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Abstract: Mapping landscape dynamics is necessary to assess cumulative impacts due to 

climate change and development in Arctic regions. Landscape changes produce a range of 

temporal reflectance trajectories that can be obtained from remote sensing image time-series. 

Mapping these changes assumes that their trajectories are unique and can be characterized by 

magnitude and shape. A companion paper in this issue describes a trajectory visualization 

method for assessing a range of landscape disturbances. This paper focusses on generating a 

change map using a time-series of calibrated Landsat Tasseled Cap indices from 1985 to 2011. 

A reference change database covering the Mackenzie Delta region was created using a number 

of ancillary datasets to delineate polygons describing 21 natural and human-induced 

disturbances. Two approaches were tested to classify the Landsat time-series and generate 

change maps. The first involved profile matching based on trajectory shape and distance, 

while the second quantified profile shape with regression coefficients that were input to a 

decision tree classifier. Results indicate that classification of robust linear trend coefficients 

performed best. A final change map was assessed using bootstrapping and cross-validation, 

producing an overall accuracy of 82.8% at the level of 21 change classes and 87.3% when 

collapsed to eight underlying change processes. 
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1. Introduction 

Earth observation involves predicting the state and change of the earth’s surface. Land cover and 

biophysical parameter mapping predict the state of the surface within each ground element represented 

by an image pixel. Change detection records alterations of ground element states in time that can be 

broadly grouped as either abrupt or gradual. Abrupt change refers to a rapid state change of the pixel 

usually within an observation period of one year and includes disturbances such as fire, and land use 

conversions such as urban expansion. Gradual change involves processes that occur over a period of 

several years and includes vegetation regeneration, dieback, succession and arctic greening caused by 

climate warming [1]. 

A common goal of change detection is the creation of a map time-series [2]. In this case, change 

detection is applied to map a land cover conversion from an initial state to a changed state (i.e., from-to 

conversion). The process causing the state change is inferred by the land cover class before and after 

change. For example, a forest pixel that becomes charred/barren suggests forest fire as the agent of 

change. Over a period of a decade or more, that same pixel transitions to herbaceous and then shrub, and 

the process inferred by this gradual conversion is regeneration. Notable exceptions to this common 

application of change detection are where change agents or processes are mapped directly. Such 

applications include fire mapping [3] and arctic greening. In the case of greening, the process of 

increasing arctic vegetation is commonly inferred by trend detection applied to NDVI time-series [4]. 

This paper presents research towards the development of a change product for northern cumulative 

impact assessment using Landsat image time-series covering the lower Mackenzie River and Delta 

region. The goal was to map processes or agents of change in the region rather than create a land cover 

time-series. Common change agents in the region include natural and human disturbances, as well as 

climate warming that is altering permafrost, hydrology, and vegetation. Changes can be broadly grouped 

into processes such as fire, regeneration, vegetation colonization, greening, vegetation removal, erosion 

and deposition/drainage. Each process can only occur in certain environments or geographical context 

such forest, tundra, lakes, rivers, or coastlines, which helps further specify the nature of change. 

Fraser et al. [5] describe the major types of landscape changes included in the reference disturbance 

database used in the current study, as well as provide a legend for visually interpreting Landsat Tasseled 

Cap linear trends displayed as an R-G-B composite. That study alludes to the potential to classify Landsat 

Tasseled Cap trend images in Arctic environments to generate change maps. This study builds on  

Fraser et al. [5] by testing different methods to generate a change map, apply best methods and perform 

a proper assessment of the final map product. 

Change mapping is performed by classifying each pixel’s trajectory in the three dimensions of 

Landsat data that include Tasseled Cap Brightness, Wetness and Greenness indices [6] contained in  

a Landsat time-series image stack. Classification is tested using two different approaches. First,  

a reference change trajectory database is created and template matching algorithms based on distance 

and shape are applied to determine a best-fit change class on a pixel basis. Second, trends are computed 

on a pixel basis and trend coefficients are input into a decision tree classifier to predict change class. 

Linear least-squares, Thiel-Sen robust linear and second and third-order polynomial trend coefficients 

are tested. Previous work alludes to the potential of profile matching for forest fire disturbance mapping 
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and recovery, while this paper is the first to our knowledge to test similar approaches in Arctic 

environments [7–9]. 

Study Area 

The study area includes the Tuktoyaktuk Coastal Plain and extends south across the Mackenzie Delta 

to the Richardson Mountains and then southeast to near Fort Good Hope (Figure 1). The region is entirely 

underlain by continuous permafrost [10] with 10% or more ice content, creating landforms characteristic 

of periglacial environments such as ice wedge polygons, thaw slumps and pingos [11]. Shallow lakes 

and ponds are widespread in the Delta and along the Tuktoyaktuk Peninsula where surficial geology 

consists mainly of colluvial, alluvial and lacustrine deposits. Lakes generally become larger and less 

numerous [12] to the south, where surficial geology consists mainly of till veneer and till blanket. 

