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Abstract: The monitoring of soil salinity levels is necessary for the prevention and 

mitigation of land degradation in arid environments. To assess the potential of remote 

sensing in estimating and mapping soil salinity in the El-Tina Plain, Sinai, Egypt, two 

predictive models were constructed based on the measured soil electrical conductivity (ECe) 

and laboratory soil reflectance spectra resampled to Landsat sensor’s resolution. The models 

used were partial least squares regression (PLSR) and multivariate adaptive regression splines 

(MARS). The results indicated that a good prediction of the soil salinity can be made based 

on the MARS model (R2 = 0.73, RMSE = 6.53, and ratio of performance to deviation 

(RPD) = 1.96), which performed better than the PLSR model (R2 = 0.70, RMSE = 6.95, and 

RPD = 1.82). The models were subsequently applied on a pixel-by-pixel basis to the 

reflectance values derived from two Landsat images (2006 and 2012) to generate quantitative 

maps of the soil salinity. The resulting maps were validated successfully for 37 and 26 

sampling points for 2006 and 2012, respectively, with R2 = 0.72 and 0.74 for 2006 and 2012, 

respectively, for the MARS model, and R2 = 0.71 and 0.73 for 2006 and 2012, respectively, 

for the PLSR model. The results indicated that MARS is a more suitable technique than 

PLSR for the estimation and mapping of soil salinity, especially in areas with high levels of 
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salinity. The method developed in this paper can be used for other satellite data, like those 

provided by Landsat 8, and can be applied in other arid and semi-arid environments. 

Keywords: soil salinity; reflectance spectra; Landsat; PLSR; MARS; Egypt 

 

1. Introduction 

Salinization is a worldwide problem that affects the physical and chemical properties of soil, leading 

to the loss of crop productivity [1,2]. Current estimations of the proportion of salt-affected soils in 

irrigated lands for several countries are 20% for Australia, 27% for India, 28% for Pakistan, 50% for 

Iraq, and 30% for Egypt [3]. As salt-affected soils are common in arid and semiarid climates with 

precipitation rates lower than evapotranspiration rates [4], salinization is a prevalent environmental hazard, 

posing serious socio-economic and environmental implications. To manage salt-affected soils better, soil 

salinity must be first monitored and mapped [5]. Typically, soil salinity is assessed by measuring the soil 

electrical conductivity (ECe) in saturated paste extracts or using different soil to water ratios [6]; 

however, the complexity and cost of traditional methods for regional monitoring of soil salinity has 

motivated the exploration of various remote sensing techniques, which have exhibited promising results 

in mapping the variations in surface soil salinity [2]. 

For the last two decades, remotely sensed imagery has demonstrated its ability to monitor salinity 

changes effectively from surface characteristics in real-time and at various scales [7–10]. Several studies 

have shown the visible, near infrared, or short-wave infrared spectral bands from the optical sensors to 

be promising for the detection of surface soil salinity [11–15]. In addition, hyperspectral data have been 

successfully used in several studies on soil salinity, enabling quantitative assessment of salt-affected 

soils [16–22]. However, practical limitations associated with hyperspectral imagery, including the 

availability of orbital data and the limited spatial coverage of the existing satellite sensors, still limit its 

potential for regional monitoring of salt-affected soils [23]. The recent launch of Landsat 8 has extended 

opportunities to map soil salinity, with Landsat data now having been freely available for several years. 

Therefore, this study found it appropriate, economical, and sustainable to use Landsat images for 

monitoring salt-affected soils. 

Several regression methods based on image reflectance have been used to estimate the soil salinity, 

with partial least-squares regression (PLSR) being the most common one [18,24]. The PLSR approach 

has inference capabilities, which are useful to model a probable linear relationship between the reflectance 

spectra and the salt content in soils [18], and a capacity to include several response variables 

simultaneously while effectively addressing strongly collinear and noisy predictor variables [25]. 

