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Abstract: The origin of large areas dominated by pristine open vegetation that is in sharp 

contrast with surrounding dense forest within the Amazonian lowland has generally been 

related to past arid climates, but this is still an issue open for debate. In this paper, we 

characterize a large open vegetation patch over a residual megafan located in the northern 

Amazonia. The main goal was to investigate the relationship between this paleolandform and 

vegetation classes mapped based on the integration of optical and SAR data using the 

decision tree. Our remote sensing dataset includes PALSAR and TM/Landsat images. Five 

classes were identified: rainforest; flooded forest; wooded open vegetation; grassy-shrubby 

open vegetation; and water body. The output map resulting from the integration of PALSAR 

and TM/Landsat images showed an overall accuracy of 94%. Narrow, elongated and 

sinuous belts of forest within the open vegetation areas progressively bifurcate into others 

revealing paleochannels arranged into distributary pattern. Such characteristics, integrated 

with pre-existing geological information, led us to propose that the distribution of vegetation 

classes highlight a morphology attributed to a Quaternary megafan developed previous to the 

modern fluvial tributary system. The characterization of such megafan is important for 

reconstructing landscape changes associated with the evolution of the Amazon drainage basin. 
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1. Introduction 

The sharp contrast between forest and open vegetation has been one of the most intriguing features 

of the Amazonian ecosystem, and numerous publications have discussed this issue (e.g., [1,2–7]). 

Changes in the physical environment over geological time have been the most frequently claimed 

hypothesis to explain such occurrences [3,8–12]. However, deciphering the factors that have played 

the major role in determining these vegetation contrasts is a theme still open for debate. 

Accurate maps of areas with such contrasting vegetation types remain to be provided, and these 

might be elaborated based on the application of remote sensing techniques. Given basic differences 

between synthetic aperture radar (SAR) and optical data, the integration of these products, particularly 

applying the decision tree technique, has the potential to improve land cover classification [13–17], as 

this technique works with non-homogeneous datasets and non-normal statistical distribution [18]. 

The area between the Negro and Branco Rivers in the northern Amazonian lowland displays one of 

the largest incidences of open vegetation of this entire region. It is intriguing that such occurrences are 

not randomly distributed, but they are confined to several large-scale, triangular-shaped morphologies 

related to residual megafan depositional systems [19] due to their resemblance to many megafans 

described in the literature [20–24]. This is because megafans are characterized by extensive (i.e., >103 km2) 

sedimentary deposits with triangular and/or conical geometry in plain view. Such depositional systems 

are typical of areas of low topographic gradients having numerous avulsive channels and paleochannels 

(remnant of an inactive river) arranged into a distributary pattern [25–27]. Except for the Viruá 

megafan (e.g., [28,29]), located at the left margin of the Branco River (see location in Figure 1b), areas 

of open vegetation related with megafans in northern Amazonia remain to be characterized in more 

detail. The largest of these occurrences is associated with the Demini River, where two patches  

of open vegetation total ~4180 km2. This phytophysiognomy has not yet been characterized in detail, 

particularly concerning the analysis of its relationship with the megafan morphology. Given the great 

extent of megafans, their characterization has been facilitated by the geometry extracted mostly from 

remote sensing (e.g., [27,28,30]). 

This work integrates optical and SAR data to provide the detailed vegetation map of the Demini 

megafan. The goals were twofold: (i) to test the hypothesis that classification based on these products 

furnishes a more precise vegetation map for the Demini megafan; and (ii) to analyze its potential 

contribution for unraveling the relationship between modern vegetation patterns and the residual 

megafan morphology. 

2. Physiography and Geologic Framework 

The Demini area is located in a wetland between the Negro and Branco Rivers in the northern 

Amazonian lowland (Figure 1). This region is characterized by a tropical equatorial climate [31], with 

annual rainfall ranging from 2000 to 2400 mm. The dry season occurs between January and March.  
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The remaining of the year corresponds to the wet season, with peaks between May and July.  

During austral summer, the Intertropical Convergence Zone (ITCZ) moves southward to latitudes 

between 10°S and 15°S. During winter, this system moves northward, increasing both precipitation 

and drought in southern and northern Amazonia, respectively. Precipitation decreases to the south and 

increases considerably to the north with the northward displacement of the ITCZ [32]. 

The physiography in the study area includes forest and open vegetation adapted to bimodal  

periods (dry and wet) with biophysical and physiological adaptations under water-stressed conditions. 