Figure 1. Study area covered by Landsat image stack from 1985 to 2011. Region 2 (R2) 

provided training data while Region 1 (R1) and Region 3 (R3) were used for validation. 

 

Vegetation transitions from forest to tundra across treeline that extends east-west just south of  

the Tuktoyaktuk Peninsula, reaching the Beaufort Sea in the Mackenzie Delta [13]. Above treeline, 

vegetation is nearly continuous and consists mainly of erect shrubs (Betula spp., Salix spp., Alnus spp.), 

dwarf shrubs and heath shrubs (Dryas spp., Empetrum spp., Ledum spp., Vaccinuim spp., Arctostaphylos 

spp.), cotton-grass tundra (Eriphorum spp., Carex spp.) and non-vascular lichen and moss species 

(Cladonia spp, Cladina spp., Sphagnum spp.) on polygons. White spruce (Picea glauca) is the dominant 
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tree species at treeline. Fire is a common stand-replacing disturbance as indicated by numerous large 

fire scars south of treeline, while less frequent and smaller scars occur within tundra. 

Mean winter temperature was approximately −25 degrees C from 1985 to 2012 and varies little  

north to south according to Environment Canada’s Homogenized temperature data for Tuktoyaktuk 

(Latitude: 69.43 degrees), Inuvik (Latitude: 68.3 degrees) and Fort Good Hope, NWT (Latitude:  

66.24 degrees) [14]. The western Arctic of North America has experienced some of the most rapid 

climate warming on earth over the last 40 years [15]. At Inuvik where the climate record is most complete 

over the period of analysis, winter temperatures have increased more than summer temperatures since 

1985 (0.14 degrees C summer; 4.06 degrees C winter) (Figure 2). 

Figure 2. Inuvik summer (June–August) and winter (December–February) temperature 

trends from 1985 to 2011. 

 

2. Data 

2.1. Landsat 

122 Landsat 5 (TM) and 7 (ETM+) images were obtained from the USGS Glovis data archive 

representing years from 1985 to 2011, and WRS Paths 59 to 64 and Rows 11 to 13. Images were selected 

to be as close to mid-summer as possible with anniversary dates ranging from 26 June to 27 August. 

Image stacks were processed in three separate regions due to their size with Region 1 covering the most 

of the Tuktoyaktuk Peninsula, Region 2 spanning the Mackenzie Delta north to south and Region 3 

extending approximately 125 km south of the Delta near Fort Good Hope (Figure 1). Scenes were 

screened to remove cloud and cloud shadow and converted to Top-of-Atmosphere reflectance [16]. 

Calibration to surface reflectance was not performed since we assumed no systematic trends in aerosol 

optical depth, while random atmospheric effects were to be removed by trend detection. Landsat TOA 

Tasseled Cap Brightness, Wetness and Greenness Indices [6] were computed for each scene and index 

images were stacked to form cubes with dimensions x and y representing space and dimension z 

representing time. Certain scenes were imaged twice in one year and time was represented as number of 

days since the first image in the stack. Certain Path/Rows were common between regions while others 

were unique to individual regions. In addition, there is large overlap of WRS-2 Landsat frames at high 
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latitudes. Thus, each region contained a variable number of temporal observations depending on scenes, 

scene overlap and missing data due to cloud, cloud shadow and Scan Line Correction (SLC) failure of 

Landsat 7 post-2003. 

Table 1. Reference data used to identify and corroborate landscape changes observable in 

the Landsat trend imagery. 

Data Set Description 
Types of Change 
Features Corroborated

Mackenzie Valley 
Orthophotos (MVAP) 

Contracted by Indian and Northern Affairs 
Canada, photos are from August 2004, 1:3000 
scale, ~1 m resolution 

Slumps, drained  
lakes, seismic lines 

NWT Community 
Orthophotos 

Acquired by NWT Department of Municipal and 
Community Affairs in 2007–2012,  
5 cm resolution. 

Footprint and type of 
municipal development 

SPOT Imagery 
2005–2010 SPOT 4&5 imagery processed by 
NWT Centre for Geomatics, pan-fused  
10 m resolution 

All 

Landsat TM and ETM+ 
imagery 

Visual interpretation of 1985 and 2011 image pairs 
used to generate image stacks 

All 

Fire History of NWT 
NWT Department of Environment and Natural 
Resources, 1965–2011 burned area polygons 

Post-1965 forest fires 

National Air Photo Library 
photographs 

Panchromatic photographs 1950–1985, scales  
of 1:5000+ 

Pre-1965 forest and 
tundra fires, thaw  
slump progression 

Ecological Land 
Classification (ELC) oblique 
air photos 

NWT Department of Environment and Natural 
Resources, >60,000 oblique aerial photographs 
from 2005 to 2009. 

All 

Vertical color and  
color-infrared air photo pairs

208 vertical air photos pairs from 1980 and 2013,  
~2–4 cm effective resolution, 14 flight lines over 
Tuktoyaktuk Peninsula [16] 

Shrub proliferation 

Oblique air photos from 
helicopter 

Photos taken around Ft McPherson and between 
Inuvik and Tuk, August 2013, and around 
Yellowknife, August 2011 and June 2012. 

