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Abstract: Flash Flood Guidance consists of indices that estimate the amount of rain of a 

certain duration that is needed over a given small basin in order to cause minor flooding. 

Backwater catchment inundation from swollen rivers or regional groundwater inputs are 

not significant over the spatial and temporal scales for the majority of upland flash flood 

prone basins, as such, these effects are not considered. However, some lowland areas and 

flat terrain near large rivers experience standing water long after local precipitation has 

ceased. NASA is producing an experimental product from the MODIS that detects standing 

water. These observations were assimilated into the hydrologic model in order to more 

accurately represent soil moisture conditions within basins, from sources of water from 

outside of the basin. Based on the upper soil water content, relations are used to derive an 

error estimate for the modeled soil saturation fraction; whereby, the soil saturation fraction 

model state can be updated given the availability of satellite observed inundation. Model 

error estimates were used in a Monte Carlo ensemble forecast of soil water and flash flood 

potential. Numerical experiments with six months of data (July 2011–December 2011) 

showed that MODIS inundation data, when assimilated to correct soil moisture estimates, 

increased the likelihood that bankfull flow would occur, over non-assimilated modeling, at 

catchment outlets for approximately 44% of basin-days during the study time period. 

While this is a much more realistic representation of conditions, no actual events occurred 

allowing for validation during the time period. 
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1. Introduction 

The mapping of floods from space using orbital sensors has many applications toward the goal of 

reducing the detrimental effects of extreme flood events on society. Efforts to develop flood hazard 

maps for planning purposes, rapid-response flood mapping for disaster response activities, and the 

detection of new flood events and public warnings thereof are some of the applications of orbital 

detection systems [1–4]. Various other efforts and strategies to exploit the opportunities from these 

data sources evolved based on the spatial and temporal resolution of the orbital sensor and the goals 

and objectives of the various programs, including coastal storm surge [5], river flooding stage and 

discharge [6,7], land classification mapping [8], and the monitoring of suspended sediment 

concentrations [9], to name a few. The efforts elaborated herein represent a new strategy for the use of 

satellite derived inundation maps, by using the flood water boundary to represent the fractional 

inundation occurring in a given watershed, as a proxy for the upper zone soil moisture that can be 

assimilated into a hydrologic model. 

The development of regional flash flood warning-response systems is a high priority due to the 

status of flash floods as the natural disaster with the highest mortality rate; more than 5000 deaths 

worldwide every year on average [10]. The goal of a flash flood guidance system is to produce 

estimates of impending flash flood threat for small basins in a region. The use of a continuous soil 

moisture accounting hydrologic model to estimate flash flood threat is developed by Carpenter et al. [11] 

and Georgakakos [12]. This modeling strategy uses a conservation of mass approach in a number of 

soil moisture reservoirs representing upper and lower zone soil moisture dynamics in each basin. 

To compute flash flood guidance it is necessary to estimate the soil water deficit for each small basin. 

When soil water storage reservoirs are filled for a small basin, under continuing rain, there is high 

potential for flash flood development.  

In the typical implementation, the computational core at a regional center runs meso-scale 

meteorological models and high resolution hydrologic models for the region that produce various 

diagnostic indices and nowcasts/forecasts of precipitation, soil water deficit and flash flood potential 

for small streams on the basis of global meteorological model forecasts (ensemble forecasts in some 

cases), satellite estimates of precipitation with high resolution and short latency and real time 

operational raingauge and surface weather station reports. An example of these regional systems is 

described in Integrating Multiscale Observations of US Waters [13], whereby the basis of the first 

regional system implemented and operated since 2004 in Central America is discussed. System 

application is described most recently in Shamir et al. [14]. The systems support the elements 

identified in WMO [15] for effective flash flood prediction and warning.  

Use of remotely sensed and on site data is made to produce estimates of mean areal precipitation 

(MAP) for each one of the small basins in the region. Existing and in progress implementations use 

(a) the global NOAA/NESDIS Hydroestimator rainfall (~4 km × 4 km half hourly values with latency 
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of a few minutes up to half hour) (e.g., [16]) as the basic real time satellite rainfall product, (b) the 

CMORPH satellite rainfall (~8 km × 8 km half hourly values with 18 hour latency) (e.g., [17]) to 

update soil water deficit fields up to 18 hours from present and to provide bias estimates for the 

Hydroestimator in regions with no surface gauge information, and (c) real-time gauge rainfall reports 

to estimate bias and adjust the satellite rainfall products. The latter involves the use of adaptive 

Kalman Filtering that estimates the error variances for the bias and propagates it to the adjusted rainfall 

fields (e.g., [18,19]). Optimization of satellite derived rainfall estimates was refined for South Africa 

by de Coning [20]. The process of bias adjustment and blending of the satellite and gauge fields occurs 

every time the computational component runs (typically every 6 hours) and it involves a two-week 

window that ends at the current time.  