Multivariate adaptive regression splines (MARS), typically known as a nonparametric method that 

estimates complex nonlinear relationships among independent and dependent variables [26], has been 

effectively applied in different fields [27–30] and generally exhibits high-performance results compared 

with other linear and non-parametric regression models, such as principal component regression (PCR) 

and artificial neural networks (ANN) [31]. Bilgili et al. [28,32] used MARS to model soil salinity and 

reported that MARS provided better estimations for the soil ECe than the generally used PLSR method, 

yielding the best cross-validation R2 and RPD values for air-dried soils. These results were confirmed 
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by Nawar et al. [33], who modelled soil salinity using MARS and obtained similarly high R2 and RPD 

values (0.81 and 2.3, respectively). 

A robust method for estimating the soil salinity on a regional scale must provide sufficiently accurate 

measurements and be cost-effective without excessive complexities, given the high temporal and spatial 

variability of soil salinization [23,34]. Although several of the studies estimated soil salinity using 

measured reflectance spectra and multispectral remote sensing data, effective and reliable methods for the 

accurate estimation of low salinity using linear and non-linear predictive models have not been 

implemented to date [35–37]. To address this gap, the aim of this study was to develop a robust 

methodology to estimate and map the soil salinity in arid areas using freely available Landsat 5 Thematic 

Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) data. This aim was addressed 

through the following activities: (i) building linear (PLSR) and non-linear (MARS) predictive models 

based on laboratory soil reflectance spectra resampled to Landsat TM and ETM+ spectral resolutions 

and the measured ECe; (ii) applying the resulting models to TM and ETM+ data to generate soil salinity 

maps; (iii) estimating the accuracy of these models in soil salinity mapping; and (iv) evaluating their 

usefulness in the monitoring of salt-affected soils. The paper builds on a previous study [33], in which 

soil salinity was successfully related to the soil spectra measured in laboratory conditions via the PLSR 

and MARS models. 

2. Materials and Methods 

2.1. Study Area 

The study area is the El-Tina Plain, which is located on the northwestern Sinai Peninsula in Egypt 

between longitudes 32°20′35′′ and 32°33′10′′E and latitudes 30°57′25′′ and 31°04′28′′N (Figure 1). This 

area is characterized by arid conditions and the annual rainfall varies between 33.4 mm and 70.3 mm. The 

mean air temperatures range from 7.5 °C to 23.3 °C in winter and from 16.3 °C to 35.6 °C in summer, 

hence mean evaporation is high, from 3.6 mm/day to 7.3 mm/day. The soil salinity varies from slightly 

saline to highly saline and the dominant salt minerals are NaCl and MgCl2 [33]. The soil texture varies 

from loamy sand to clay. Nawar et al. [38] classified the soils of the El-Tina Plain into two orders: 

Entisols and Aridisols, which include eight subgroups: Typic Aquisalids, Typic Haplosalids, Aquic 

Torriorthents, Typic Torriorthents, Aquic Torripsamments, Typic Torripsamments, Gypsic Aquisalids, 

and Gypsic Haplosalids. 

Figure 1 shows locations of soil sampling sites and physiographic features of the study area. This 

region is characterized by the presence of sabkhas (salt flats), which are characterized by a crusty surface 

consisting of evaporate deposits (including salt, gypsum, and calcium carbonate). Wet sabkhas are 

located mostly in the northwestern part of the study area and are marked with a dark brown color. Dry 

sabkhas are located mostly in the northeast and are shown in light gray. Fish ponds and other water 

bodies occupy up to half of the total area and appear in dark blue and black in the satellite image. 

Vegetated areas (marked green) are located in the south and southeast in small and scattered areas 

cultivated mainly with seasonal crops such as maize (Zea mays), sesame (Sesamum indicum), and 

peanuts (Arachis hypogaea). Sandy soils in the southwestern part of the study area are shown with a pale 

yellow color. 
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Figure 1. Study area shown in false color composite (RGB 742) of Landsat7 ETM+, 2012, 

and locations of soil sampling sites. 

