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Abstract: Given the scale and rate of mangrove loss globally, it is increasingly important to 

map and monitor mangrove forest health in a timely fashion. This study aims to identify the 

conditions of mangroves in a coastal lagoon south of the city of Mazatlán, Mexico, using 

proximal hyperspectral remote sensing techniques. The dominant mangrove species in this 

area includes the red (Rhizophora mangle), the black (Avicennia germinans) and the white 

(Laguncularia racemosa) mangrove. Moreover, large patches of poor condition black and 

red mangrove and healthy dwarf black mangrove are commonly found. Mangrove leaves 

were collected from this forest representing all of the aforementioned species and conditions. 

The leaves were then transported to a laboratory for spectral measurements using an ASD 
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FieldSpec® 3 JR spectroradiometer (Analytical Spectral Devices, Inc., USA). R2 plot, 

principal components analysis and stepwise discriminant analyses were then used to select 

wavebands deemed most appropriate for further mangrove classification. Specifically, the 

wavebands at 520, 560, 650, 710, 760, 2100 and 2230 nm were selected, which correspond 

to chlorophyll absorption, red edge, starch, cellulose, nitrogen and protein regions of the 

spectrum. The classification and validation indicate that these wavebands are capable of 

identifying mangrove species and mangrove conditions common to this degraded forest with 

an overall accuracy and Khat coefficient higher than 90% and 0.9, respectively. Although 

lower in accuracy, the classifications of the stressed (poor condition and dwarf) mangroves 

were found to be satisfactory with accuracies higher than 80%. The results of this study 

indicate that it could be possible to apply laboratory hyperspectral data for classifying 

mangroves, not only at the species level, but also according to their health conditions. 

Keywords: mangrove; degradation; hyperspectral remote sensing; classification; Mexico 

 

1. Introduction 

Mangrove forests represent wetlands of local, regional and even global importance. Locally, 

mangroves provide a variety of renewable resources and are critical to the health of fisheries. Regionally 

and globally, mangrove forests are considered key carbon sinks and play an important role as an 

indispensable habitat for a variety of aquatic and terrestrial organisms. However, mangrove forests have 

experienced a worldwide degradation due to several reasons, such as pollution, hydrological changes, 

aquaculture, recreational activities, climate changes, etc. Degraded mangrove forests generally have 

lower productivity and, thus, provide less ecosystem goods and services than their healthier counterparts. 

It is thus crucial that resource managers be able to map and monitor mangrove forests at increasing levels 

of detail, including species distribution and health condition. 

Traditional field work is time consuming, costly and sometimes just simply impossible for wetland 

vegetation communities. As a result, remote sensing techniques have been widely applied to map 

mangrove distribution. The most commonly employed imagery types are based on multi-spectral bands, 

such as Landsat (e.g., [1–3]) and SPOT (e.g., [3–6]). However, the steep environmental gradient and the 

coarse image spectral and spatial resolutions can limit the effectiveness of mapping mangroves [7]. As 

a consequence, hyperspectral remote sensing techniques, where very large numbers of bands are 

available (i.e., typically greater than 20), have been shown to be a potential alternative source of data for 

monitoring wetland vegetation [7], including mangroves [8–10]. Spectral responses could be different for 

various hyperspectral wavebands. In fact, chemical absorption regions have been used to separate 

vegetation species, due to differences in leaf color, leaf cell structure and leaf chemical components. To 

date, there have been several examples of applications of hyperspectral images on mangrove forests. 

Airborne hyperspectral instruments, such as Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) 

(e.g., [11]), Compact Airborne Spectrographic Imager (CASI) [12–14] and Airborne Imaging 

Spectrometer for Application (AISA+) [15], and satellite hyperspectral imagery (Hyperion) (e.g., [16,17]) 

have been used for monitoring and classifying mangrove species. The results from these studies would 



Remote Sens. 2014, 6 11675 

 

 

suggest that classifications based on hyperspectral imagery can provide satisfactory results for mapping 

mangrove communities. However, mangrove forests are experiencing rapid rates of degradation due to 

climate change and other more obvious anthropogenic disturbances, such as hydrological modifications, 

aquaculture expansion and pollutants [18]. Unfortunately, there have not been any studies that apply 

hyperspectral data for classifying mangrove health in degraded areas. Moreover, prior to any application 

of hyperspectral satellite imagery in mapping mangroves, it is necessary to test the feasibility of applying 

laboratory-based hyperspectral data for identifying mangrove species under various health conditions.  