Soil moisture is the principal state variable in estimating the rainfall-runoff relationship in a given 

catchment and the likelihood of flash flooding. Antecedent soil moisture conditions directly impact the 

ability of additional precipitation inputs to infiltrate, rather than becoming surface runoff. Factors that 

affect the soil moisture conditions, and thus the threat of flash flooding, include land use, vegetation, 

and infrastructure. In the operational flash flood guidance systems, the focus is on the water balance 

over the flash-flood prone small watersheds, rainfall-runoff relationships are driven solely by those 

processes (e.g., rainfall, snow melt, evapo-transpiration) that occur within each separate hydrologic 

basin. Downstream inundation effects or large scale groundwater effects are not significant for the 

majority of the upland flash flood prone basins; thus, these effects are not considered. However, some 

lowland areas and flat terrain near large rivers experience standing water long after local precipitation 

has ceased. This standing water may be the result of backwater effects from swollen rivers or elevated 

groundwater levels from upland source areas. Therefore, these outside sources of water may greatly 

impact the soil water deficit within a small flash flood prone basin. The NASA Office of Applied 

Science is producing an experimental product from the MODIS instrument on the Terra and Aqua 

satellites that detects standing water, beyond reference water, at a daily time interval and with a 250 m 

resolution. This work explores the potential utility of this product to adjust the soil water estimates of 

the operational systems for flash flood prone basins in low lying areas to improve local flash 

flood warnings. 

2. Methods 

The works presented herein documents a new method for the assimilation of NASA Global MODIS 

Flood Mapping products into the hydrologic soil water accounting models that support flash flood 

warning in small basins that tile a large region. Watershed basin boundaries in a lumped hydrologic 

model are determined based on elevation data and the approximate size of the desired basins. MODIS 

Real-time Flood Map 250 m resolution grids are overlaid on top of watershed boundaries. Mapping of 

pixels to watershed basins is done based on the location of pixel centroids. Thus, the flood water map 

observations undergo preprocessing to map the fractional area of inundation to each small catchment. 

The basin fractional inundation is then used to determine the modeled soil water deficit error. The error 

is then corrected using the fractional inundation observations.  

Consider that small flash-flood prone catchment of area A. For this catchment, the soil water 

component of the flash flood guidance system provides estimates of upper (in the top 20–30 cm of soil 



Remote Sens. 2014, 6 10838 

 

 

depth) soil saturation ratio, w, at hourly or six-hourly intervals. Compared to the actual soil saturation 

ratio of the upper soil, wa, the model estimate is considered to have an additive random error 

wa = w +  (1) 

This random error may have a non-zero mean and it is present in all the simulated values w in small 

catchments. Its probability distribution characterizes errors in simulated soil saturation fraction due to 

uncertainties in catchment precipitation and potential evapotranspiration. Error distribution is also due 

to uncertainties in the soil water models used for the particular catchment (due to both parametric and 

model-structure errors). These errors are only associated with the local catchment forcing and models. 

For catchments that in part of their area experience soil saturation influences from downstream  

large-river inundation or groundwater rise, it is necessary to define an additional random variable, v, to 

represent the error of the modeled soil saturation fraction (that in the flash flood guidance systems does 

not include these non-local effects). 

Processing of real time satellite earth observations provides a daily estimate of fractional inundation 

(fraction of area, A, under water), which is denoted by f. Thus, the corrected upper soil saturation 

fraction for the basin, w’, for these cases is: 

w’ = w + v (2) 

The aim of the formulation is to estimate w’ for times of significant flood inundation fractions, and 

to estimate its uncertainty. 

The capacity of the upper soil zone to hold water (the product of the upper soil effective porosity 

and the upper soil zone depth) is denoted by U, and it represents the maximum volume of water the 

small basin upper soils can hold divided by the area of the basin. The total volume V of the upper soil 

water content can then be expressed as follows: 

V = 1 f A U + wa (1 − f) A U (3) 

and 

V = (w + v) U A (4) 

where wa is the actual saturation fraction of the upper soils in the portion of the area that is not 

inundated. Equation (2) is based on the reasonable assumption that if there is surface inundation, the 

upper soil zone (down to 20–30 cm) is saturated (saturation fraction = 1). Because of the equivalence 

of the volumes on the left hand side and the presence of a common factor involving the product of area 

(A) and upper soil water capacity (U), Equations (3) and (4) yield: 

w’ = w + v = f + (1 − f) wa (5) 

this equation connects the model-produced w and its uncertainty (in the form of an additive error term) 

with the satellite-based fractional inundation, f, through the unknown upper soil water saturation 

fraction, wa, that actually exists in the portion of the area A without water inundation. It is noted that 

two limiting conditions arise for which additional information may be derived: (a) the case of zero 

inundation (f = 0), and (b) the case of full inundation (f = 1). In these two limiting cases the 

following apply: 

w + v = wa; f = 0 (6) 
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and 

w + v = 1; f = 1 (7) 

the first condition in Equation (6) represents the definition of the error term (v = wa – w) for cases of 

no inundation and for which v = , and the second condition in Equation (7) provides an estimate of 

the error in case of full inundation. Namely: 

v = 1 − w; f = 1 (8) 

thus, the error may be estimated from full inundation cases (or approximately full inundation cases) by 

developing the histogram of the estimates (1 − w). If a sufficient sample of inundation cases is 

available, then the mean or median and the standard deviation of the error may be derived. If a large 

enough sample of full inundation cases are available then quantiles of the error can also be derived.  

It is noted that these error properties are associated with full inundation and not necessarily with 

cases having inundation substantially lower than 1. In addition, the error, v, is the result of both the 

small basin soil water model parametric and input errors (i.e., ), but it also may be related to external 

input not modeled (model structure error) such as exist during large river flooding with backwater 

effects on neighboring small tributary catchments. In the latter case, satellite data of inundation 

provides the only means of model correction. 