Forested areas generally correspond to non-flooded forest (i.e., terra firme) and flooded forest  

(i.e., várzea) that occur surrounding large patches of open vegetation and are flooded in wet periods. 

The latter corresponds to grass, shrub, wood and forest campinarana, with the prevalence of the 

second one. These campinarana types occupy large depressions in sandy areas that remain wet during 

rainy seasons. Soils developed on the sandy areas with open vegetation consist mostly of Gleyic and 

Ferric Podzols, while Ferralsols and Gleysols occur in the surrounding areas of non-flooded rainforest 

and flooded forest, respectively (FAO/UNESCO System of Soil Classification) [33]. 

Geologically, the study area is situated northeastward of Solimões Basin. Recent geological  

maps [34,35] of this region, inserted in a wetland area named Pantanal Setentrional [36], indicate the 

prevalence of fluvial deposits of the Içá Formation (Plio-Pleistocene), as well as unnamed fluvial and 

aeolian deposits of the late Quaternary age [37]. Precambrian igneous and metamorphic rocks of the 

Guiana Shield bound the study area to the north. These rocks also occur as inselbergs within the 

Pantanal Setentrional wetland.  

Figure 1. (a) Location of the study area in the sub-basin named Pantanal Setentrional (P.S), in 

the northeast of Solimões Basin. The Iquitos (1) and Purus (2) structural arches bound this 

basin to the west and east, respectively; (b) Geocover Landsat 2000 mosaic of the study area in 

composite color Red (band 7), Green (band 4) and Blue (band 2), illustrating open vegetation 

patches (pink) in sharp contrast with forest (green). The red square depicts the studied open 

vegetated areas with triangular-shaped morphology at the Demini River. 
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3. Materials and Methods 

3.1. Materials 

This work was based on integration of Thematic Mapper (TM)/Landsat and SAR images. The latter 

was obtained in Fine Beam Dual (FBD) mode, with HH and HV polarizations (available in level  

1.5 processing) using a Phased Array type L-band Synthetic Aperture (PALSAR) sensor aboard of the 

Advanced Land Observing Satellite (ALOS). The PALSAR images, accessible free of charge at the 

Brazilian Institute of Geography (ftp://geoftp.ibge.gov.br/imagens/Alos/), were previously georeferenced 

and orthorectified, with a planimetric accuracy of 31 m. Only five scenes from wet periods were 

available in this site in two orbits and two upcoming dates. Since the study area is characterized by 

high variability in water levels, a TM/Landsat image representing the dry stage was also considered in 

the analysis. This scene was selected based on the driest record available in the imagery catalog. Table 1 

synthesizes the characteristics of the remote sensing data used in this work. 

The study area has no evidence of anthropic impacts on land use change i.e., deforestation, 

agriculture or urban centers.  

Table 1. Characteristics of the remotely sensed data used in this work. 

Platform Sensor Bands Date Season Incidence Pixel (m) Looks
Image 

Format

ALOS PALSAR L (HH and HV) 
06/June/2008
23/June/2008

Wet 36.6°–40.9° 12.5 4 16 bits

Landsat-5 TM 1,2,3,4,5 and 7 03/April/1987 Dry nadir 30 - 8 bits

3.2. Classification 

The main phytophysiognomies of the study area were classified according to categories of regional 

vegetation maps (e.g., [38]) and followed the scheme (Figure 2): RF = Rainforest, predominantly 

composed of dense woody vegetation in non-flooded areas; FF = Flooded forest, corresponding to  

areas covered by water during flooding, also named Igapó forest; OVw = Wooded open vegetation; 

OVgs = Grassy-shrubby open vegetation; and W = Open water bodies. 

The decision tree was the classification method chosen for this work, which allows integrating 

different attributes to refine the separability among classes of interest. This procedure is based on the 

development of a series of hierarchical rules from a dataset that can include optical, SAR and other 

remote sensing data. The rules consist of thresholds used to divide a dataset, called node, into two 

groups [39]. The nodes are chosen aiming to obtain more pure classes from certain rules in its leaves. 

A node for a data attribute is divided into branches from the rules, progressively generating new 

classes or new nodes until the classes of interest are identified. In a decision tree, the number of leaves 

does not necessarily correspond to the number of classes, and more than one leaf can exist to a certain 

class if necessary to subdivide several attributes to span the variability of existing classes. A better 

understanding of an attribute’s behavior in the distinction of classes is reached with the smallest size of 

the tree and leaves number. 