It is challenging to separate vegetation species using spectral measurement due to spectral similarity 

amongst species. In addition, the large number of wavebands available (i.e., high dimensionality) 

imposes the problem of high computational cost, the so-called “Hughes phenomenon” or “the curse of 

dimensionality” [19–22]. Furthermore, there are typically strong correlations between closely 

neighboring spectral wavebands. The correlation (i.e., redundant information) might indicate a high risk 

of over fitting for classification [23,24]. Consequently, it is critical to select the most useful wavebands 

from hyperspectral data for accurate species/condition separation. 

Currently, there are many studies published regarding the separation of vegetation species using 

hyperspectral data (e.g., [25,26]). However, only a few studies have applied laboratory hyperspectral 

data to separate mangrove species. Vaiphasa et al. [27] identified sixteen mangrove species in Thailand 

using analysis of variance (ANOVA) and Jeffries-Matusita distance. Kamaruzaman and Kasawani [28] 

separated five mangrove species by applying stepwise discriminant analysis. Similarly, Mochel and 

Ponzoni identified the separability of four mangrove species located in northern Brazil [29]. Wang and 

Sousa [30] separated three mangrove species with laboratory hyperspectral reflectance using linear 

discriminant analysis. Mochel and Ponzoni [29] and Wang and Sousa [30] also applied ANOVA to test 

the spectral differences of mangroves. None of these previous studies examined the separability of 

mangrove species with various conditions using laboratory hyperspectral data. While ANOVA could be 

used to identify the significance of differences, previous studies [30] did not show the efficacies (error 

matrices and Khat coefficient) of applying hyperspectral data for identifying species condition. This is 

probably because of the challenge in dealing with similarity in their spectral response. Therefore, our 

objective was to examine the feasibility of separating three mangrove species with several health 

conditions using laboratory hyperspectral reflectance data, which could result in identifying the most 

optimal bands for these endeavors. 

2. Study Area 

The mangrove forest is located in a coastal lagoon south of the city of Mazatlán in the Mexican State 

of Sinaloa (23°19′N, 106°19′W). This region is characterized by a sub-tropical, semi-arid climate with 

a distinct dry and rain season. It is important to mention that the black mangrove (Avicennia germinans) 

dominates this area, and based on height, leaf color and distance to the water’s edge, this black mangrove 

could be classified according to three conditions: Healthy, dwarf healthy and poor condition  

(Figure 1a,b,c). Healthy mangroves are generally located close to the main tidal channel, with an average 

height between 4 and 5 m. The healthy black mangroves (Figure 1a) are found mixed with red mangroves 

(Rhizophora mangle) and some white mangroves (Laguncularia racemosa) within a very thin fringe along 

the main tidal channel. The dwarf black mangroves (Figure 1b) and the poor condition black mangroves 
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(Figure 1c) are found more inland, where the tidal influence is low [31]. Their height is generally around 

1 to 1.5 m, and their leaves are smaller and thicker than for those of healthy ones. Dwarf mangrove 

forests are found in sub-optimal conditions (e.g., P-limited). The healthy red (Figure 1d) and white 

(Figure 1e) mangroves are generally found along the water’s edge, where daily semi-diurnal tidal 

flushing is the norm. Stressed red mangroves are located more inland near the transition zone from the 

healthy black to the dwarf and poor condition black mangroves (Figure 1f).Their leaves typically have 

a yellowish coloration, and the tree canopy is much sparser compared with their healthy counterparts. 

Numerous dead twigs and branches are present in the poor condition mangrove stands. This condition is 

caused by increased stress in the environment, resulting from a variety of possible causes, such as soil 

hypersalinity, hydrological changes or exposure to pollutants.  