All 

Google Earth Areas containing high resolution (<4 m) imagery All 

National Hydro Network 
Lake perimeters and stream networks at  
1:50,000 scale 

Draining lakes,  
thaw slumps 

Peel Plateau  
thaw slumps 

212 digitized slumps [17] 
Retrogressive  
thaw slumps 

NWT Seismic Lines 
Historical seismic line GIS database from National 
Energy Board 

Seismic line 
disturbances 

NWT Spatial 
Data Warehouse 

Geospatial Portal containing numerous NWT 
spatial datasets 

Mineral, oil, and  
gas developments 
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2.2. Reference Data 

A reference change database was developed using a number of ancillary datasets (Table 1 ([17,18])) 

and by interpreting changes in Landsat Tasseled Cap Brightness (TCB), Wetness (TCW) and Greenness 

(TCG) linear trend images displayed as R-G-B [5]. Polygons were digitized on Landsat data to delineate 

change extent and interpreted using ancillary data before assigning them to one of 21 classes that include 

both natural and human-induced changes representing loss or gain of vegetation, water, and soil. 

Interpretation was verified by knowledge of spectral changes observed in Landsat images that are caused 

by different processes. For example, increased Greenness generally indicates vegetation growth or 

regeneration. Note that depending on the timing of the disturbance, both loss and gain can occur; for 

example a fire that occurred sometime during the Landsat time-series includes both vegetation removal 

due to burning and subsequent regeneration. From the initial 21 class change legend, eight underlying 

change processes were identified (Table 2). These processes are generic while the full 21 class legend 

places each process into more detailed context by characterizing the location of each process in relation 

to either a permanent geographical feature (e.g., lakes, rivers), or temporary disturbance (fire). The 

timing of changes was not recorded due to missing data or uncertainty in its interpretation, especially in 

the case of progressive or subtle change such as greening or succession. 

Stable classes were those that hadn’t undergone any noticeable change during the Landsat time-period 

and were sampled in permanent human developments and land uses such as quarries and roads.  

Other stable classes included water and vegetated areas that did not exhibit a significant trend in any of 

the Tasseled Cap Indices. 

The majority of the 21 change classes generally represent subtle or progressive change at a yearly 

time interval. Natural changes caused by erosion or vegetation removal can be either catastrophic or 

progressive, however most often they represent changes that occur over a period of several years, 

especially at the 30 m resolution of a Landsat pixel. Human vegetation removal caused by development 

or natural removal due to fire occurs within a single year in almost all cases. Because fire represents  

the major catastrophic disturbance in the region, we examined the reference database for fire years to 

ensure that fires in the validation dataset from Regions 1 and 3 were represented in the calibration dataset 

from Region 2. 

The fire record contains fires spanning a 45 year period from 1967 to 2011, and fires occurred 

somewhere in the study area in 39 of those years. Of the 39 years in which fires occurred, 16 years were 

represented in both the calibration dataset from Region 2 and validation dataset from Regions 1 and 3. 

Of the remaining 23 years, 13 had fires occur in the validation dataset that were within one year of a fire 

in the reference dataset. The remaining 10 years were represented by a fire that occurred two years or 

more from a fire in the calibration dataset, and six of those occurred from 2006 inclusive onward.  

Thus, fires in the calibration and validation datasets were offset by a lag of one year or less in the vast 

majority of cases. 
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Table 2. Disturbance class legend. 

Context Process Disturbance or Change Class 
#Polygons 
(Region 2) 

Burnt area 
2. regeneration 

Recent forest fire (based on NWT fire  
history database) 

86 

3. succession Pre-1965 forest fires 4 
4. succession Pre-1965 tundra fires 27 

River/stream 
slumps 

6. erosion Active and wet portion of slump 4 

2. regeneration 
Late regeneration (later vegetation 

growth) 
1 

Lakes 

6. erosion Active slump 4 
6. erosion Eroded lake shorelines 9 

7. deposition/drainage Recently drained tundra lake 8 
2. regeneration Older portion of slump 12 

1. emergent  
vegetation—colonization

Drained lakes with vegetation growth 11 

Streams 

6. erosion Conversion of sandbar to stream 3 
7. deposition/drainage New stream and river sandbars 3 

1. emergent  
vegetation—colonization

Conversion of stream bed to vegetation 11 

5. vegetation removal 
Conversion of vegetation to exposed 

stream bed 
4 

Coastal 6. erosion Eroded coastal shorelines 2 

Human 
developments 

5. vegetation removal Development (removal of vegetation) 7 
8. no change Developed 11 

Mackenzie delta 
6. erosion Delta erosion. 12 

7. deposition/drainage Delta deposition 13 

Tundra 
4. tundra greening 

(shrubification) 
Shrub proliferation 7 

Stable 8. no change Non-disturbed area 22 

3. Methods 

3.1. Comparison of Change Classification Methods 

Change classification methods described later involving profile matching and trend classification 

were assessed using Region 2 for algorithm training and Regions 1 and 3 for testing. This can be 

considered a fairly rigorous assessment due to the fact that extending classifiers latitudinally may be 

more problematic than extending longitudinally because of increased climatic gradients [19]. Overall 

accuracy was computed for the testing regions to evaluate and compare methods. 