Substituting wa in Equation (5) from Equation (1) one may derive for all inundation fractions: 

w’ = w + v = f + (1 − f) (w + ) (9) 

which yields the following relationship between v and : 

v = f (1 − w) + (1 − f) (10) 

the relationship v versus  is linear, thus if one has a normal distribution so does the other. Knowing 

the mean and variance of v yields the mean and variance of  and vice versa. Uncertainty in f may also 

be taken into consideration but for this development and as a first approach we make the reasonable 

assumption that the error in f (after quality control) is much smaller than the error in w, and therefore f 

may be considered to be non-random. The resultant relationships are given below: 

mv = f (1 − w) + (1 − f)m (11) 

VAR(v)(1 − f)2 VAR() (12) 

where mv and VAR(v) represent the mean and variance of v, and mand VAR() represent the mean and 

variance of .  

As mentioned earlier, for near full inundation (f = 1) one may define the distributional 

characteristics of v (see Equation (8) and associated discussion). Using Equations (11) and (12) one 

may also define the two moments of the distribution of  for these full inundation conditions 

(i.e., f > fT where fT is close to 1). The corrected model saturation fraction for the upper soil in the 

catchment, w’, may then be obtained from Equation (9), w’ = f + (1 − f) (w + ), and, together with the 

error properties of , may be used in a Monte-Carlo-based ensemble simulation of corrected values. 

A normalized measure of the correction in model upper soil saturation fraction (BF) may be defined 

as follows: 

BF = (w’ – w)/w (13) 
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and for the case under examination (f > fT), 

BF = f (1 − w)/w + (1 − f) (/w); f > fT (14) 

this may be used with a description of the statistical properties of the error  estimated for near full 

inundation conditions as discussed above to derive the statistical properties of the normalized 

correction BF for a given set of values of f and w. For normally distributed  the distribution of BF is 

also normal. 

Figure 1 exemplifies the distribution of the BF values for the case of f = 0.85, w = 0.5, and for  

normally distributed with mean value of 0.1 and standard deviation equal to 0.2 (substantial 

uncertainty is assumed). A total number of 10,000 samples were used to create the histogram shown. 

Figure 1. Histogram of BF for w = 0.5, f = 0.85, and v~N(0.1,0.2). 

 

The results show a normal distribution of the fractional normalized correction (see Equation (13)) 

but with a mean of about 0.88 and a standard deviation of about 0.06. The coefficient of variation 

(0.06/0.88) of the normalized correction, BF, is significantly lower than that of the model error  

(0.2/0.1) for the given values of f and w. That is, for high fractional inundation values (in this case 

0.85) even high model error uncertainty results in low uncertainty in the corrected soil 

saturation fraction. 

Taking the expected value of Equation (14) for the case of zero mean  yields the result: 

BF = f (1 − w)/w;  f > fT (15) 

which is depicted in the upper panel of Figure 2 for a range of values of w and f. The lower panel of 

Figure 2 corresponds to a mean value of  that is equal to 0.2 (positive bias of 20%). 

  



Remote Sens. 2014, 6 10841 

 

 

Figure 2. Mean BF as function of f (fraction) and w (in %) for Mean(v) = 0 (upper panel) 

and Mean(v) = 0.2 (lower panel). 

 

 

The results in Figure 2 show that for the range of near full inundation values of f, the percent 

normalized correction factor BF exhibits much lower sensitivity to the value of f than to the value of w. 

The addition of a bias in the model estimates (mean value of v is equal to 0.2 or 20%) further reduces 

the sensitivity of the normalized correction factor to the value of f (for f > 0.70) and especially for 

values of w greater than 70%. 

The previous discussion supports the following methodology for incorporating satellite-based 

inundation fraction values (f) into the flash flood guidance system soil water accounting model for 

values of f > fT (Figure 3):  
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Figure 3. Flow chart of observation assimilation procedure in to modeling strategy. 

 

(a) Estimate the statistical properties of v for near inundation historical events (the currently 

available historical database from NASA archives covering the period from July–December 2011). 

(b) Use the statistical properties of v to develop the sampling distribution for  and associated 

parameters for use in Monte Carlo sampling in later steps.  

(c) For each time step use Equation (9) in a Monte Carlo simulation that samples from the 

distribution of  to derive statistics for w’, given f and w. 

(d) Estimate the corrected total upper soil water saturation fraction by the mean of the w’ estimated 

by Monte Carlo simulations. 

(e) Distribute the corrected saturation fraction between the model tension and gravity water 

contents of the upper soil so that the tension water element is filled first and any residual correction is 

used to fill the contents of the upper soil gravity water storage element (see description in 

Georgakakos [6] on soil water model components). 

When the inundation fraction f is lower than fT then the use of the limiting case for f →1, as done 

before, may not be appropriate to derive the statistics for v (and therefore of ) and the error may be 

substantially different from the near-full inundation case. Limited results may be derived on the basis 

of the assumption that for small inundation fractions f (f < fL) for the majority of the catchment without 

inundation the error mean is near zero. That is, 

w’ = f + (1 − f) w;  f < fL (16) 

In that case, the correction is independent of the mean of  and, for small fL, the influence of the 

satellite-derived factor to the new solution is small for cases of relevance to flash flood prediction 
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(w > 0.7). For example, for f = 0.3, w’ = 0.3 + 0.7 w, so that for w = 0.7, the w’ = 0.79, a 13% 

correction, which is well within the model errors. Under the circumstances then, the low inundation 

fractions are not expected to provide significant benefits to the flash flood guidance systems given the 

uncertainties associated with the error term v in that case. 