Figure 1. Mangrove forest represented by various species and different conditions.  

(a) healthy black mangrove, (b) dwarf black mangrove, (c) poor condition black mangrove, 

(d) healthy red mangrove, (e) healthy white mangrove and (f) poor condition red mangrove. 

 

3. Methods 

3.1. Field Data Collection 

Field work was conducted in mid-December, 2008 during the dry season. Leaves from the red, black 

and white mangroves with various conditions were collected from branches of the top canopy. Leaves 

were collected along the main tidal channel on a boat using an extendable hook for the healthy black, red 

and white mangroves. Only the third to fifth leaves from the tip were clipped from each branch, so that 

only mature leaves were collected. In total, 91 leaf samples of black mangrove, 60 samples of red mangrove 

and 30 samples of white mangrove were collected. All of the leaves were placed in plastic bags and then 

stored in a cooler at 4 °C for transport to the laboratory, where the reflectance data were recorded. 
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3.2. Spectral Response Measurements and Preprocessing 

An indoor black house laboratory was set up to measure the leaf spectral responses at the Instituto de 

Ciencias del Mar y Limnología. Leaf reflectance was measured using an ASD FieldSpec® 3 JR 

spectroradiometer (Analytical Spectral Devices, Inc., USA) on the same day as the leaf collection. The 

collection site was only three hours’ travelling distance from the lab. The measurement range for this 

device is 350–2500 nm, and the spectral resolution 3 nm from 350 to 1000 nm and 30 nm from 1001 to 

2500 nm. A 50-W halogen light was used as the light source for the indoor measurements. Two layers 

of mangrove leaves were stacked facing up on a matt black plate with a diameter of 25 cm. A 25° field 

of view sensor was mounted right above the plate at a distance of 30 cm. A white reference (Spectralon) 

was used to calibrate the measurements every 5 min. For each measurement, the value recorded was 

based on an average of 15 spectral readings. Four measurements were obtained for each sample by 

rotating the plate roughly 90° to avoid potential impacts from the bidirectional reflectance distribution 

function [27]. The final spectral reflectance number for each sample was calculated as the average of the 

four measurements.  

To decrease the number of wavebands from the original 2150 wavebands, the data were further 

aggregated into 215 bands at a bandwidth of 10 nm, as neighboring wavebands provide similar 

(redundant) information. The name for these new aggregated wavebands was determined by the starting 

wavelength. For example, B420 indicates the wavelength region of 420–429 nm. Wavebands from 350 

to 400 nm were not used, since they represent the ultraviolet region of the spectrum. 

3.3. Statistical Methods 

3.3.1. Waveband Selection 

The squared correlation coefficient (R2 plot) among all wavebands, principal components analysis 

(PCA) and stepwise discriminant analysis (SDA) were examined in order to identify the most ideal 

wavebands for the mangrove hyperspectral classification [26,32]. 

It is important to mention that although the wavebands were averaged prior to the statistical analyses, 

there were still cases of strong correlations among the averaged wavebands within the dataset, resulting 

in redundancy. As a consequence, the R2 plot was used to select these wavebands with low correlation, 

thus providing complimentary information (Figure 4). Using 0.0001 as a cutoff point of correlation, a 

total of 77 of the least correlated waveband pairs were selected for further data classification. 

The PCA is an important statistical tool, because it can efficiently reduce the large amount of 

wavebands from the laboratory measurements using an orthogonal transformation [8]. Following the 

latent root criterion, five principal components were selected, since their eigenvalues were found to be 

greater than 1 [33]. As a result, the five components explained 98.8% of the total observed variation. For 

further selection, a total of 100 wavebands, 20 wavebands from each principle, were selected based on 

their factor loadings. 

The SDA technique can be used to select a subset of the wavebands that contributed most to the 

discriminatory power of the model [26]. It has commonly been used to classify spectral responses into 

different classes. At each step, all wavebands are evaluated within the model. Those wavebands that fail 

to meet the criterion to stay within the model are removed, whereas wavebands that can contribute most 
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to the discriminant function are retained within the model. The procedure stops when no further 

wavebands are removed. Using this method, a total of 54 wavebands were selected using a significance 

level of 0.05 for entry and removal from the model. 

