backscatter 

coefficient (dB). The set of CSK and TSX ScanSAR images in Single Look Complex (SLC) format was 

processed separately using MAPscape-RICE, a semi-automated software developed by sarmap. The 

SLC data were transformed into a terrain geocoded backscatter coefficient by following these processing 

steps [33,61]:  

(1) Strip mosaicking and multilooking—single frames in slant range geometry with the same orbit 

were mosaicked along their azimuth to facilitate data processing and handling. Multilooking was carried 

out to improve SAR image quality through a reduction in speckle and to obtain approximately square 

pixels [62]. Averaging of range and resolution cells generates the multilooked images [63].  

(2) DEM-based orbital correction—SRTM 90 m Digital Elevation Model (DEM) tiles were used for 

the orbital correction. Errors of the azimuth start time and/or slant range distance were corrected on the 

basis of a reference DEM. 

(3) Co-registration—strip mosaics covering the same area with the same geometry and mode were 

co-registered by gross shift estimation based on orbital data. A set of sub-windows based on reference 

image and images to be used for co-registration was then automatically identified. The shift between 
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pixels, including elevation, was calculated through cross-correlation. Polynomial function was used to 

calculate the shifts to be applied in azimuth and range direction [61]. 

(4) De Grandi time-series filtering—a balance of differences in reflectivity between images at 

different times was achieved with the use of an optimum weighting filter [64]. Multitemporal filtering 

is based on the assumption that SAR geometry is the same for all acquisitions. The reflectivity can 

change because of dielectric and geometrical properties but not because of a different position of the 

resolution element with respect to the radar [61].  

(5) Terrain geocoding, radiometric calibration and normalization—conversion of backscatter elements 

into slant range image coordinates was carried out using a DEM as a backward solution. Range-Doppler 

equations [65] were used in the transformation of two-dimensional coordinates of the slant range image 

to three-dimensional object coordinates in a cartographic reference system. Geometric and radiometric 

calibration of the backscatter values is necessary for inter-comparison of radar images acquired at 

different times with different sensors and/or different viewing geometries [63]. Radiometric calibration 

was performed using a radar equation that takes into consideration the scattering area, antenna gain 

patterns and range spread loss. The backscatter coefficient (σ°) was normalized to compensate for the 

range dependency using the cosine law of the incidence angle [61]. 

(6) Anisotropic Non-Linear Diffusion (ANLD) filtering—the ANLD filter performs strong smoothing 

in homogeneous areas while preserving signal variations coming from neighboring areas [61] and linear 

structures (e.g., roads, rivers and field edges). A diffusion equation was used wherein the diffusion 

coefficient is a function of image positions and assumes a tensor value [66]. 

(7) Removal of cloud-related effects from localized intense weather events—anomalous peaks or 

troughs caused by localized intense events were identified through the analysis of temporal σ°, which 

was corrected using an interpolator. A priori information on the cropping calendar and weather 

conditions at the time of image acquisition is necessary for correct interpretation of these events [33,61].  

These processing steps were carried out in an almost fully automatic way to allow the analysis and 

interpretation of the multitemporal backscatter signature. 

2.3.2. Rice Detection Algorithm and Threshold Selection  

After the SAR data processing, specific thresholds (Table 4) were set in MAPscape-RICE to identify 

and map rice as well as the flooding/transplanting dates for each season. Flooded soils, which are a 

unique characteristic of paddy rice fields [7,30], are characterized by low SAR backscatter that makes 

them easily separable from other areas with no surface water and certain ground roughness. Stable water 

has a low average backscatter (i.e., a low mean value measured across the whole multitemporal series) 

compared with rice. Built-up areas, on the other hand, show higher average backscatter than rice [34]. 

In general, rice can be discriminated from other crops that are not inundated during the planting and 

vegetative stage if the multitemporal acquisition series is properly synchronized with the cropping 

calendar. The minimum rice cycle duration is 90–100 days [67] increasing to 140–150 in temperate 

latitudes [68]. The majority of rice farmers plant a 110-120-day rice variety in the Philippines. Figure 3 

shows examples of temporal backscatter signatures for different land covers. 
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Figure 3. Example of a temporal backscatter signature from different land covers derived 

from CSK (left) and TSX (right). 