3.1.1. Temporal-Spectral Profile Matching 

A total of 29,875 profiles in Region 2 representing individual pixel trajectories in TCB, TCG and 

TCW were averaged beneath 261 reference change polygons described in Section 2.2. Average polygon 

profiles were loess smoothed using a span of 0.5 that was selected after examining a range of values in 
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order to preserve profile shape while minimizing inter-annual noise. The resulting 261 polygon profiles 

represented a reference sample of disturbance trajectories for 21 disturbance classes with an uneven 

number of samples per class. Disturbances such as eroded coastal shoreline that are rare in Region 2 

were represented by as few as one polygon profile, while common disturbances such as fire were 

represented by as many as 86 profiles. 

Profiles were similarly extracted from reference pixels in Regions 1 and 3 and compared to reference 

profiles from Region 2. 2422 pixel profiles were extracted beneath 47 polygons for Region 1, while 

Region 3 was represented by 30,212 pixel profiles beneath 313 polygons. Loess smoothed pixel profiles 

in Regions 1 and 3 were matched to the closest, smoothed reference polygon profile from Region 2 for 

classification. A minimum sum of TCB, TCG and TCW distance between pixel profiles and reference 

polygons was used to assign pixel trajectories to disturbance classes. Both Euclidean and Frechet 

distance metrics were tested in this trial. 

Figure 3. Reference and classified brightness profile examples of lake erosion with Frechet 

distance that is calculated as the minimum, maximum length that connects points on  

two curves. Frechet distance is commonly described as the minimum length of a leash 

required to connect a dog and its owner travelling along the two separate curves without 

either one backtracking. 

 

Euclidean distance is the root of the summed squared distances between profiles at corresponding 

time intervals. This metric gives a minimum value when profiles are temporally aligned and therefore 

its magnitude is dependent on the lag between the timing of the two input profiles. Because timing 

information was not initially collected, we assumed that several examples of change types per class  

in the reference database included disturbance profiles representative of a range of lags. Frechet  

distance [20] was also computed as the minimum of the greatest distance between all points on two 

curves. This distance metric can be visualized as the minimum length of a line that connects points on 

each curve while allowing one to traverse both curves from start to finish (Figure 3). A comparison 

between Euclidean and Frechet distances between profiles offset by a range of lags revealed less 

sensitivity of the Frechet distance measure to temporal alignment. 
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Profile shape similarity was also evaluated using a maximum sum of TCB, TCG and TCW correlation 

between pixel trajectories in Regions 1 and 3 and reference disturbance trajectories. Cross-correlation 

using Pearson’s method and a maximum lag of up to 50 time intervals were used. This method offsets 

the input profile over a range of lags and compares it to the reference profile at each lag using correlation. 

The maximum correlation irrespective of lag was used as the best-fit criterion. 

3.1.2. Classification of Trend Coefficients 

A second approach that was tested involved classification of disturbance types using time-series 

regression coefficients. This approach assumes that each disturbance type has a unique linear slope 

(representing change magnitude and direction) and offset (representing initial condition) that can be 

summarized using regression coefficients. In addition, we wanted to test whether profile shape described 

by higher-order regression coefficients is useful to improve prediction over linear fits, assuming that 

change in the rate of change (i.e., the second derivative) or curve shape are important to characterize 

disturbance type. For example, succession has been shown to produce non-linear spectral trajectories 

through time [21]. Second and third-order regression coefficients were therefore tested in addition to 

linear least-squares and linear robust Thiel-Sen regression. Note that regression generates a best fit that 

minimizes the effects of noisy pixels in the time-series with robust regression such as Theil-Sen being 

less sensitive to outliers than least-squares. Because regression itself is a type of smoother, no temporal 

filtering was applied prior to regression. 

The Rulequest See 5 decision tree classifier [22] was trained using regression coefficients from 

Region 2 and applied to Regions 1 and 3 for evaluation. Unlike profile matching, training was performed 

on a per-pixel basis due to the ability of decision trees to handle large training datasets. Decision trees 

are also non-parametric classifiers that can use both nominal and categorical data and have been shown 

to perform as well or better than other classifiers [23,24]. The See 5 decision tree algorithm has been 

applied extensively to remote sensing classification problems, most notably by the USGS to generate 

the Landsat-based NLCD land cover product [25]. Decision trees were boosted using ten trials and  

a 25% holdout on each trial. The final classifier was obtained from majority vote of the ten trials and 

assessed against all training data to describe the model fit with input data from Region 2. 