Wavebands from different wavelength regions are strongly associated with specific elements of the 

leaf biophysical structure. For example, the visible light portion is often related to the leaf pigment 

contents/concentration, whereas the near-infrared (NIR) is more related to the leaf structure. Moreover, 

the shortwave infrared is closely linked to the leaf water content. Some hyperspectral bands are also 

known to correspond to leaf chemical absorption [34]. As a consequence, bands from these regions of 

the spectrum may be particularly useful for separating mangroves according to species and conditions. 

To make sure the selected wavebands were not solely from the visible, NIR or short wavelength infrared 

regions, the spectrum was split into four sections: 400–690, 700–1350, 1360–1750 and 1760–2340 nm. 

Moreover, to guarantee that the selected wavebands were more practical, the wavebands in the water 

absorption regions were excluded from further analyses. 

All selected wavebands from these methods were then pooled together. Wavebands with a frequency 

over three were then selected for further classification using discriminant analysis. These selected 

wavebands would have the weakest correlation among them and, thus, be the ideal candidates to 

discriminate the samples [32]. One-way ANOVA was performed for the mean reflectance at the selected 

wavebands in order to examine the variance among the different mangrove species and conditions. 

3.3.2. Mangrove Condition Classification and Validation 

Discriminant analysis was applied to separate mangrove species and conditions, as it has been widely 

used to examine the separability of multiple category data [30,35]. This technique develops a 

classification criterion using a measure of generalized squared distance. Each observation is classified 

into a group from which it has the smallest generalized squared distance. Instead of using linear 

discriminant functions [30], quadratic discriminant functions, also known as the classification criterion, 

were used to assign group membership (see [36]), because the test of homogeneity of within-covariance 

matrices is significant. Classification accuracy was evaluated using the error matrices generated from the 

discriminant models. Total accuracy and the Khat coefficient were calculated based on the error matrices.  

Results obtained from the discriminant analysis may only be applicable to the sample used. We 

required a discriminant model that has been both externally and internally validated, and therefore,  

cross-validation was also performed to check on the propensity to inflate the accuracy if the all of the 

data are being used. The classification was conducted using the leave-one-out procedure, i.e., each 

sample was classified using the discriminant function constructed by taking that sample out of the 

dataset. Hence, each sample was reclassified as if it were a new unknown observation. In fact,  

cross-validation provides a better, but more conservative, assessment of classification accuracy. 

4. Results and Discussion 

4.1. Spectral Properties of Mangrove Species and Conditions 

Healthy mangroves, including the black, red and white species, have lower reflectance in the red and 

higher reflectance in the NIR wavelength regions (p < 0.01) (Figure 2). The differences in reflectance in 
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the visible light region are indicative of the observed variation in leaf colors. The red mangrove leaves 

have a dark green color and consequently have the lowest reflectance in the green and red regions of the 

spectrum. The white mangrove leaves typically have a bright green color and consequently have the highest 

reflectance in the green spectrum. Among the three species, the red mangrove has considerably higher values 

in the NIR wavelength region. This observation could be attributed to the very thick leaves [31], relative to 

other species, which could cause stronger reflectance, especially in the NIR region, as observed in our 

study. This may also explain why the reflectance for the dwarf red is almost as high as those of the 

healthy black and white mangroves within the NIR region. 

Figure 2. Spectral profiles of the healthy and stressed mangrove classes. Healthy black, 

healthy red, healthy white, dwarf black, dwarf black and dwarf red). 

 

Different mangrove species and conditions exhibit various changes in their spectral responses  

(Figure 3). Dwarf black, poor condition black and healthy white mangroves have the lowest degree of 

variation, whereas dwarf red and healthy red have the highest. Among the wavelength regions, the lowest 

variation was found in the near-infrared region. Within-category variations in reflectance were much 

larger for visual light and short wavelength regions. 