 

The El-Tina Plain surface is nearly flat, with a gentle incline from south to north. Elevations in the 

area barely reach 5 m above sea level, and areas below sea level are also present [39]. The water table is 

persistently high in the northern part of the plain, ranging from 50 to 75 cm below the ground surface 

due to the subsurface seepage of Mediterranean seawater [38]. Because of small elevation gradients in 

the region, high salinity of the ground water table (the mean salinity is 79 dSm−1), and unreasonable 

irrigation, salinization has become a major problem in the El-Tina Plain, resulting in reduced crop yields 

[40]. In recent years, with an increase of the pumping irrigation using water with a slight to moderate 

salinity (0.9–1.4 dSm−1), increased rates of leakage and groundwater recharge are leading to an 

acceleration of the salinization rate in the southern part of the study area. Due to the increasing 

salinization hazard, an accurate estimation of the soil salinity level is urgently required for the prevention 

of further degradation of soils in the study area. As our observations and analysis of 81 soil profiles  

(3–4 layers per soil profile) across the study area proved that soil salinity is homogeneous in the soil 

profile through all its layers, estimating the salinity level in the soil surface layer should be sufficient to 

characterize the entire profile. This justifies the use of remote sensing to monitor changes in soil salinity 

of the study area. 

2.2. Soil Samples 

Seventy topsoil samples (0–20) were collected in the study area between 28 August and 4 September 

2012 (Figure 1). The soil salinity (ECe) was measured in a soil paste extract according to the method of 
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Jackson [41]. Next, spectral measurements of soil samples were performed at the laboratory of Trier 

University in Germany. In addition, field spectroscopy was used at some locations to measure surface 

reflectivity. Due to the limited number of measurements during the field campaign, field spectroscopy 

was used only for calibration and validation of the resulting image spectra. For model calibration, only 

the laboratory-measured reflectance spectra were used. 

The ECe ranged from 3.3 to 166 dSm−1; the mean salinity value was 33.03 dSm−1 (Table 1). The 

relatively high mean soil salinity indicated that the soils in the study area were highly salt-affected. Very 

slightly and slightly saline soil samples accounted for only 15.7% of all samples. Moderately saline, strongly 

saline, and very strongly saline soil samples accounted for 30% and 54.3%, respectively, of all samples. 

The soil pH values ranged between 7.1 and 8.5; the mean pH value was 7.86, suggesting that the soils 

in the investigated area are slightly alkaline. The clay content of the soil samples ranged from 

undetectable to 54%, and soil samples containing >40% of clay accounted for 30% of all the soil samples. 

The soil organic matter (OM) content was low, with mean and maximum values of 0.83% and 2.3%, 

respectively. Samples with OM content > 1.5% accounted for 10% of all samples, and the overall OM 

content was low (lower than 1.5%). 

Table 1. Descriptive statistics of the soil parameters. 

 
pH 

ECe CaCO3 OM Clay Silt Sand 

 dSm−1 % 

Min 7.10 3.30 0.01 0.00 0.00 0.50 16.00 

Max 8.50 166.80 21.90 2.30 54.30 34.60 100.00 

Mean 7.86 33.03 2.97 0.83 27.22 20.81 50.68 

St.dev 0.29 31.33 3.07 0.52 16.77 10.21 26.63 

CV(100) * 3.7 94.85 103.26 63.03 61.62 49.04 52.55 

* CV = St.dev × 100/mean. 

2.3. Soil Spectrometry and Spectral Characteristics of the Soils 

Soil reflectance spectra were collected using a portable spectroradiometer (FieldSpec-FR, ASD), 

which measures the reflectance over the range of 350–2500 nm, with a resolution of 3 nm at 700 nm and 

10 nm at 1400 and 2100 nm, and a 1.4 to 2 nm sampling interval in the short-wave infrared domain. The 

measurements were conducted in a dark laboratory environment. Plastic dishes contained the soil 

samples, which were leveled off to a 2.0-cm thickness [42]. Each sample was measured three times, and 

the final spectral measurement was attained by averaging the curves [33]. To calculate the absolute 

reflectance of the samples, the radiance from each sample was divided by the radiance from the white 

reference panel and then multiplied by the reflectance of the reference panel. 