3.2. Final Classification 

The methods comparison identified the most promising method for disturbance classification. A final 

product was created using this method trained on all reference data on a pixel basis. Product evaluation 

was performed using bootstrapping with 100 cross-validation iterations and random stratified sampling 

without replacement. Training and test data consisted of pixels that were divided by polygon to maximize 

spatial independence and to ensure a more representative evaluation. Sampling was done separately 

using 50/50 and 75/25 training/test data splits to see whether the percentage of data used for training had 

a significant impact on classification accuracy. A minimal effect of the amount of training data on 

classification accuracy suggests that results from both splits may be representative of models trained on 

100% of reference data. 
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4. Results and Discussion 

4.1. Disturbance Trajectories 

Region 2 loess-smoothed Tasseled Cap disturbance trajectories were plotted as a function of time for 

individual polygons by disturbance type, revealing high consistency among profiles for certain 

disturbance types and lower consistency for others. In some cases, it appears that low consistency is 

caused by differences in the timing of disturbance events, especially for abrupt inter-annual disturbances 

such as fire. Other changes exhibited relatively consistent trajectories, particularly subtle and progressive 

processes such as regeneration or greening. Consistency relates partly to the nature of the disturbance 

itself (e.g., greening is driven by climate factors), but perhaps more so to the number and location of 

samples that were collected. An insufficient number of samples existed for certain disturbance types to 

assess their level of consistency altogether. 

Figure 4 shows examples of relatively consistent disturbance profiles in the left column and less 

consistent profiles on the right. Relatively consistent profiles in the database include pre-1965 tundra 

fires that exhibit a slight decrease in both Tasseled Cap Brightness and Greenness and a slight increase 

in Wetness. These trajectories reflect late regeneration and early succession due to increasing leaf area 

index and biomass that is sometimes accompanied by a species shift from broadleaf to needleleaf. 

Trajectories for recently drained tundra lakes appear to be temporally aligned with the event occurring 

sometime mid-time-series. This temporal alignment reflects the fact that lakes in the training database 

likely drained around the same time; however, the shape and magnitude of trajectories are also similar. 

Following drainage, Brightness increases and Wetness decreases rapidly due to replacement of water 

with brighter sediment, with the shape of these disturbance trajectories alluding to the potential of 

second-order polynomial fits to characterize their non-linear nature. Erosion within the Mackenzie Delta 

is a more progressive disturbance that is opposite as sediment and vegetation are replaced by water. 

Examples of less consistent disturbance trajectories include drained lakes with vegetation growth.  

It should be noted that this is a similar disturbance to recently drained tundra lakes, with the timing of 

the drainage event being more variable having occurred earlier in (or even prior to) the time-series, 

thereby allowing vegetation to colonize drained areas and increase Greenness. Eroded lake shoreline 

disturbance is similar to delta erosion in direction and magnitude of change, but is less similar and less 

consistent with respect to profile shape. Reasons for this are unknown, but it may relate to a higher 

percentage of mixed pixels in the sample compared to delta erosion, to variability in the rate of vegetation 

establishment over bare surfaces among lake slumps or perhaps to different succession due to species 

differences between the delta and lakeshores. The No-change profiles are also consistent with respect to 

change magnitude, with relatively flat trajectories through time in all three indices. However, the initial 

state is the same as the final state with samples representing stable bright targets such as roads, quarries 

and developments as well as dark targets such as water. 
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Figure 4. Examples of changes with relatively consistent Tasseled Cap temporal profiles 

(left column) and inconsistent profiles due to temporal misalignment or the nature of change 

itself (right column). 

 

Table 3. Overall classification accuracies of profile matching by Region. 

Profile Matching Region 2 Region 1 Region 3 

Maximum cross-correlation 0.53 0.04 0.21 
Minimum Euclidean distance 0.68 0.27 0.37 

Minimum Frechet distance 0.69 0.21 0.35 

4.2. Method Comparison 

4.2.1. Temporal-Spectral Profile Matching 

Overall classification accuracies for profile matching on all 21 classes based on distance and shape 

similarity are shown in Table 3. Performance of all three methods was poor even when assessed on  

a pixel basis over Region 2 that was used to develop the training database. Overall accuracy was 

considerably lower when profile matching was extended to Regions 1 and 3. Distance metrics performed 
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better than cross-correlation shape matching and despite the fact that neither distance metric accounts 

for lag, both performed slightly better than the cross-correlation when extended to Regions 1 and 3. 

4.2.2. Classification of Trend Coefficients 

Overall accuracies for boosted See 5 decision tree classification of regression coefficients are shown 

in Table 4. For all four regression types, accuracy assessed against training data in Region 2 approached 

100% while errors were always less than 10% on individual boosting trails for all regression methods. 

These results suggest a high level of consistency in the reference data and perhaps over-fitting of models 

to the training data. 

Table 4. Overall classification accuracies of See5 decision tree classification of regression 

coefficient by Region. 