Stressed mangroves have stronger reflectance in visible light, particularly for the red light regions  

(p < 0.01). This is most likely the result of a drop of chlorophyll content and an increase of carotenoids 

in the leaves. Consequently, leaves for the stressed mangroves look yellowish. The dwarf red leaves 

were the most yellowish and consequently had the strongest reflectance in the red spectrum. Moreover, 

stressed mangrove leaves are generally smaller and thicker [31,37] and, thus, should have higher 

reflectance in the NIR region. In contrast, the reflectance of the stressed mangroves in our study was 

shown to be generally lower than the healthy mangroves in the NIR region. This could be caused by 

structural changes within the leaves. Consequently, the internal scattering at the cell wall-air interfaces 

in the leaves had decreased significantly. 
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Figure 3. Standard deviation (top) and coefficient of variation (bottom) of reflectance for 

each species type and conditions. 

 

It is interesting to note that the reflectance of the dwarf black mangrove was slightly lower than that 

for the poor condition black mangrove even though the difference was not significant (p > 0.01). In 

contrast to healthy black mangroves, dwarf black mangroves are typically found in sub-optimal 

conditions generally characterized by limited nutrients and freshwater [37–40]. Consequently, their 

height is generally not more than 1.5 m, as observed in our study site (Figure 1). This type of sub-tropical 

environment might have caused significant changes in the leaf structure, resulting in the observed lower 

reflectance in comparison to the poor condition black mangroves in the NIR region. 

It is difficult to explain why, in general, there was a higher reflectance in healthy mangroves along 

the short wavelength regions. Poor condition red mangroves were found to have the lowest nitrogen 

concentration and water content [9,10], and yet, they showed the strongest absorption in this region. 

Water content is one of the main determinants in the short wavelength region. This would indicate that 

other chemical components in the leaves, such as starch, lignin or fiber, could be associated with the 

observations. One other possible reason may be linked to small salt crystals that are often found on the 
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leaves of the poor condition and dwarf black mangroves. These salt crystals result from the tree excreting 

excessive minerals when dealing with hypersaline conditions typical of many stressed basin mangrove 

forests. When the samples were brought back to the laboratory, some of the poor condition leaf surfaces 

were generally wetter than the healthy leaves, due possibly to the absorption of moisture from salt 

crystals. This thin layer of moisture could have possibly lowered the reflectance. 

4.2. Wavebands Selection 

As previously indicated, a frequency occurrence of greater than three was used to select bands for 

further classification. These bands correspond to wavelength regions of pigments absorption, red edge, 

nitrogen absorption, etc. (Table 1 and Figure 5). Only wavebands of high frequency and physiological 

significance were selected (Table 2). Data redundancy is a third factor of wavebands selection. 

Consequently, several visible light and near-infrared wavebands were not selected for further analysis. 

Specifically, the selected wavebands were 520 (blue-green), 560 (green), 650 (red), 710 (red edge),  

760 (red edge), 2100 and 2230 nm. Six hundred fifty nanometers is the absorption region for chlorophyll b. 

Wavebands along the visible region and the red edge region were reported to be optimal for detecting crop 

nitrogen [41]. The 2100 and 2300 nm bands have been shown to correspond to the absorption regions for 

fiber, starch, protein and nitrogen [31]. 

Our results differ from other researchers in regards to the selected bands. For example, 780, 790, 800, 

1480, 1530 and 1550 nm were found to be the most useful bands for separating three mangrove  

species [30]. This may be expected given the species we examined and, most importantly, our focus on 

the conditions of the mangroves, as well. Mangrove leaves of various conditions have different levels of 

chlorophyll content, nitrogen and water content [9,10,31]. In addition, the sensitivity of the reflectance 

to stress varies considerably in the visible and the NIR range [42,43]. It is important to note that no 

wavebands from 800–1350 nm and 1360–1750 nm were selected. The small variations in the near-infrared 

region (Figures 2 and 3) partly explain the reasons why no wavebands were selected for further 

classification analysis. Reflectance of dwarf and healthy black mangrove were almost identical from the 

800 to 1350 nm wavelength region. Two red edge wavebands and three visual light wavebands were 

selected instead. These wavebands have been shown to be the optimal ones in identifying vegetation stress 

and moisture content [26]. In addition, the results from other studies also indicate that those particular 

wavebands might not be as useful as the wavebands selected. Results from a crop study using a similar 

method also indicated that visual light and the red edge wavebands are more useful in classifications [32]. 