Monte Carlo analysis included an ensemble of 100 members. A conditional sampling approach was 

used, whereby model error statistics (mean and variance) for v (=1 − w) were generated as a function 

of the modeled upper soil zone saturation fraction, discretized into 100 bins. Equations (11) and (12) 

were then used to obtain the mean and variance of  for each bin of w. Random normal deviate 

generation with the latter mean and variance for the bin, reflected by the modeled upper soil zone 

moisture condition at each basin-day, was then made and used in Equation (9) to obtain ensemble 

members of corrected upper soil saturation fraction, w’. 

Model states are updated every six hours, concurrent with model forcing data; however, NASA 

MODIS Flood Maps are available once daily. Therefore, data assimilation occurred only at 00Z, the 

time of the MODIS data availability, at which time an ensemble of w’ estimates was obtained as 

discussed above. After the 00Z data assimilation, the mean of the generated ensemble members 

provides the initial condition for the soil-water model integration for the remaining six-hour intervals 

in that day (Figure 4). 

Figure 4. Illustration of each Monte Carlo simulation (*) result, the averaging that occurs 

at each assimilation time-step, reflecting that inundation information is provided daily 

at 00Z. 

 

Basin rainfall-runoff processes are represented through the continuous soil-moisture accounting 

hydrologic model developed by Georgakakos [21]. The structure of this hydrologic model retains 

memory of previous hydrologic conditions, which is ideal for the prediction of response to short 

duration precipitation inputs. In the model used [22], the upper soil zone consists of a tension water 

element, depleted only by evapotranspiration, and a gravitational water element depleted by 

evapotranspiration, percolation and interflow. The upper soil zone saturation fraction, w, is a function 

of the upper soil zone gravitational free, UZF, and tension water, UZT, fractions and capacities 

as follows: 

𝑤 =
𝑈𝑍𝐹𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑈𝑍𝐹𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 𝑈𝑍𝑇𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑈𝑍𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑈𝑍𝐹𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 𝑈𝑍𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 (17) 
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It is necessary to map the mean of the corrected upper soil zone saturation fraction, E{w’}, back to 

hydrologic model states in order to use these as initial conditions for model integration. Given that the 

modeled and the mean of the corrected soil saturation fractions are known after the assimilation of the 

MODIS inundation fraction, their ratio may be set equal to the ratio of their definition as indicated in 

Equation (17). That is: 

𝐸{𝑤′}

𝑤
=
𝑈𝑍𝐹𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛

′ 𝑈𝑍𝐹𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 𝑈𝑍𝑇𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛
′ 𝑈𝑍𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦

𝑈𝑍𝐹𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑈𝑍𝐹𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦 + 𝑈𝑍𝑇𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛𝑈𝑍𝑇𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦
 (18) 

where primed quantities represent the corrected fractions for the tension and gravitational water 

elements. To find unique estimates of the primed quantities in Equation (18) the additional constraint 

is set that the tension water element must be full (UZTfraction = 1) before the gravitational water element 

contains any water. The estimated model states, UZF’ and UZT’, are then used as initial conditions for 

the model in the subsequent simulation time step. 

Implementation of the solution procedure uses analytical expressions that are based on rewriting 

Equation (18) as follows: 

X1 B1 + X2 B2 = A (19) 

with 

X1 = UZT’fraction (20) 

X2 = UZF’fraction (21) 

B1 = UZTcapacity (22) 

B2 = UZFcapacity (23) 

A = (E{w’}/w)(UZTfractionUZTcapacity + UZFfractionUZFcapacity) (24) 

The solutions of Equation (19) for X1 and X2 are along a line that intersects the X1-axis at (A/B1) and 

the X2-axis at (A/B2). The determination of the estimates of X1 and X2 that also satisfy the constraint 

requiring filling of the tension water element first may be done using the following expressions: 

X1 = 1 & X2 = ( A − B1)/B2;  A/B1 ≥ 1 (25) 

X1 = A/B1 & X2 = 0;  A/B1 < 1 (26) 

It is noted that the solution functions in Equations (25) and (26) are continuous for A = B1. Figure 5 

exemplifies the behavior of the solutions found as the E{w’} changes for two sets of fixed ratios 

UZTfraction and UZFfraction and for two different sets of upper zone tension and gravitational water 

element capacities). The upper panel is for a large tension water element while the lower panel is for a 

large gravitational water element. Corrected saturation fractions greater than 0.7 are used, in line with 

the assimilation of MODIS inundation fractions approaching one. Clearly the behavior of the solutions 

is very different for different parameters and model saturation fractions and for the same range 

of E{w’}. 
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Figure 5. Solutions of the Equations (25) and (26) as functions of the mean corrected 

model upper soil saturation fraction, E{w’}, for two different catchment parameters and 

model saturation fractions. Solid line is for X1 and dashed line is for X2. 