Regression Region 2 Region 1 Region 3 

Linear least-squares 1.00 0.64 0.77 
Linear robust (Theil-Sen) 1.00 0.68 0.78 
Secord-order polynomial 1.00 0.53 0.66 
Third-order polynomial 1.00 0.49 0.64 

Classification accuracies decreased by approximately 20% to 50% when models were extended to 

Regions 1 and 3, with Region 1 having 10%–15% lower accuracies compared to Region 3. Least-squares 

and robust Thiel-Sen linear regression outperformed higher-order polynomials, which performed 

progressively worse from second to third order. This suggests that the non-linear shape of disturbance 

trajectories may be either too inconsistent within disturbance types or too similar among disturbance 

types for accurate prediction, or both. This supports the poor results obtained for cross-correlation profile 

matching that is also based on shape similarity calculated directly between profiles, rather than by use 

of coefficients describing shape. While coefficients from Thiel-Sen linear regression predict disturbance 

classes best, least-squares regression that is more sensitive to outliers performs only slightly worse. 

Fraser et al. [5] noted that visual interpretation of composited TC linear slope images alone was highly 

effective for discriminating major types of landscape change in the study region. 

Table 5 shows average Thiel-Sen coefficients by disturbance type sorted by process. Negative 

coefficients are highlighted in grey to facilitate visualization. Similarity in the direction and magnitude 

of change can be seen among several disturbance classes that result from a common underlying process. 

For example, vegetation succession consistently exhibits a small decrease in Brightness and Greenness 

and an increase in Wetness, while the initial Tasseled Cap index values indicated by offsets are similar 

regardless of whether the disturbance class is forest or tundra fire. Regression coefficients of succession 

processes are similar in direction to those of erosion; however, their magnitude differs especially for 

slope coefficients that tend to be higher for erosion, suggesting a more pronounced change. Vegetation 

removal is also consistent with respect to direction and slightly less in magnitude. All three disturbance 

classes that share this common process exhibit increasing Brightness accompanied by decreasing 

Greenness and Wetness, with early slump stabilization being a more subtle change as indicated by 

slightly lower slope magnitude. This consistent Tasseled Cap trajectory of disturbances provides  

the basis for the Disturbance Index transform for forests [26]. 
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Table 5. Average robust Thiel-Sen regression coefficients by disturbance class sorted by change process. Negative coefficients are shaded to 

facilitate visualizing similarities between change classes within and between processes. 

Change Class Process 
TCB Slope × 

10,000 
TCB 

Offset 
TCG Slope × 

10,000 
TCG 
Offset 

TCW Slope × 
10,000 

TCW 
Offset 

NWT Dated fire surveys regeneration 17.2 265.9 27.2 75.8 −8.3 −105.6 
Older portion of slump regeneration 34.5 242.9 −7.0 80.7 −38.8 −56.8 

Late regeneration regeneration 13.7 302.9 109.8 43.1 45.6 −121.9 

Drained lakes with vegetation growth 
emergent vegetation—

colonization 
220.2 106.3 115.3 −3.6 −135.7 41.7 

Conversion of stream bed to 
vegetation 

emergent vegetation—
colonization 

−43.2 359.9 144.6 12.0 104.5 −178.8 

Greening tundra 
tundra greening 
(shrubification) 

−1.1 330.2 41.4 99.1 32.1 −142.6 

Pre−1965 forest fires succession −40.0 275.5 −12.6 105.9 26.0 −79.3 
Pre−1965 tundra fires succession −39.5 301.9 −19.0 125.1 14.6 −100.0 

Development vegetation removal 87.9 273.5 −86.1 107.6 −77.9 −83.9 
Conversion of vegetation to exposed 

stream bed 
vegetation removal 120.9 277.8 −83.4 93.3 −140.2 −59.4 

Eroded coastal shorelines erosion −155.8 290.2 −40.1 45.6 134.6 −115.1 
Eroded lake shorelines erosion −119.8 276.9 −48.3 86.4 81.3 −93.1 

Active slump erosion −66.7 299.4 −48.5 104.3 40.3 −97.3 
Active and wet portion of slump erosion −124.8 362.5 −91.9 137.8 76.4 −139.8 
Conversion of sandbar to stream erosion −220.3 357.3 −161.0 153.3 157.0 −105.7 

Delta erosion. erosion −194.6 350.9 −133.6 137.2 155.2 −87.7 
New stream and river sandbars deposition/drainage 140.7 168.8 −7.6 5.7 −154.0 32.3 
Recently drained tundra lake deposition/drainage 158.6 84.1 5.6 14.8 −106.4 43.4 

Delta deposition deposition/drainage 121.3 183.1 54.7 −2.8 −131.8 25.5 

No Change Areas no change −1.9 220.3 9.5 59.5 6.8 −57.2 
Developed no change 20.4 301.4 15.3 64.7 6.2 −134.3 
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4.3. Final Classification 

The final disturbance classification was obtained by training a boosted See 5 decision tree using  

Thiel-Sen linear trend coefficients of TCB, TCG and TCW from all 62,509 reference pixels from  

the three Regions. Accuracy was estimated using 100 bootstrap cross-validation iterations against pixels 

contained in independent held-out polygons as described in the methods section. This assessment should 

provide a more realistic accuracy of the final map compared to the approach used in the method 

evaluation section because it does not depend on spatial extrapolation across a latitudinal gradient. 

Rather, evaluation is based on interpolation due to the fact that most test polygons will have training 

data located in all directions. 