 

The algorithm used to identify the rice crop using multitemporal images is very similar to the 

algorithm that is fully documented in [61] and the parameters (P) we used for rice detection are shown 

in Table 4. We first excluded non-rice areas such as permanent water bodies (P5) where there is a stable 

low backscatter and built-up areas (P6) where there is a stable high backscatter (Figure 3). Areas that 

exhibit non-permanent, longer duration flooding (P7) such as fishponds, irrigation tanks and seasonal 

wetlands and other seasonal field crops that show larger variation (P4) in backscatter from the growth in 

biomass were also masked out. The remaining unmasked pixels undergo a stepwise process to look for 

agronomic flooding where a drop, that is, the lowest value in the temporal signature of rice is, observed (P1). 

This marks the start of the rice growing cycle (SoS) and is also identified as the flooding/transplanting 

date. Once agronomic flooding is detected, we look for a rapid increase in biomass that confirms that rice 

is grown. The parameters used to detect rice growth are PoS (P2), span of SoS to PoS (P3), minimum 

growth (P4) and minimum rice cycle duration (P8). If the flooding period was not captured in any of the 

image acquisitions, the same parameters in detecting rice growth are used [61]. The non-rice area 

exclusion and rice growth detection through a rapid increase in biomass are also similar to the criteria 

used for rice paddy mapping using MODIS time-series data [32]. 

Selection of thresholds was guided by the backscatter coefficient extracted from the monitored sites. 

For every image acquisition, field visits were carried out at the selected sites to link the backscatter 

values with the corresponding land preparation condition and growth stages. From this, simple statistics 

such as the minimum, maximum, mean and range were calculated to set the ceiling for the threshold 

selection. Table 4 describes the threshold parameters used for the identification of rice areas and 

flooding/transplanting dates.  

The rice identification using thresholds generated rice maps with 15-m pixel size for CSK and 10 m 

for TSX (these values correspond to the pixel sampling of the original SAR products). The pixel size 

follows the Nyquist sampling theorem, wherein a sampling rate higher than the real pixel resolution  

(i.e., half of the resolution cell) [69] is required for “perfect” interpolation fidelity.  
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Table 4. Threshold parameters for rice identification and detection of flooding/transplanting dates. 

Parameter 

Code 
Parameter Description 

Relationship between 

Parameter 
Backscatter Coefficient

from Growth Stage 

P1 SoS Rice (dB) 

Start of season (SoS), 

flooded rice fields 

(maximum admitted 

backscatter) 

<max  leveled flooded 

P2 PoS Rice (dB) 

Peak of season (PoS), 

tillering (minimum 

admitted backscatter) 

>min 
tillering to stem 

elongation 

P3 Span of SoS to PoS (dB) 
Backscatter increase from 

flooding to tillering 
>min range 

from leveled flooded to 

tillering-stem elongation 

P4 Minimum growth (dB) 

Minimum backscatter 

absolute difference from 

the beginning to the end of 

the rice crop season 

>min range 
from leveled flooded to 

maturity 

P5 Stable water (dB) 
Permanent water 

backscatter 
<max - 

P6 Built-up mean (dB) 

Average backscatter of 

built-up or strong stable 

scatterers 

>min - 

P7 Stable water (days) 

Minimum number of days 

for the water to stay below 

the “Stable Water dB” 

threshold  

≥20 days - 

P8 
Minimum rice cycle 

duration (days) 

Minimum duration of the 

observed rice growth  
>60 days - 

2.4. Accuracy Assessment 

Accuracy assessment of the MODIS-derived rice map was based on the kappa coefficient and 

confusion matrix (Tables S1-S8) showing the correctly classified pixels with reference to ground-truth 

points [70]. The rice map generated from MODIS was evaluated using 109 points (the rest of the points 

were used for defining the classes derived from ISODATA clustering) with ground information 

indicating whether an area is rice or non-rice. Assessment of rice cropping intensity required ground 

information on the number of times an area is planted with rice in a year for the WS and DS (single or 

double rice), while cropping intensity is compared to information on the number of crops planted in a year 

regardless of whether it is rice or another crop. Cropping pattern accuracy assessment used the sequential 

pattern indicating the type of crops planted in a year (rice-rice, rice-fallow, rice-other, fallow-rice). The crop 

calendar for WS and DS was assessed separately using ground information on the general planting dates.  

The spatially detailed rice area map generated from SAR was evaluated using 240 points of rice/non-rice 

ground information that covers the TSX footprint (Table 3). Root Mean Square Error (RMSE) was used 

to determine the difference between the actual flooding/transplanting dates (from farmers’ interviews 

and ground observations) and the dates derived from TSX. An RMSE of less than 11 days indicates good 
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detection of planting dates using TSX ScanSAR multitemporal images. The relationship between the 

actual planting dates and the TSX-derived dates was assessed using the coefficient of determination (R2). 