Remote Sens. 2014, 6 10935 

 

 

Figure 2. (a–e) Aerial photographs illustrating the phytophysiognomic classes of the study 

area; (f–j) TM/Landsat image with composite color in Red (Band 5), Green (Band 4) and 

Blue (Band 3); (k–o) PALSAR image with composite color in Red (Band HH), Green 

(Band HV) and Blue (Ratio HH/HV) (RF = Rainforest; FF = Flooded forest; Ovw = Wooded 

open vegetation; Ovgs = Grassy-shrubby open vegetation; W = Open water bodies). 

 

The attributes that best separated the phytophysiognomic types in the study area were determined 

with data mining [40]. Thresholds were defined to classify the mapping classes. The open-source software 

package Waikato Environment for Knowledge Analysis (WEKA) [41] was used in this procedure. 

This has several algorithms to generate decision trees, but a preliminary test showed that J48 algorithm 

produced the best result. This agrees with a previous publication which showed that the J48 algorithm 

produces better classification results than unsupervised classifiers, such as ISODATA [42]. The Java 

language reprogramming of the C4.5 algorithm [43] has been the most extensively tested and validated 

technique for generating decision trees, (e.g., [44]). This algorithm has the advantage to search the 

potentially smaller and more comprehensive trees with robust predictive performance [45]. The main 

criteria used in the J48 algorithm are the confidence factor and the minimum number of instances 

(sample) per leaf, which correspond to estimated error rates (see [44]). Lower confidence factor means 

more pruning (i.e., less nodes) in the decision tree. A leaf will not be considered as a class if fewer 

samples are present in one leaf than the assigned value.  

3.3. Pre-Processing 

The pre-processing to choose attributes for data mining was based on the physical values of  

surface reflectance (reflectance factor) of TM/Landsat-5 bands and normalized backscatter in σ° 

(sigma nought), the latter expressed in dB scale for the PALSAR data. Sigma nought represents the 

normalized measure of the radar, defined as per unit area on the ground. Selection of these physical 
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attributes should be predictive than digital number (DN), with knowledge of spectral response being 

helpful for interpreting the decision tree. 

Reflectance values were obtained from radiometric conversion of DN values to apparent reflectance, 

according to coefficients provided by [46]. Atmosphere correction was based on the 6S method (Second 

Simulation of a Satellite Signal in the Solar Spectrum) [47]. Correction parameters used were: tropical 

atmospheric mode, continental aerosol model, 50 km of visibility and 40 m of altitude (above sea level). 

For PALSAR images in amplitude and 1.5 processing level, the enhanced-lee filtering algorithm  

(5 × 5 window) was applied to reduce the speckle. Such filter preserves feature edges that can influence a 

pixel-based classification, such as a decision tree. The images were converted from DN values (16 bits) 

to σ° based on parameters from [48]. Lastly, the PALSAR image was resampled by pixel aggregation 

to 30 m (same pixel size from TM/Landsat) for co-registration in the classification process. 

The training sampling was performed by visual selection of small and evenly distributed polygons 

along scenes. These polygons aimed to collect approximately 10,000 pixels per class. Based on  

these pixels, a sampling procedure was applied with a random stratified method using. For this,  

a thousand pixels per class was considered. This procedure ensured the spatial independence of 

samples. Thus, there was a thousand points distributed for each class in which the reflectance values 

and sigma nought were extracted.  

Figure 3. Steps applied for processing the remote sensing products. 

 

3.4. Validation of the Phytophysiognomic Map 

The validation of the decision tree was performed with the same algorithms and parameters applied 

in the previous steps: TM/Landsat image; PALSAR image; and integration of these two products.  

The confidence factor of 0.25 (WEKA default value) and the minimum number of instances per leaf  

of 75 were considered for this classification. Based on the final classification, the stratified random 

sampling considered one hundred of samples per each class, selected by an independent interpreter 

with experience in this type of phytophysiognomical mapping. This procedure was then applied on the 

same images used for training in order to obtain the confusion matrix, overall accuracy and Kappa 

statistics with confidence interval. Confusion matrix is a square matrix whose dimension is equal to the 

class number. Each matrix column indicates the desired class and each row the estimated class where 

the crosses indicate the rights and wrongs from a classification and can be used to take parameters of 
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the classification evaluation, as the Kappa index: a measure of how the classification is consistent  

with the reference data [49]. Hypothesis tests were performed for assessing the significance of these 

values [49]. Figure 3 presents the whole data flow applied from the initial processing of remote sensing 

products to the elaboration of the final phytophysiognomic map. 