Table 1. Wavebands selected using three statistical methods. SDA, stepwise  

discriminant analysis. 

Methods Wavebands Selected (nm) Notes 

R2 520–650, 690–710, 750–770, 830, 890–910, 1170, 

1180, 1210–1,230, 1310–1370, 1390–1420, 1440–1490, 

1510, 1520, 1550, 1560, 1630, 1640–1670, 1770, 1780, 

1830, 1840, 1860, 1870, 2080–2130, 2160–2200, 

2220–2240, 2280–2330 

0.0001 is the cutoff point of 

correlation 
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Table 1. Cont. 

Methods Wavebands Selected (nm) Notes 

PCA 450–760, 850–940, 1020–1110, 1850–1870, 1920, 

1930, 1940, 2110–2270 

PC1 74.84%, PC2 14.13%,  

PC3 5.43%, PC4 3.15%,  

PC5 1.22% of variation  

SDA 400, 440, 450, 470, 490, 510–570, 600, 630, 650–720, 

740, 1000, 1110, 1120, 1140, 1190, 1200, 1290, 1400, 

1520, 1630, 1650, 1660, 1710, 1730, 1740, 1780, 1790, 

1800, 1840, 1870, 1920, 1960, 2090, 2100, 2140, 2200, 

2210, 2230, 2250, 2260 

Entry and stay probability is 

0.05 

Figure 4. R2 plot. Areas of lowest R2 values (<0.0001) were selected for further analysis. 

 

Table 2. Selected spectral wavebands for mangrove condition classification using  

three methods. 

Spectral Region (nm) Center of Wavebands (nm) Significance 

400–690 520, 560, 650 Chlorophyll content 

700–1350 710, 760 Red edge/plant stress 

1360–1750 No wavebands selected - 

1760–2340 2100, 2230 Starch, cellulose, protein 

and nitrogen 



Remote Sens. 2014, 6 11683 

 

 

Figure 5. Frequency of selected wavebands using R2 plot, PCA and SDA. Selected 

wavebands are underscored. 

 

4.3. Mangrove Classification and Validation 

The selected wavebands were found to separate the three mangrove species with different conditions 

quite well. Results of the classification based on these wavebands were deemed more than satisfactory 

(Table 3). The overall accuracy and kappa coefficient were calculated at 97.78% and 0.97, respectively. 

White, healthy red and dwarf red mangroves are spectrally distinct. The white mangrove had an accuracy 

of 100%, thus making them easy to separate from other species. The confusion is found mainly between 

the poor condition black, the healthy black and the dwarf black mangroves. This is obvious, since 

spectrally, these three conditions are similar. Nonetheless, the accuracies for dwarf and poor condition 

black mangroves are satisfactory, as they are all above 90%.  

The validation indicates that there is only a slight drop among the accuracies (Table 4). The overall 

accuracy and the Khat were calculated at 91.7% and 0.90, respectively. Again, white and healthy red 

mangroves were easily separated from the other species with classification accuracies of 100%. The 

dwarf red mangrove is also separated with a high accuracy (96.67% for the user’s accuracy and 100% 

for the producer’s accuracy). Similarly, the confusions occur between the black mangroves with various 

conditions (i.e., healthy, poor and dwarf). However, the classification accuracies are higher than 80%, 

which could indicate that the classification based on proximal hyperspectral remote sensing techniques 

could be applied to separate mangrove forests of various health conditions. In addition, results from the 

one-way ANOVA indicate that there is a significant difference (p < 0.05) in the mean reflectance among 

the mangrove species and conditions (Table 5). 
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Table 3. Error matrix of the classification based on the seven selected wavebands. 