Table 6. Overall classification accuracy obtained using 100 cross-validation iterations and 

different percentages of training and test data. 

Training Test Overall Accuracy

50% 50% 81.6% 
75% 25% 82.8% 

Overall classification accuracies shown in Table 6 suggest a minimal dependence on the percentage 

split into training/test data, with overall accuracies in the range of 82% ± < 1%. Attribute usage refers 

to variable importance in the decision tree model and is reported in descending order for each iteration. 

Variable rank was summed across 100 iterations to assess overall variable importance (Table 7). TCB 

slope has the lowest sum of ranks and is therefore the most important variable for change prediction for 

disturbances in this region. Greenness offset and slope are next followed by brightness offset and finally 

wetness offset and slope. Regression offsets are shown to be important predictors of disturbance type. 

Offsets represent the initial surface condition and therefore help specify the nature of change by placing 

it in context. For example, both regeneration and tundra greening may be changing at a similar rate as 

measured by Greenness slope, but their initial condition measured by Greenness offset specifies either 

tundra or forest and dictates the disturbance type. 

Table 7. Sum of ranks of variable importance over 100 decision tree model iterations. 

Coefficient Sum of Ranks 

TCB_slope 134 
TCG_offset 236 
TCG_slope 333 
TCB_offset 401 
TCW_offset 433 
TCW_slope 563 

1–6 in order of variable importance 

The final assessment is for the 75%/25% training/test data split with a confusion matrix (not shown) 

generated from the sum of matrices from the 100 cross-validation iterations. Confusion exists between 

fire classes, particularly among fires that occurred before and during the Landsat time-series. Confusion 

also occurs between fire and other regeneration classes in slumps and landslides along rivers. 
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Trajectories are similar in both cases, going from dark char or dark soil towards green emergent 

vegetation. Fire is also misclassified with vegetation removal depending on timing, as confusion with 

regeneration likely occurs more for fires that happened early in the time-series, and with vegetation 

removal for fires that occurred later. Finally, fire may be confused with tundra greening or no change 

depending on the timing and magnitude of each disturbance type. Fires during the early to midpoint of 

the Landsat time-series may appear to have remained unchanged when fitting a linear trend if the  

pre-fire condition and final regeneration condition are similar. Fires occurring during the latter part of 

the time series will only be represented by a limited number of post-disturbance dates and therefore 

remain undetected using linear regression analysis. 

Other confusion exists for classes that share a common underlying process but occur in different 

contexts. For example, vegetation removal is a process that is common to both Conversion of vegetation 

to exposed stream bed and Development, only each takes place in its own context with the former 

occurring near streams and the latter near human developments. A confusion matrix showing  

the classification accuracy by change process is shown in Table 8. 

At the level of eight change processes compared to 21 change classes, overall accuracy increases from 

82.8% to 87.3% and Kappa from 73.4% to 79.7%. Errors of omission (1—producer’s accuracy) and 

commission (1—user’s accuracy) are well balanced, which suggests that the area undergoing different 

change processes should be well estimated from this map. Some confusion still exists among similar 

change processes, for example regeneration and succession. Tundra greening is also confused  

with regeneration and no change depending on the magnitude of greening and the age/timing of  

the regeneration. Fraser et al. [5] demonstrate that this confusion can be reduced by visually 

incorporating contextual information related to the shape and size of change patches, and their 

geographic setting. 

The resulting change process map is shown in Figure 5. Fires appear to be well classified as 

regeneration when assessed against NWT dated fire polygons. A large area of regeneration also appears 

at the northern tip of the Mackenzie Delta region that was impacted by a storm surge in 1999. According 

to [27], 90% of alder shrubs sampled died within five years following the event and soils contained  

high levels of chloride a decade later, inhibiting vegetation reestablishment. The process labelled 

“regeneration” largely refers to vegetation removal from fire and assumes subsequent regeneration, 

though regeneration rates can vary according to fire intensity and location [28]. Both fire and the storm 

surge appear similar because both maintain dead standing vegetation for a period of time after 

disturbance as either standing boles in the case of fire or erect dead shrubs following the storm surge. 

Widespread reestablishment of graminoid and erect shrub began after 2005 and by 2011 roughly  

two-thirds of the area had exhibited measurable recovery [29]. 

Tundra greening has occurred extensively above the northernmost treeline isoline and especially on 

the southern half of the Tuktoyaktuk Peninsula [16]. Along the north shore of the Peninsula and in  

the northern half of the MacKenzie Delta, there are long stretches of shoreline where erosion has taken 

place with relatively little deposition, indicating a net loss of land through time [30]. Steeper parts of  

the Richardson Mountains also show areas of erosion and deposition. Older fires below and within  

the treeline that pre-date the NWT fire survey beginning in 1965 and are classified as succession. Thaw 

slumps can be seen east of the Peel River as individual objects classified as erosion. Brooker et al. [31] 
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demonstrated the potential of Landsat Tasseled Cap trends to map and study the evolution of thaw 

slumps in this region. 