 

3. Study Area 

The region under analysis is hydrologically dominated by the Mekong River and covers much of 

mainland Southeast Asia, including all of Cambodia and most of Thailand, Laos, and Vietnam. By any 

set of measures, such as length, mean annual flow, the diversity of river plant and animal life or the 

size and diversity of aquatic resources, the Mekong River is one of the largest rivers in the world [23]. 

This region experiences very distinct rainy and dry seasons as a result of the Southwest Monsoon, the 

rainy season lasting from approximately May through October (Figure 6), based on 1961–1990 

climatology [24].  
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Figure 6. Precipitation in Bangkok based on monthly averages for the 30-year period  

1961–1990 [24].  

 

The result is extensive inundation occurring in the latter half of the year along the Mekong River 

and main tributaries. Figure 7 illustrates that in addition to the flooding in 2011 being significantly 

above average, flooding occurred in 2000 with also severe consequences. One of the factors identified 

to have increased the severity of the 2011 flooding is deforestation leading to the erosion of hillsides 

which increased bed and water levels in rivers. In addition, the improper maintenance of the storm 

sewer system resulted in sewer clogging of that system, increasing inundation extent [25].  

Figure 7. Mekong River flooding at Tan Chua gauge from 1 June through 11 November 

1992, 1998, 2000, 2010, and 2011, along with the Average, the Flood Stage, and the Alarm 

Stage [26].  

 

4. Data Opportunities and Constraints 

Use of remote sensing from orbit to detect inundation extent has been proven to be closely 

correlated with ground measurements of river discharge [27–32]. In general, two types of remote 

sensors are suitable for detection of inundation, microwave and optical sensors. Microwave sensors 

such as Synthetic Aperture Radar were proven to be useful in mapping inundation extent under all 

weather conditions due to their ability to penetrate clouds. Observations from optical sensors such as 

Landsat Multispectral Scanner (MSS), Thematic Mapper/ Enhanced Thematic Mapper Plus 
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(TM/ETM+; [33–35]), and SPOT [36] are common and easily acquired. While these products have 

very high spatial resolution, they have very low temporal resolution, with up to two weeks between 

observations. Although with lower spatial resolution, and frequent contamination due to cloud cover, 

the products from MODIS [37–40] and the Advanced Very High Resolution Radiometer (AVHRR) are 

also used to classify flood areas [2,41–44]. Validation of MODIS-derived inundation extent mapping is 

done through comparison with either other remotely sensed data such as Landsat [2,3] or stream gauge 

measurements associated with flood peak detection [4,21]. Over the Cambodian and Vietnamese 

Mekong Delta region Sakamoto et al. [2] found that during five annual flooding seasons MODIS and 

RADARSAT-derived inundation maps had coefficients of determination (R2) values of from 0.89 to 

0.92, and compared with Landsat-derived results R2 values of 0.77 to 0.97 were found. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) instrument sits aboard both the 

Aqua and Terra satellites. Due to its worldwide availability, no cost, and daily coverage, MODIS is the 

ideal tool for detecting inundated areas [2]. NASA Goddard’s Office of Applied Science (GSFC OAS) 

is working to operationalize near real-time global flood mapping using the existing twice daily 

overpass of the MODIS instrument on both the Terra and Aqua satellites [21]. The orbits of these two 

satellites are timed such that between them, they view the entire earth’s surface every one to two days, 

acquiring data in 36 spectral bands, or groups of wavelengths. The NASA GSFC OAS, in 

collaboration with the Dartmouth Flood Observatory, has developed the Near Real-Time Global Flood 

Mapping Project. Flood maps are produced in 10 × 10 degree tiles with a pixel size of 0.002197 degree 

square (~250 m). Gridded products are typically 4551 × 4551 pixels in size; however, some data sets 

vary by 1 to 2 pixels. The Global Flood Mapping Project produces a MODIS Surface Water (MSW) 

product, indicating where standing water is located on the globe, a MODIS Flood Water (MFW) 

product, which is the MODIS Surface Water product with the reference water layer subtracted, and a 

MODIS Water Product (MWP), that combines the MSW and MFW products. The NASA GSFC OAS, 

in developing the MWP, is capable of using a composite product that requires a predetermined number 

of observations (e.g., three consecutive days) in order to label a pixel as water. As is the case with all 

passive sensors, MODIS data is limited by cloud cover during continuous rainy days; therefore, MWP 

maps assign “Insufficient data” designation to those pixels obscured by clouds.  

The Global Flood Mapping Project team is also capable of using terrain, cloud, or both terrain and 

cloud shadow masking. The Global Flood Mapping Project team currently produce two standard MWP 

products, a two-day consecutive and three-day consecutive observation requirement, both having 

terrain masking applied. Currently, cloud masking is only available on single-day products. 

Uncertainty in the MWP may result from cloudiness. Despite the fact that clouds may appear 

spectrally similar to standing water, all water detections are currently kept. However, the MOD 35 

Cloud Mask product is used for quality control through its use in development of the “Insufficient 

Data” layer. To date, the cloud mask (MOD 35) is at a 1km grid resolution, which may result in 

additional quality control issues. Shadows are also spectrally similar to standing water and therefore 

must be distinguished. As of version 4.7, a cloud shadow masking algorithm is used that combines the 

cloud locations from MOD 35 and the cloud height from MOD 06 to estimate the cloud location on the 

ground. However, the Global Flood Mapping Project team has determined that it is detrimental to 

apply cloud masking to the composite products, as many real water observations may be masked due 

to the buffering around the detected clouds. 
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Working with staff at NASA Goddard’s Office of Applied Science, the Hydrologic Research Center 

(HRC) obtained Near Real-time (NRT) Global MODIS Flood Maps for the 10-degree tile with 

coordinates 100E and 20N in the tile’s northwest corner, covering all of Cambodia along with areas of 

Vietnam, Thailand, and Laos (Figure 8). Tile products are in raster format, 4551 × 4551 pixels in size. 