Type DB DR PB HR HB HW Total 
Users’ 

Accuracy

DB 30 0 0 0 0 0 30 100%

DR 0 30 0 0 0 0 30 100%

PB 2 0 28 0 0 0 30 93.33%

HR 0 0 0 30 0 0 30 100%

HB 1 0 1 0 29 0 31 93.55%

HW 0 0 0 0 0 30 30 100%

Total 33 30 29 30 29 30 181 

Producer’s 

accuracy 
90.91% 100% 96.55% 100% 100% 100%    

Notes: HB, healthy black; DB, dwarf black; PB, poor condition black; HR, healthy red; DR, poor condition red; 

HW, healthy white. 

Table 4. Error matrix of the classification validation based on the seven selected wavebands. 

Type DB DR PB HR HB HW Total 
Users’ 

Accuracy

DB 26 0 4 0 0 0 30 86.67% 

DR 0 29 0 1 0 0 30 96.67% 

PB 3 0 25 0 2 0 30 83.33% 

HR 0 0 0 30 0 0 30 100% 

HB 2 0 2 0 26 1 31 83.87% 

HW 0 0 0 0 0 30 30 100% 

Total 31 29 29 31 28 31 181  

Producer’s 

accuracy 
83.87% 100% 86.21% 96.77% 92.86% 96.8%     

Table 5. Mean Square Between (MSB) and Mean Square within (MSW) variances of the 

mean reflectance at selected wavebands (mean squares). 

Waveband (nm) 520 560 650 710 760 2100 2230 

MSB 0.00274 0.00959 0.002211 0.035517 0.059308 0.010197 0.014219

MSW 0.00010 0.00022 0.000079 0.000651 0.000759 0.000148 0.000181

However, it is important to note that the extent of hyperspectral discrimination of mangroves from 

other mangrove zones located in both tropical and sub-tropical regions could vary depending on the 

influence of various factors, such as variable precipitation rates, soil salinity conditions and species 

composition. For semi-arid regions, as in this study, it is well known that the mangroves are under 

considerable stress due to soil hypersaline conditions and that such environmental factors induce 

seasonal changes in leaf pigments content, which, in turn, affect the hyperspectral reflectance of the 

selected mangrove species.  
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5. Conclusions 

Mangrove forests represent one of the most important ecosystems in the world, and yet, they continue 

to experience considerable degradation. This study aimed to examine the separation of mangrove species 

with various health conditions using in situ hyperspectral data collected from mangrove leaves. The 

results of this study indicate that it is possible to select bands using a few statistical methods and then 

apply them, using a discriminant analysis based on quadratic discriminant functions, to classify 

mangroves with varying conditions. The results also indicate that spectrally, mangrove species and the 

conditions are distinct in various wavelength regions. Using various statistical techniques, the 

wavebands at 520, 560, 650, 710, 760, 2100 and 2230 nm were identified as the ideal bands for mangrove 

discrimination in this particular semi-arid region. Moreover, these bands are related to chlorophyll 

content, red edge, starch, cellulose, nitrogen and protein absorption. The classification and leave-one-

out validation indicate that these wavebands are efficient for classifying mangroves with different health 

conditions. Generally, white and healthy red mangroves have the highest classification accuracy (100%) 

since they are spectrally distinct. It was also found that it is easiest to separate between healthy red and 

dwarf red mangroves due to the contrast in spectral properties. However, the greatest difficulty exists 

when attempting to separate black mangroves of various conditions (i.e., healthy, dwarf, poor), 

especially between the poor and dwarf mangroves, due to the spectral similarity for the same species. 

Nonetheless, the classification accuracies were deemed satisfactory, even for the black mangrove 

classes. Moreover, the classification accuracies for validation were found to be generally higher than 

80%. Consequently, the results of this investigation indicate that it is plausible to separate mangrove 

species with different health conditions using close-range hyperspectral data. Although detailed in situ 

hyperspectral assessments between mangroves is of utmost importance for accurate inter species 

discrimination, the aforementioned suggestions have to be considered when assessing spaceborne 

hyperspectral classification of mangrove areas.  
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