The phytophysiognomic product furnished the basis for interpreting the relationship between 

vegetation and megafan landforms in the study area. This was made possible mainly considering the 

geometry defined by the distribution of vegetation classes, such as shape, elongation, sinuosity, size, as 

well as pre-knowledge of the geomorphology from previous works undertaken in this region [19,28,29]. 

4. Results 

Training samples from TM/Landsat and PALSAR images of the dry and wet periods, respectively, 

provided the following descriptive statistical analysis of vegetation classes for the study area (Figure 4). 

Figure 4. Box-plots representing variation in reflectance and sigma nought for the 

training samples. 

 

The visible bands provided less distinction between most of the classes, while the infrared bands 

and the polarizations HH and HV improved the class definition. The first and third quartile of open 
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vegetation classes (Ovw and Ovgs) were promptly distinguished in bands 5 and 7 of TM images, as 

well as in the HV and HH polarizations of SAR data, with the latter being particularly useful for this 

purpose. Forest areas (RF and FF) were only distinguished in the HH polarization, which is mainly due 

to the double bounce effect of flooded forest and volumetric scattering of rainforest. The descriptive 

statistics of the decision tree, as well as the performance results are presented in the Table 2.  

Table 2. Characteristics of the decision tree and validation of the remote sensing datasets. 

Dataset 
Number 

of 
Leaves 

Size of 
the 

Tree 

Overall 
Accuracy 

Kappa 
Index 

Confidence Interval 
(95%) 

Lower 
Limit 

Upper 
Limit 

TM 16 31 70.93 0.63 0.58 0.68 
PALSAR 8 15 74.39 0.67 0.63 0.72 

TM+PALSAR 5 9 94.40 0.93 0.90 0.95 

The classification obtained with the TM/Landsat dataset produced the greatest tree size with 16 leaves 

for the five mapping classes. The independent validation with TM and PALSAR showed that both 

results were similar, but there was a reduction of the number of leaves by a half in the decision tree of 

the second dataset. When both sensors were integrated, validation showed a significant improvement, 

with the increment of the overall accuracy by 20% and a Kappa index of ~0.30. In addition, a short 

decision tree with only five leaves was produced by combination of TM/Landsat and PALSAR data 

(Figure 5). Shorter decision trees are better understood based on knowledge of spectral targets when 

using remote sensing data. 

Figure 5. Decision tree for the study area obtained with the C4.5 algorithm using TM/Landsat 

and PALSAR images. 

 

The main node in the tree obtained with the integration of TM/Landsat and PALSAR images is in 

the HV polarization, which basically separated open vegetation from forest (Figure 6). Band 5 was the 

main one for classifying water bodies. The HH polarization from the HV partition was also useful for 

separating classes of open and forested vegetation. 
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Figure 6. (a) Phytophysiognomic map of the study area derived from the application of  

a decision tree integrating TM/Landsat and PALSAR images. Note that the main area of 

open vegetation corresponds to a large, triangular-shaped morphology, which is attributed to 

a megafan depositional system (highlighted by the black contour). The white strips within 

the classification result are due to a gap in the PALSAR coverage; (b,c) Details of the map, 

showing numerous narrow, elongated, sinuous belts of forest and woody open vegetation 

attributed to areas of paleochannels. Note that these features progressively bifurcate 

downstream along the megafan, characterizing a network of distributary channels;  

(d) GeoEye image from Google Earth® illustrating the distribution of phytophysiognomies in 

the study area. 

 

The statistical analysis of the resulting classification showed an overall accuracy of 94.4% and  

a Kappa index of 0.93 (p < 0.001), with confidence interval 0.90–0.95 (Table 3). Classes were separated 

with producer’s and user’s accuracies averaging 94.4% and 95%, respectively. Woody open vegetation 

had the lowest Kappa index (0.88), which is due to its spectral response similar to grassy-shrubby  

open vegetation. In general, all classes show high values of producers, user accuracy and Kappa 

conditional index. 