However, the number of pixels does vary by one to two pixels depending on the particular input data. 

Flood maps were obtained between 3 July and 31 December 2011 to cover the period of extensive 

flooding that occurred on the Mekong River (Figure 7). 

Figure 8. NASA Flood Map 10 × 10 degree tile over Southeast Asia with tile cell values. 

 

The NASA Global Flood Map raster products assign a value between 0 and 3 to each pixel: 

0 representing insufficient data to make water determination, 1 for no water detected, 2 meaning water 

was detected, but is coinciding with reference water, and 3 referring to areas where water was detected, 

but is not coinciding with reference water. Insufficient data may be the result of clouds, missing 

images, swath gaps, or bad data values. The FFG system sub-basin delineation accounts for the 

existence of reference water, as sub-basins do not include rivers and lakes. In order to transfer pixel 

values to the fractional inundation of individual sub-basins, the centroid of each pixel was mapped to 

each sub-basin in order to assign individual pixels to a given sub-basin. The frequency of each pixel 

value within each sub-basin was then determined. Due to the fact that sub-basins exclude reference 

water, sub-basin standing water was considered to include pixel designations, Reference Water and 

Water beyond Reference Water. Therefore, percent sub-basin inundation is calculated based on the 

number of pixels with values of 2 and 3, divided by the number of pixels with values of 1, 2, or 3, 

representing those pixels for which data is available. Percent inundation varies widely in both the 

spatial and temporal domain under investigation. 

The HRC maintains a database of historical mean aerial precipitation estimates for the Mekong River 

region, associated with the Mekong River Commission (MRC) Flash Flood Guidance System 

(MRCFFG), in use by the MRC. This precipitation database was used to run a stand-alone adaptation of 
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the Sacramento soil moisture accounting model for rainfall-runoff generation [14] used in the operational 

MRCFFG system for those watershed sub-basins within the NASA flood map tile. Parameters for  

sub-basin runoff generation were determined through the approach described in Duan et al. [45]. 

To determine the feasibility of using the NASA Flood Map product to improve the flash flood 

guidance system response in inundated basins, first we looked at a 30 km buffer around the low lying 

region associated with the Chao Phraya and Mekong Rivers, and the Tonle Sap, an inland lake 

(Figure 9). In order to assess the possible impact of assimilating fractional basin inundation for these 

1046 basins within the 30 km buffer, the fractional inundation was calculated for each day during the 

second half of 2011, from 3 July to 31 December. Figure 10 illustrates that over the 190,372 basin-days, 

nearly 80% of those samples had no inundation. However, Figure 10 also shows that approximately 

7% of the basin-days had over 80% inundation, suggesting that, although limited, assimilation of this 

data has the potential to have significant impacts to specific locations. 

Figure 9. Mekong River Commission (MRC) Flash Flood Guidance (FFG) basins 

(n = 1046) within a 30 km buffer of regional low-lying areas. 

 

Figure 10. Frequency of fractional inundation for low lying regions of southeast Asia over 

the study time period (left), and the frequency of percent inundated, f, greater than zero for 

study time period (right). 
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Next, the fractional inundation threshold (fT = 0.9) was used to estimate the distribution of the 

model error (v in Equation (8)) in order to determine parameters for the Monte Carlo ensemble 

analysis. Figure 11 illustrates that the model error distribution is nearly normal, although skewed 

toward lower values. In order to represent the paired uncertainty of both modeled soil moisture, w, and 

model error, v, modeled soil moisture associated with model errors used in development of Figure 11, 

Equation (8), were divided in to 100 equally sized bins. The statistical moments of the model error, 

were then calculated and used to derive 100 normally distributed random error terms  from 

Equations (11) and (12) for Monte Carlo ensemble simulation through Equation (9). 

Figure 11. Sample frequency of model error v. 

 

5. Results  

In order to assess the impact of flood map assimilation, two basins were chosen for further analysis. 

Both basins were chosen to represent low lying areas in the region (Figure 12). Table 1 describes the 

basin characteristics of each test basin, reflecting their similar characters of low elevation, relatively 

gentle slopes, and very deep soils. In addition, these basins were chosen based on the fact that while 

being low lying and experiencing inundation, they are not in the littoral zone of adjacent water bodies, 

where changes to water levels would directly impact flooding in the basin. 

Figure 12. The two case-study basins: (a) just upstream of Bangkok near the Chao Phraya 

River (31245), and (b) upstream of the Tonle Sap Lake in Cambodia (10171). 
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Table 1. Case study basin characteristics. 