DS flooding/transplanting dates derived from CSK ScanSAR were not assessed for their accuracy due 

to the lack of ground information on the actual planting and sowing dates.  

3. Results  

3.1. MODIS-Based Rice Stratification and Characterization 

A rice characteristics map was generated using ISODATA unsupervised classification of MODIS-derived 

NDVI images. From the preliminary result of 115 classes, all non-rice classes were merged into one, and the 

remaining possible rice classes with similar NDVI temporal profiles (Figure S3) were merged based on the 

visual assessment of signature similarity. This resulted in a map with 13 rice classes and one non-rice class. 

Field data on the characteristics of different rice cropping systems were used to describe and assign 

cropping systems to the MODIS-derived NDVI strata or classes. The 13 rice classes were merged into 

nine classes (Figure 4) based on similarity in cropping calendars. The final stratified rice map contains 

the following information on rice cropping systems: cropping calendar, cropping intensity, cropping 

pattern and rice ecosystem (irrigated or rainfed).  

Accuracy assessment of the rice-based cropping system characteristics map using the ground data 

showed an overall accuracy of 87.2% for rice or non-rice and 82.7% for cropping intensity (Table 5). The 

confusion matrix is in the supplementary information Tables S1-S8. In the case of rice ecosystem 

discrimination (74.1%), the result shows that, inside the boundary of NIA irrigation divisions, some rice 

fields are not receiving irrigation water and they are thus identified by farmers during the interview as rainfed.  

Table 5. Accuracy assessment of the cropping system information derived from MODIS for 

the whole Nueva Ecija and Pangasinan provinces. 

Sensor Rice Cropping System 
Overall Accuracy 

(%) 

Kappa 

Coefficient 

Correctly 

Classified Pixels 

MODIS 

Rice area (rice or non-rice) 87.2 0.62 95/109 

Cropping intensity (single or double crop) 82.7 0.72 67/81 

Rice cropping intensity (single or double rice) 77.8 0.66 63/81 

Cropping pattern (sequential cropping types: 

rice-rice, rice-fallow, rice-other, fallow-rice)  
77.8 0.71 63/81 

Cropping calendar WS 75.3 0.60 61/81 

Cropping calendar DS 61.7 0.52 50/81 

Rice ecosystem (irrigated or rainfed) 74.1 0.60 60/81 

SAR Rice or non-rice 90.4 0.72 217/240 

As we mapped more details such as rice cropping intensity (77.8%), cropping pattern (77.8%) and 

cropping calendar (WS: 75.3% and DS: 61.7%), the overall accuracy became lower. In summary, the 

results showed an overall accuracy of 61.7% to 87.2% with a kappa coefficient of 0.52 to 0.72 (Table 4). 

Higher accuracies were obtained for the most basic information layers, such as rice/non-rice or cropping 

intensity, and lower accuracies were obtained for the more thematically detailed information layers such 

as the cropping calendar.  
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Figure 4. MODIS-derived rice cropping systems and characteristics map. 

 

3.2. Temporal Rice Backscatter Signature from TSX and CSK ScanSAR and Threshold Selection 

Monitoring of the rice areas during the DS 2012–2013 and WS 2013 for every satellite image 

acquisition facilitated establishment of the rice temporal backscatter signature from pre-season to 

harvesting for CSK and TSX ScanSAR, respectively. Figure 5 shows the range of backscatter values 

extracted from CSK and TSX data for the monitoring sites, grouped by the observed land preparation 

and rice crop growth stage.  

Tables 6 and 7 contain the thresholds used for rice identification and flooding/transplanting dates. 

The rice temporal backscatter signature was used to guide the threshold selection. Simple statistics such 

as the mean, minimum, maximum and range were used in setting the ceiling for the threshold selection. 

A description of the parameters is given in Table 4. 
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Figure 5. Boxplots of the backscatter coefficient derived from CSK (left) and TSX (right) 

for each observed land preparation and growth stage at the monitored sites. The black dots 

represent the outliers, the thick horizontal black line in the middle of the box is the median, 

the upper half of the box is the 25th percentile and the lower half is the 75th percentile, and 

the extent of dashed lines represent the minimum and maximum. 