Visual analysis of the phytophysiognomic map shows that rainforest areas are confined mainly to the 

northern and southern extremes of the study area (Figure 6a). Interestingly, the boundaries of this class 

are notably sharp. In addition, classes of open vegetation define a major triangular-shaped morphology  

at the left margin of the Demini River (Figure 6a). This feature has a maximum length and width 
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corresponding to 107 km and 60 km, respectively, and it shows a regional inclination of 0.008° in  

the main southward direction. Such data were analyzed in a recent work that discussed the regional 

topography in the northern Amazonia megafans [19]. In addition, its axis points to the NNW, i.e., into 

the Guiana Shield, and the fringe spreads out to the SSE. Several narrow, elongated, and sinuous belts of 

rainforest and woody open vegetation can be observed on the surface of this morphology (Figure 6b–d). 

These have widths ranging from 200 to 1200 m and lengths up to 40 km, but they can be extended into 

other similar belts that continue over the entire surface of the triangular morphology. Noteworthy is that 

these sinuous belts commonly bifurcate toward the fan fringe, configuring a network of interconnecting 

segments (Figure 6c,d). 

Table 3. Confusion matrix from classification with Kappa conditional. 

Class RF FF W OVw OVgs Total User Accuracy (%) Producer Accuracy (%) Kappa

RF 96 4 0 0 0 100 89 96 0.95 
FF 5 95 0 0 0 100 95 95 0.94 
W 0 0 98 2 0 100 100 98 0.98 

OVw 7 1 0 90 2 100 91 90 0.88 
OVgs 0 0 0 7 93 100 98 93 0.91 
Total 108 100 98 99 95 500    

5. Discussion 

5.1. Decision Tree and Spectral Response 

The largest number of leaves generated by the classification based either on TM/Landsat-5 or 

PALSAR data was not as efficient to generate better classification accuracy as both products 

combined. Additionally, the number of leaves generated by the classification using individual products 

should overlap the statistical distribution of reflectance values and sigma nought of the classes of 

interest, as shown in Figure 4. Confusion of classes meant that new leaves were generated to get  

a better classification. However, there was more confusion among samples when using either 

TM/Landsat-5 or PALSAR images than when both products were combined. 

In addition, to have better accuracy compared to other classifications, the smallest size of the 

decision tree when combining PALSAR and TM/Landsat-5 allowed a better interpretation of the 

target’s spectral behavior. Results of data mining indicated that the HV polarization was more  

useful to separate areas of forest than of open vegetation. This polarization provides more information 

about vegetation canopy structure [50], justifying its position in a main node in the tree. The HH 

polarization was useful to separate wooded from grassy-shrubby open vegetation due to volumetric 

and ground backscattering, respectively. This polarization provides great penetration through the 

vegetation canopy [51]. Differences between the volumetric backscattering of rainforest and the  

double bounce backscattering of flooded forest provided by the HH polarization is a useful property 

for discriminating vegetation types in wetlands. Thus, this polarization has been often used for 

distinguishing between non-flooded and flooded forest [51]. The band 5 was suitable for classifying 

water bodies in the study area, following similar results previously obtained by others (i.e., [28,52]). 
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A minimum of leaves possible for five classes of mapping was reached on the vegetation map.  

The wooded open vegetation was the class with the highest confusion with the rainforest and  

grassy-shrubby open vegetation classes (conditional Kappa = 0.88). This happened because the wooded 

open vegetation contains larger trees, which occasionally causes confusion in the pixel-by-pixel 

classification. Other classes had a high accuracy rate given by the non-overlapping of the statistical 

distribution in spectral response of targets. This resulted in reasonable differentiation among classes 

because there was little confusion between them. Thus, the integration of multi-sensors applying a 

classification by decision tree is a useful tool for mapping vegetation types in the Demini megafan area 

and it can be in other similar regions. 