Basin ID No. 31245 10171 

Location Bangkok Tonle Sap Lake Region 

Soil Texture Silty Clay Silt 

Soil Depth Very Deep Very Deep 

Land Use/Land Classification Cropland/Woodland/Grassland Grassland 

Elevation (m) 6 10 

Area (km2) 162 164 

Channel Length (km) 32.2 26.8 

Channel Slope (%) 0.31 0.4 

Figure 13 illustrates the conditions observed in Basin No. 31245 during the analysis period illustrate 

the stark contrast between rainy and dry precipitation regimes (Figure 13a), and inundated and not 

inundated surface conditions (Figure 13d). Inundation does not occur until well after the concentrated 

mass of precipitation is long over, and the degree of inundation proceeds from zero to almost entirely 

inundated very rapidly. The soil saturation fraction represents the extent to which the upper zone 

gravitational and tension water capacities are met. Figure 13c illustrates that the soil saturation fraction 

without assimilation tracks the rainfall input by dropping concurrently with the absence of 

precipitation. This figure also shows that with assimilation of the satellite inundation data, when above 

the inundation threshold (fT = 0.75) and using a Monte Carlo ensemble analysis, in the mean, the 

system maintains high soil moisture in the basin, reflecting the extensive inundation.  

Figure 13. Forcing variables and modeling results for the hydrologic response of Basin 

No. 31245: (a) precipitation, (b) the 6-hr Flash Flood Guidance value (in mm/6hrs), (c) soil 

moisture saturation fraction, and (d) the fraction inundated.  

 

The direct impact of flood map assimilation onto the MRCFFG system is shown in Figure 14, 
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likelihood of a flash flood) with decreases in model saturation fraction. Figure 14 also illustrates the 

dramatic difference between wet and dry season impacts, whereby in the wet season the majority of 

records have a percent change of less than 10, showing little impact of assimilation. Conversely, in the 

dry season, when upper soil zone saturation fractions are low prior to assimilation, changes to 6-hr 

FFG values go from −30% to −70% change. The results of the second basin are analogous, with the 

exception that the percent of the basin inundate decreases from full inundation to nearly dry ground 

during the dry season (Figure 15). This decrease highlights the role of the assimilation threshold, when 

at approximately mid-November this threshold is breached and assimilation ceases. Over the 

subsequent weeks considerable drying of the soil is seen, until mid-December when the threshold is 

crossed by a significant amount of inundation and assimilation occurs again. 

Figure 14. Impact of flood map assimilation on the results of the FFG value for Basin 

No. 31245, as a function of the model soil saturation fraction (with no assimilation). More 

negative values indicate that less water is required to declare a flash flood warning or alert. 

 

Figure 15. Forcing variables and modeling results for the hydrologic response of Basin 

No. 10171: (a) precipitation, (b) the 6-hr Flash Flood Guidance value (in mm/6hrs), (c) soil 

moisture saturation fraction, and (d) the fraction inundated. 
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Figure 16 illustrates that in many cases when inundation events exceeding the threshold for 

assimilation are followed by periods without inundation above the threshold, the result is a predicted 

drying of soils. In addition, modeled soil moisture under-predicts the soil moisture conditions due to 

drying during the 6-, 12-, and 18-hour model time steps (Figure 4). Note that slight exceedance of the 

value of 1 is observed in some cases by some of the assimilated members of the ensemble due to the use 

of a continuous normal distribution for the input error values and for values of modeled saturation 

fraction (w) near 1. The use of a compound normal distribution with a mass at 1 would avoid such 

exceedance, but the effect in the mean and the variance is found to be negligible for this application. 

Figure 16. Soil saturation fraction with no assimilation (black line), each member of the 

Monte Carlo ensemble estimates after assimilation (red dot), and the soil saturation fraction 

for each day after data assimilation (red line). 

 

Within the 1045 basins located in a 30-km buffer around the Chao Phraya and Mekong Rivers 

(Figure 9), approximately 350 basins experience at least one day of fractional inundation exceeding 

0.75. Figure 17 illustrates the frequency of FFG values in different bins, both with and without 

assimilating the NASA satellite flood map product into the MRCFFG system from 3 July to 

31 December 2011. It is clear that assimilation results in an overall decrease in FFG values, where 

there are fewer records with high FFG values and more records with low FFG values. Approximately 

44% more basin-days have lower FFG values as compared to the baseline of no assimilation, meaning 

that during those basin-days significantly less rainfall was required for the issuance of a flash flood 

warning. In addition, assimilation results in a bimodal distribution of FFG values, as compared to the 

unimodal distribution prior to assimilation. 

Figure 17. Frequency of 6-hr FFG values for ~350 basins where the inundation fraction 

exceeds 0.75. 

 

0 20 40 60 80 100 120 140 160 180
0

0.2

0.4

0.6

0.8

1

S
o

il
 S

at
u

ra
ti

o
n

 F
ra

ct
io

n
 [

 ]

Simulation Day

Without Assimilation

With Assimilation

MC Assimilation
Ensemble Members



Remote Sens. 2014, 6 10854 

 

 

6. Discussion 

Results from the strategy tested for assimilation of inundation maps into the HRC Flash Flood 

Guidance System illustrate that there is a significant disconnect between the conditions of many of the 

lowland basins of the Mekong and Chao Phraya river and delta systems and their representation in the 

HRC Flash Flood Guidance System. Figures 13 and 15 show that, despite the presence of large areas 

of standing water, the system modeling strategy results in relatively dry soils. Inundation maps 

developed by NASA for 2011, a season of historic flooding, clearly delineate the large areas of 

inundation found in the lowland areas associated with the Mekong and Chao Phraya Rivers (Figure 8), 

despite little or no rainfall in those regions (Figures 13 and 15). 