 

Table 6. Thresholds selected for rice identification and flooding/transplanting dates using 

TSX multitemporal images. 

Parameters Thresholds 
Values from Temporal 

Backscatter 

Percentage of Values 

Meeting the Threshold 

SoS Rice (dB) <−10 −8.31 83 

PoS Rice (dB) >−11 −12.11 97 

Span of SoS to PoS (dB) >2.2 4.59 71 

Minimum growth (dB) >1.5 1.97 50 

Stable water (dB) <−16 −18.2 100 

Built-up mean (dB) >−7.5 4.50 100 

Stable water (days) ≥20 - - 

Minimum rice cycle duration (days) >60 - - 

  

 

 

 

 



Remote Sens. 2014, 6 12803 

 

 

Table 7. Thresholds selected for rice identification and flooding/transplanting dates using 

CSK multitemporal images. 

Parameters Thresholds 
Values from Temporal 

Backscatter 

Percentage of Values 

Meeting the Threshold 

SoS Rice (dB) <−12 −12.23 100 

PoS Rice (dB) >−13 −14.9 98 

Span of SoS to PoS (dB) >2.3 2.71 56 

Minimum growth (dB) >1.0 1.40 100 

Stable water (dB) <−17 −20.5 100 

Built-up mean (dB) >−9 2.0 100 

Stable water (days) ≥20 - - 

Minimum rice cycle duration (days) >60 - - 

3.3. SAR-Based Rice Cropped Area and Flooding/Transplanting Dates Map (TSX and CSK ScanSAR) 

The temporal backscatter signatures observed in Figure 4 were used to select specific thresholds that 

were applied to the multitemporal SAR data to generate rice area maps and maps of planting dates for 

the DS 2012–2013 and WS 2013. The combination of these consecutive seasonal area maps resulted in 

a physical rice area map (Figure 6) containing information on areas planted with rice across seasons. 

The overall accuracy was 90.4% with a kappa coefficient of 0.72 (Table 5).  

The spatially detailed flooding/transplanting dates for the DS and WS generated from SAR are shown 

in Figures 7 and 8. The flooding/transplanting dates that were detected during satellite acquisition for the 

DS were from 6 December 2012 to 8 February 2013. For the WS 2013, the dates were from 25 May to  

30 July 2013.  

Figure 6. Physical rice cropped area map for 2012–2013 derived from TSX ScanSAR (WS) 

and CSK ScanSAR (DS) images. 
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Figure 7. Flooding/transplanting dates within the rice areas during DS 2012–2013 generated 

from CSK ScanSAR multitemporal images. 

 

Figure 8. Flooding/transplanting dates within the rice areas during WS 2013 generated from 

TSX ScanSAR multitemporal images. 
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Figure 9. Correlation of TSX-derived planting dates with the ground data. 

 

Accuracy of the flooding/transplanting dates was assessed by linear correlation. The result showed 

strong correlation (R2 = 0.87) between the TSX-derived dates and the ground truth dates (Figure 9). Root 

Mean Square error (RMSE) was also calculated to determine the difference between the TSX-derived 

and the actual flooding/planting dates. The RMSE is 9 days (Table 8), which is less than the 11-day 

revisit period of TSX ScanSAR.  

Table 8. Correlation of TSX-derived flooding/planting dates with the ground truth 

flooding/planting dates. 

Measure of Accuracy 
TSX-Derived Flooding/Transplanting 

Dates for WS 

R2 0.87 

RMSE 9 days 

3.4. Comparison of MODIS and SAR Planting Dates 

Figure 10 shows the comparison of the usual/general planting period acquired from MODIS and the 

planting dates from ScanSAR for DS 2012 and WS 2013. The DS is characterized by a much shorter 

time period, reflecting the narrow water release dates in the irrigation systems. The WS shows a much 

larger range of planting dates, albeit with a defined peak planting window. A shift in the planting calendar 

can be observed where the planting period from CSK and TSX exhibited a late (samples A and F) and 

early (samples D and E) start of planting with reference to the general planting period from MODIS. 

Sample D also shows that planting dates in August from TSX were not captured as there was no image 

acquisition during that month. Sample B, on the other hand, showed no difference for MODIS and CSK. 

Sample C showed a different result. In MODIS, this rice cropping system does not plant rice in the WS; 

however, TSX shows that some pixels were detected as rice in WS 2013 but with no obvious peak 

planting period. This could be attributed to the higher spatial resolution of SAR that was able to pick up 

rice in these relatively small areas.  
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Figure 10. Examples of planting period from different rice cropping systems acquired from 

MODIS (blue box) and SAR (gray columns) for the DS and WS.  