The reflectance curves display a shoulder near 800 nm, show two deep absorption features at 1415 nm 

and 1915 nm, and have several weak absorption features near 494 nm, 673 nm, 1748 nm, 2207 nm and 

2385 nm. The soil albedo and the absorption feature depth vary with the level of soil salinity  

(Figure 2a). The deeper water absorption features at 1415–1444 nm and 1915–1932 nm likely represent 

the combined results of O–H stretches, H–O–H bending combination of molecular free water and 

overtones, and, as the salt content increases, the features becoming more extended and asymmetrical 

(Figure 2b). 
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Figure 2. Raw reflectance spectra (R) (a); continuum-removed spectra (CR) (b) of five soil 

salinity classes. 

 

2.4. Soil Salinity Modeling 

In the previous study [33], two methods were used and tested for modeling the soil salinity and for 

measuring the soil spectra in laboratory conditions: PLSR and MARS. PLSR is a popular regression 

method that is frequently applied in chemometrics [25,42–47]. The algorithm uses a linear multivariate 

model to relate two data matrices: the predictor variable X and the response variable Y. This algorithm 

selects successive orthogonal (latent) factors, thereby maximizing the X and Y covariance—the 

covariance between the spectra (X) and a measured soil property (Y). To prevent over- or under-fitting 

of the data, the optimum number of latent factors was identified by performing leave-one-out  

cross-validation (LOOCV); the minimum root mean squared error (RMSE) with the highest coefficient 

of determination (R2) was used as the decision criterion. 

Developed by Friedman [26], MARS is a non-parametric regression technique used for fitting the 

relationship between dependent and independent variables via application of the splines theory. 

Recently, MARS was applied as a regression method in several disciplines [28,29,32,48,49] and was 

consistently noted to perform better than traditional statistical methods. The MARS analysis uses basis 

functions to model the predictor and response variables [50]. MARS creates basis functions that can 

serve as new predictor variables in modeling; it does so by splitting the data into splines (or sub-regions), 

which have varied interval ending knots at the points where the regression coefficients differ.  
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By utilizing adaptive piecewise linear regressions, this process also suits the data in every sub-region. 

Each of the basis functions created by MARS may include linear combinations, nonlinear interaction 

factors, and variable interaction factors that are of second or third order. The number of basis functions 

and knots are defined using a forward stepwise process to choose certain spline basis functions. Next, 

backward stepwise algorithm elimination is applied until the best set is found for a smoothing procedure, 

which gives the final MARS approximation a particular level of continuity. To determine which basis 

functions should be included in the model, MARS uses a modified form of generalized cross-validation 

(GCV) [26]. 

The strength of the soil salinity prediction models can be evaluated following the suggestions from 

Chang et al. [51]. They grouped Ratio of Performance to Deviation (RPD) values into three classes: 

category A (RPD > 2) are models that accurately predict a given property; category B (1.4 < RPD < 2) 

are models that have limited prediction ability; and category C (RPD < 1.4) are models with no prediction 

ability. The PLSR and MARS analyses were performed using MATLAB 8.0 software [52]. 

2.5. Estimation of Soil Salinity Based on Landsat Data 

The results received in [33] have potential value in the field of soil spectroscopy because they can be 

applied directly to the mapping of soil salinity using remote sensing imagery in arid regions. The 

suggested hypothesis is that if the predictive model based on the measured laboratory reflectance spectra 

proved accurate, the Landsat data could be used as an input in the soil salinity estimating model [35]. 

For this purpose, the PLSR and MARS models were further developed for soil salinity modeling and 

mapping using soil spectra resampled to Landsat spectral resolution. The measured reflectance spectra 

were resampled to Landsat 7 ETM+ and Landsat 5 TM spectral sensor resolutions using ENVI’s spectral 

resampling routine [53]. To perform the resampling process, the pre-defined filter function method for 

ETM+ and TM was selected. The models were applied to the image scale of selected pre-processed 

Landsat images, pixel by pixel, to produce the soil salinity maps. 