The results of assimilation on the likelihood that a flash flood warning should be issued are 

dramatic. Throughout most of the dry season in 2011, there are many basins like the two used for 

illustration that experienced flooding and would be very prone to flash flooding, given that additional 

rainfall occurred over those basins. This strategy assumes inherently that there is more uncertainty in 

the modeled soil moisture than the uncertainty associated with the NASA inundation maps. Within 

model predictions, uncertainty exists primarily within the model representation of soil saturation 

fraction due to parameter uncertainty associated with soil, land use, and vegetation characteristics and 

integration of watersheds, in satellite precipitation estimates that are known to have large errors, and 

the uncertainty associated with data assimilation methods. An examination of the data assimilation 

uncertainty illustrates that over the duration of the analysis time period, ensemble predictions resulted 

in a mean upper zone soil saturation fraction, E{w’}, of 0.993, with a standard deviation of 0.019, 

reflecting that relatively little uncertainty exists for the assimilation of satellite observations.  

In order to maximize the opportunity to assimilate inundation observations, the fractional 

inundation threshold (fT) was lower than the threshold used in determining which basin-days would be 

used to develop statistical error relationships used in the Monte Carlo procedure. The fractional 

threshold used for deriving the Monte Carlo parameters may be more constrained than that used during 

assimilation, as there is much less uncertainty associated with the NASA MWP maps than with all of 

the combined uncertainties in the hydrologic model forcing and parameterization. Therefore, a lower 

fractional inundation threshold for assimilation, of 0.75 representing three-quarters of the basin being 

inundated, allows the maximum amount of information possible used within the constraints of the 

derived assimilation strategy. It is noted that the soil saturation fraction results illustrated in Figure 14 

constitute a temporal daily average of the mean of the 100-member ensemble at 00Z and the model 

results at 06Z, 12Z and 18Z, with the constraint that the soil saturation fraction cannot exceed unity.  

Finally, Figure 17 illustrates that assimilation of inundation data results in a bimodal distribution of 

FFG values reflecting changes that occur only when inundation exceeds the set threshold value. In 

contrast, the model without assimilation has a unimodal distribution of FFG values suggesting that 

model response is proportionate to the single forcing of precipitation values. 

7. Conclusions 

Although limited in spatial and temporal application, assimilation of the NASA flood map into the 

HRC FFG system results in a more accurate depiction of those physical conditions occurring at the 
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basin level. During the time period investigated, no flash floods occurred; therefore, we were not able 

to empirically validate the impact of assimilation. However, Figure 13b illustrates the impact of the 

assimilated data on the flash flood guidance (FFG) value, reflecting the fact that post-assimilation, 

significantly less rainfall is required to increase the likelihood of a flash flood. This result is consistent 

with the fact that large areas of the basin were inundated. 

Upon implementation of this assimilation strategy in to the HRC operational systems, after several 

rainy seasons, authors will assess changes to the probability of detection of actual flash flood events, 

and have the opportunity to validate the assertion that inundation map assimilation reduces the 

likelihood of missing flash flood events, while also not increasing the likelihood of false warnings. 

One of the limitations of many surface water hydrology models, and reflected in the HRC’s 

operational systems, is the absence of inputs from groundwater, and other sources of water outside of 

the basin under examination. Clearly the source of inundation, in the context of the basins studied, is 

outside of the individual basin domain and its precipitation forcing. Large river flooding and tributary 

backwater effects are the most likely sources of inundation. Therefore, the basin-based modeling 

strategy used in operational flash-flood guidance systems does not account for these sources of water. 

Assimilation of the NASA Flood Map provides the ability to include water inflows from outside any 

particular basin that greatly influences the conditions of that basin.  

The NASA Flood Map program has a wide range of utility from large flood warnings, to estimating 

flow rates in ungauged basins, to improving flash flood forecasting. There are a number of steps 

required to approach operational implementation of the elaborated strategy. Firstly, there is a 

significant amount of preprocessing that is done both within the Flash Flood Guidance System and to 

the NASA Flood Maps, in order to assimilate them in to the system. Monte Carlo ensemble prediction 

strategies must be optimized to minimize the time and computation intensity of application to avoid 

slowing down the production of system products that are required to have short latencies for 

warning efficacy. 

There is also much opportunity for improvement of satellite derived flood mapping products. 

NASA is working to improve the reliability, accuracy, and precision of flood map products. It is clear 

that many of the low lying areas around the world experience seasonal flooding. In the region 

examined herein, annually the Mekong River rises in response to the rainy season. This increase in 

water level creates backwater effects into the Tonle Sap Lake and surrounding basins. This type of 

dynamic system requires that reference water layers be dynamic in order to ensure the accurate 

distinction between reference water and that water beyond the reference water. Secondly, many of the 

low lying areas around the world, and in Southeast Asia in particular, are used for rice paddy farming 

and are seasonal wetlands that experience severe flooding that underlies heavy vegetation. Finally, the 

use of Kalman Filtering to assimilate inundation observations into hydrologic models will provide the 

ability to use any fractional basin inundation value to update the soil moisture state variables.  
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