 

4. Discussions 

4.1. MODIS-Based Rice Stratification and Characterization 

The MODIS-derived rice characteristics map contains information on the distribution of the 

predominant cropping systems being followed in the study area. MODIS was found to be effective in 

capturing the large homogeneous rice areas (B, C and E in Figure 3). However, rice areas with small 

field sizes and variability in the cropping systems practiced such as the cropping calendar and crops 

planted mostly located in the rainfed areas tend to be generalized within the strata when using MODIS. 

The identification of cropping systems in the smaller and dispersed rice classes (i.e., D, G and H from 

Figure 3) in the rainfed areas was found to be challenging. Overall, we note that the ability of 

hypertemporal MODIS to map the predominant rice characteristics is related to the spatial homogeneity 

and spatial fragmentation of the observed area.  
  

Nov-Dec Dec-Jan 

Fallow during 
WS from MODIS 

Aug 

   May- Jun     Jun-Jul
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4.2. Rice SAR Temporal Backscatter Signature and SAR-Based Rice Cropped Area 

and Flooding/Transplanting Dates Map  

SAR sensors (TSX and CSK) were found to be effective in mapping the rice areas with an overall 

accuracy of 90.4%. Newly planted or transplanted rice showed an increase in backscatter coefficient 

from both CSK and TSX (Figure 5) at an incidence angle of 40° and 45°, respectively. This result 

confirms the findings of [7] that high-frequency bands such as Ka, Ku and X bands can detect thin rice 

seedlings after transplanting at large incidence angles [7]. During the initial part of the growing season, 

rice shows an increase in backscatter because of a progressively higher surface roughness (i.e., from 

transplanting until tillering to stem elongation stage). As the rice canopy closes to cover the stems and 

spaces between rows and the surface becomes more homogeneous, the backscatter decreases because of 

a progressively lower surface roughness. High-frequency bands are sensitive to early rice growth stages 

(with LAI < 1.5) within one month after transplanting and lose sensitivity after that [7]. Backscatter of 

rice from X-band saturates at an earlier growth stage [34,71]. This research has identified the peak to 

occur within the tillering to stem elongation stage. This is then followed by a decrease in backscatter 

coefficient that starts from the panicle initiation stage. An increase in backscatter was observed to occur 

again during the maturity stage, which is also in agreement with the findings of [7] that X-band is 

sensitive to ripening grains in the larger incidence angle. Harvested areas during the WS show higher 

backscatter than in the DS (Figure 5). This can be attributed to the moist condition related to the dielectric 

properties of stubbles during the rainy season (WS), whereas, during the DS, very dry stubbles and soils 

exist in the harvested areas. 

Multitemporal X-band SAR data clearly identifies newly transplanted rice seedlings and hence has 

the potential to detect transplanting dates [34]. The analysis of the relationship between TSX-derived 

dates and the actual flooding/transplanting dates showed a very strong correlation with an R2 of 0.87 

(Table 7). CSK-derived flooding/transplanting dates were not assessed in the same way because of a 

lack of information on the actual flooding/transplanting dates. 

Factors affecting the accuracy of the SAR-generated rice maps include weather conditions and the 

timing of image acquisition. Several tropical storms passed over the study area during the WS acquisition 

period for TSX ScanSAR, which affected the images. Examples of the effect of these storms are shown 

in the Supplementary Information section (Figure S4). We assume that thick cloud cover in the image 

appears as black patches that decreased the intensity of backscatter from the ground that was not able to 

penetrate the clouds to reach the SAR sensor. The intense localized rainfall, on the other hand, is assumed 

to be the bright areas in the image that were probably produced because of the increase in water in the 

air that acted as multiple scatterers, also increasing the dielectric constant, resulting in an increase in 

backscatter. Further ground data are needed to validate these observations, which were not available in 

this study since the intense rainfall precluded any field activity at the time and location of these events. 

Longer microwave bands (e.g., C-band) for rice mapping, especially during the wet season, should be 

considered when mapping rice areas in a tropical country such as the Philippines, which experiences 

around 20 severe tropical storms every year [72]. Proper planning and timing of the image acquisitions 

are also essential for accurate rice area mapping. In our methodology, the rice area will be strongly 

underestimated if the SAR time series does not adequately capture the flooding/transplanting dates.  
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In our study, one image was not acquired in August, which is toward the end of the transplanting period, 

and it is likely that we underestimated the area of the rice crop that was established around that time. 