Table 8. Confusion matrix from the decision tree classification of eight underlying change 

processes using robust linear trend coefficients. 

  1 2 3 4 5 6 7 8  User’s

1 

emergent 

vegetation—

colonization 

75,091 6304 3 26 15 593 8022 185  83.2%

2 regeneration 6820 864,658 55,295 9616 3857 6540 823 34,853  88.0%

3 succession 3 26,245 151,045 121 4 626 0 1538  84.1%

4 
tundra greening 

(shrubification) 
38 4178 118 40,634 0 66 0 3826  83.2%

5 vegetation removal 42 1865 0 0 14,988 22 12 149  87.8%

6 erosion 625 6374 522 24 53 80,433 30 2102  89.2%

7 deposition/drainage 3021 1049 0 0 211 4 53,689 876  91.2%

8 no change 168 12,421 1080 6532 409 438 72 145,043  87.3%

 Producer’s 87.5% 93.7% 72.6% 71.3% 76.7% 90.7% 85.7% 76.9%   

        Overall accuracy: 87.3%  

        Kappa: 79.7%  

Figure 6 shows an enlargement of the trend composite with interpretation key [5] and classified 

change process map for the area around Inuvik. A large portion of the northern part of Inuvik is classified 

as vegetation removal due to recent development. Parts of the delta show vegetation colonization near 

shore, while elsewhere erosion and deposition occurred. A comparison of both image and map shows 

the potential utility of each. For a rapid assessment of location and extent of disturbance objects such as 

thaw slumps, image interpretation and digitizing may be adequate. However, for a survey of the regional 

extent of different disturbance types, the classified map is perhaps easier and more useful. The accuracy 

assessment of the map also provides quality assurance of those estimates, while visual interpretation 

contains error without knowledge of the limitations of derived products. Visual interpretation 

incorporates context better than automated per-pixel classifiers by relating disturbances to their 

surroundings. However, regression offsets are also shown to be important predictors of context in 

decision tree modeling, while trend compositing in Fraser et al. [5] can only visualize regression slopes 

in the three channels of R, G, B color. An attempt was made to better incorporate context into  

the decision tree classifier using ancillary layers such as fire, distance to waterbodies, and DEM 

derivatives, but were found to worsen classification results. 

In this study, classification of linear trends outperformed curve matching techniques. Linear trend 

detection is more suitable for classifying progressive and subtle change, while curve matching should 

have performed better for detecting sudden change events represented by nonlinear profiles that include 

inflection points. Because trend detection outperformed profile matching approaches, the methodology 

may be better suited for mapping progressive change. Although fires were classified well on the basis 

of their linear vegetation removal or regeneration signal, this was likely because the reference database 

contained a sufficient range of fires ages that occurred throughout the time-series. Other sudden changes 
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such as human development contained fewer samples and therefore classifying development areas whose 

timing was not represented in the reference database would be challenging without accounting for 

temporal alignment. Accuracy may be improved by augmenting the reference database to include more 

examples of rare disturbances occurring at different times throughout the time-series, or alternatively if 

real examples do not exist, by generating synthetic samples by offsetting timing information of known 

examples similar to cross-correlation. An interesting extension of this work would be to explore the use 

of dynamic time warping approaches for change template matching, which are capable of aligning curves 

that are out of phase [32,33]. 

Figure 5. Change map of the Mackenzie Delta region classified to eight change processes. 

Timoney’s (1992) treeline isolines are in red, the NWT/Yukon border is in blue. 
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Figure 6. TCB, TCG, TCW displayed as R, G, B and interpretation legend (Fraser et al., 

this issue [5]) and classified change process map for a region around Inuvik. 

 

5. Summary and Conclusions 

This study tested methods to classify multi-dimensional spectral trajectories from a Landsat  

time-series to 21 disturbance classes for cumulative impact assessment in Canada’s Mackenzie Delta 

region. Curve matching based on shape similarity and distance metrics were tested in addition to decision 

tree classification using regression coefficients describing profile shape and magnitude. Classification 

accuracy was found to be poor for the profile matching methods including Euclidean and Frechet 

distance measures as well as cross-correlation shape similarity, especially when extended to regions 

beyond the calibration dataset. Decision tree classification generated the best results using robust linear 

regression coefficients, producing a final map with an overall accuracy of 82.8% that increased to  

87.3% when collapsed to eight underlying change processes. Others have employed curve matching to 

classify change processes [8] in forested regions; however this study presents unique approaches to  

the problem in an Arctic environment. Other profile matching techniques that can account for temporal 

misalignment such as dynamic time warping should be considered in future work. 

The analysis was limited by a lack of change or disturbance timing information in the reference 

database that was difficult to obtain, particularly for subtle or ongoing changes such as greening and 

succession. As a result, each change class was characterized by several profiles that may have been 

temporally misaligned. In the analysis, we assumed that temporal misalignment could either be 

accounted for by the profile matching method as is the case for cross-correlation and to a lesser degree 
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Frechet distance, or that the reference data contained a sufficient number of change examples to represent 

a range of temporal lags, as was demonstrated for fire. 
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