5.2. Relationship between Vegetation and the Megafan Landform 

The most remarkable information that might be extracted from the phytophysiognomic classes of 

the study area is their geometric distribution. This is because the grassland and shrubland open 

vegetation classes are not randomly distributed, but they highlight previously recognized residual 

megafan landform in the Demini area [19]. Such morphology reflects the accumulation of a large 

volume of sediment transported from highland basement rocks into the sedimentary basin represented 

by the Pantanal Setentrional wetland. Megafans form sedimentary deposits sourced from main channels, 

but which spread out over extensive, essentially flat-lying areas, which produce sedimentary successions 

with fan-like geometries [22]. Similar depositional system has been recorded in several modern 

settings [20,22,24], including an occurrence in the wetlands of Central Brazil [23]. In addition to the 

large scale triangular morphology, a striking relationship between the Demini megafan landform and 

the phytophysionomic classes is provided by the numerous narrow, elongated and sinuous belts of 

arboreal (forest and wooded open) vegetation within the class grassland. These characteristics, together 

with the progressive downslope bifurcation of the landforms, suggest the existence of distributary 

paleodrainage networks that do not conform to the tributary fluvial channels. It is interesting to note 

that tributary fluvial channels dominate the modern landscape of this region. Continental areas 

displaying channels with distributary patterns such as this one are typical of megafan depositional 

systems (e.g., [25–27,53]). 

The factors leading to the development of such an unexpected depositional system in the study area 

is an intriguing issue that is beyond the scope of this article. However, future investigations should  

focus on climate and/or tectonic changes in the late Quaternary as the most likely hypotheses to  

explain the occurrence of megafans in this equatorial area. This is suggested because the origin of 

some megafans has been attributed to arid climates (e.g., [53]). On the other hand, many modern analogs 

of megafan systems are encountered in association with contemporaneously active tectonic settings 

(e.g., [21,23,26,27]). Therefore, future studies should address: (1) how climate and/or tectonics acted 

in the development of this depositional system; and (2) how changes in in this physical environment 

acted in order to lead to the establishment of the modern vegetation.  

The detailed phytophysiognomic map obtained in this work constitutes an important input in studies 

aimed at relating the vegetation distribution with the physical environment evolution. The presence of 

such a large area of active sediment deposition in a relatively recent geological time would have been 

incompatible with vegetation growth. Thus, while areas surrounding the megafan remained vegetated 
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with forest, vegetation growth was initiated on the surface of this landform only after sediment 

deposition, when the megafan became abandoned. Open vegetation, represented by grassland and 

shrubland campinarana types, constitutes the first colonization stage to dominate the megafan surface 

as it became progressively exposed to subaerial conditions with the onset of pedogenesis. It is expected 

that these vegetation types will be replaced by arboreal vegetation in successional stages, which is a 

process already suggested to explain similar vegetation patterns in other wetland areas of the 

northeastern Amazonia lowlands, for instance, the Marajó Island at the Amazon mouth (e.g., [54]). 

A comparison with that area also may explain the preferential occurrence of arboreal vegetation in 

association with paleochannels. According to field observations made by those authors (i.e., [54]),  

such landforms have slightly higher topographies with respect to surrounding floodplain areas.  

They explained that sandy channels are more cohesive, thus less prone to compaction after deposition, 

than muds from surrounding floodplains. This process would result in less compacted sediments over 

paleochannel areas, which may develop positive reliefs through the geological time. Thus, rather than 

soil nutrients or lithology, hydrological gradient controlled by the geomorphological nature associated 

with the megafan evolution might be a main factor controlling the distribution of arboreal and 

grassland/shrubland vegetation. However, this hypothesis should be further addressed based on geological 

field data in order to explain the distribution of vegetation patterns over the Demini megafan. 

6. Conclusions 

The optical and SAR data integration with the decision tree method provided the best classification 

results, as shown by the Kappa statistics. Such product aided the discovery of a residual megafan 

landform in the northern Brazilian Amazonia lowland. The HV and HH polarizations of the SAR images 

were the most appropriate dataset for this purpose. The former was useful for separating between 

forest and open vegetation classes, while the latter was efficient for classifying open vegetation types. 

The mapped phytophysiognomies do not show a random pattern, with the class of open vegetation 

highlighting the studied large-scale, triangular- to fan-shaped megafan morphology. Another important 

conclusion of the present research is the mapping of numerous narrow, elongated and sinuous belts of 

arboreal (forest and wooded open) vegetation within the class grassland, which were used to suggest 

distributary paleodrainage networks. These features are typical of megafan depositional systems.  

The occurrence of megafans in the northern Amazonia lowland should be better investigated due to 

implications regarding the reconstruction of climatic fluctuation and tectonic reactivation during the 

late Quaternary. The vegetation map resulting from the decision tree methodology suggested herein 

can help improve the megafan characterization and examine its relation to the modern distribution of 

vegetation classes in this and other tropical areas with similar characteristics.  
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