4.3. Comparison of General Planting Dates from MODIS with SAR-Derived  

Flooding/Transplanting Dates 

Our comparison of the general planting period from MODIS with the SAR-derived flooding/planting 

dates showed consistency in the periods of planting for sample B and a slight early shift of planting for 

samples A, E and F. The use of MODIS time series (2006–2011) for capturing the general planting 

period was shown to be a valid approach since the majority of the rice areas detected by SAR in  

2012–2013 were planted in time periods that were consistent with the general planting dates derived 

from MODIS (Figure 10).  

5. Conclusions 

This study showed how hypertemporal MODIS and multitemporal, high-spatial-resolution SAR 

images can be used to derive complementary information from rice areas. We used hypertemporal 

MODIS data to generate a rice characteristics map of the dominant rice-based cropping systems 

containing information on the general cropping calendar, cropping pattern, cropping intensity and rice 

ecosystem, while X-band SAR was used for the spatially detailed and accurate mapping of rice areas 

and flooding/transplanting dates.  

The study also provided the first assessment of the temporal variation in backscatter in X-band SAR 

from CSK and TSX using large incidence angles (40° and 45°, respectively) for rice covering stages 

from pre-season and land preparation until harvest. CSK and TSX with large incidence angles can detect 

newly transplanted seedlings. An increase in backscatter was observed for both CSK and TSX from 

flooding to transplanting. The peak in backscatter coefficient was observed to occur from tillering to 

stem elongation, which is followed by a decrease in backscatter due to lower surface roughness as the 

canopy closes and covers the stem and spaces between rows. An increase in backscatter was observed 

again at the maturity stage, with the ripening grains as the major scatterers with large incidence angles. 

In comparison to C-band SAR such as ERS-1, flooded rice fields have increasing backscatter until they 

reach the reproductive phase, which can be attributed to the wave-vegetation-water interaction [68].  

C-band SAR backscatter reaches the maximum at early ripening phase, which is attributed to the vertical 

plant structures and water surfaces as scatterers, while a slight decrease in backscatter occurs during the 

late ripening phase due to a reduction in the capability to penetrate the soil or water [73].  

High accuracy (90.4%) was obtained from the spatially detailed rice area map derived from SAR. 

The flooding/transplanting dates from TSX ScanSAR had a very strong correlation with the actual 

planting dates, showing its effectiveness in detecting the flooding/transplanting period. Accuracy of the 

information that describes the characteristics of the cropping systems within the rice areas obtained from 

MODIS ranged from 61.7% to 87.2%. The most basic information layers (e.g., rice/non-rice) had the 

highest overall accuracy, while the more thematically detailed information layers such as the cropping 

calendars had the lowest overall accuracy. MODIS provides general information that leads to a better 

understanding of rice areas, which gives insight into general farmers’ management practices within each 

rice cropping system.  
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The results suggest that the planting period derived from MODIS can be used as a guide in planning 

SAR image acquisition [41] even over large extents in addition to secondary information on irrigation 

water release dates. MODIS can provide a general planting period while SAR can provide spatially 

detailed planting dates. Though X-band SAR is effective in mapping the temporal variability in planting 

dates and in detailed mapping of rice areas, the key to an accurate mapping is to acquire SAR images at 

the right time and with a sufficiently high repetition frequency, especially during the critical phases of 

the cropping season. This includes the flooding period, which is needed for the correct identification of 

rice areas [39], and the tillering to stem elongation stage, when the maximum backscatter is achieved, 

which confirms that rice is planted and grown. Missing an image during these critical periods could lead 

to unmapped rice area as experienced in this study.  

This study emphasizes the complementarity of optical and SAR sensors to acquire comprehensive 

rice information. Together, the use of optical and SAR sensors generated accurate, comprehensive and 

necessary information to help aid decision making in the identification of rice areas for intensification, 

and areas for the development of irrigation as one of the necessary steps in dealing with food security 

issues. Despite some limitation in the SAR acquisitions, this study suggests that current and future optical 

and SAR systems such as Sentinel 1, 2, 3, Proba-V, RISAT-1, Landsat 8, MODIS, CSK and TerraSAR-X 

can be used complementarily to provide valuable spatial, thematic and temporal information on the rice 

crop in Asia. 
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