2.5.1. Landsat Data Pre-Processing 

A level 1 Terrain Corrected (L1T) Landsat 7 Enhanced Thematic Mapper Plus (ETM+) satellite image 

(acquired on 24 August 2012) and an L1T Landsat 5 Thematic Mapper (TM) satellite image (acquired 

on 22 May 2006), which are freely available from the Landsat archive at the United States Geological 

Survey (USGS) (http://earthexplorer.usgs.gov/), were used in this study. The image acquisition dates 

were selected to be as close to the soil sampling campaigns as possible. The dates were representative 

of the dry season in Egypt (summer season) with scarce vegetation and dry soils. Because the soil is bare 

and dry, information about the surface’s constituents can be collected by the satellite sensors [54].  

Six spectral bands with a spatial resolution of 30 m and 8-bit radiometric resolution were used, three in 

the visible (0.45–0.52 µm, 0.52–0.60 µm, and 0.63–0.69 µm), one in the near-infrared (0.76–0.90 µm), 

and two in the mid-infrared (1.55–1.75 µm and 2.08–2.35 µm) parts of the spectrum. The gaps in the 

ETM+ SLC-off image of 24 August 2012 were filled using the localized linear histogram match (LLHM) 

method [55]. Landsat 7 ETM+ SLC-off, 8 August 2012 was used to fill the gaps due to the good quality 

of the image, the short lag time (20 days) between the two images, and the fact that the gaps were not 

overlapping. ENVI 5.0 software [53] was used to perform the gap filling. 
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Accurate image registration is an important aspect in studies examining the temporal change in the 

environment, and for temporal comparison, images should be co-registered with sub-pixel accuracy [56]. 

As the accuracy of geometric correction for the L1T product of Landsat depends on the quality of the 

control points and the resolution of the DEM used, the two images were additionally co-registered using 

20 GCPs selected for each scene that were well-distributed over the images, with resultant RMS error 

(RMSE) of less than one pixel (0.21). A nearest neighbor resampling procedure was used in the 

rectification so that the digital numbers (DNs) representing the brightness values of the pixels for each 

band were not altered. 

The atmospheric correction process is very important to remove the effects of atmospheric distortion 

on the soil chromophores; hence their response was registered by a sensor [57]. The use of a proper 

atmospheric correction model is therefore a mandatory step to ensure successful imaging spectroscopy 

during the approximation of laboratory-derived spectra with image spectra. To reduce atmospheric 

effects, the Landsat images were atmospherically corrected to obtain surface reflectance using the 

ATmospheric COrrection and haze Reduction (ATCOR 2) model, which is based on the MODerate 

resolution atmospheric TRANsmission (MODTRAN 5) code [58]. The following sensor and physical 

environmental parameters were used to run the atmospheric correction model: Earth-Sun Distance = 1.00934 

Astronomical Unit (AU), Average Surface Altitude = 0.002 km, Atmospheric model = Dry (26 °C),  

and Aerosol type = Rural. 

To compensate for the spectral interference that may arise from the surroundings, the analysis was 

limited to bare soils. Features other than bare soils (water, vegetation) were hidden using supervised 

classification with the Spectral Angle Mapper (SAM) method available in ENVI and trained by classes 

carefully selected from the two scenes. The classification result was verified through comparison with 

information collected during the field work. The blacked-out area comprised 7.52% of the study area in 

2006, and 11.66% in 2012. The increase was related mostly to the expansion of water bodies due to the 

rise of the water table between 2006 and 2012. Finally, spatial subsets were created and various stacks 

of color composites were produced to aid in the interpretation of the results. 

2.5.2. Application of the PLSR and MARS Models to Landsat Data 

PLSR and MARS models were constructed based on the soil ECe and laboratory soil reflectance 

spectra that were resampled to Landsat TM and ETM+ spectral resolutions. The resulting models were 

assessed using R2, RMSE, and RPD parameters. After the Landsat images were pre-processed and 

optimized, the resulting models were used to estimate the image-scale soil salinity (ECe) and to map the 

spatial variability of soil salinity. The resulting soil salinity maps for 2006 and 2012 were validated using 

37 soil samples collected between 28 May and 8 June 2006, and 26 soil samples collected in September 

2012 (Figure 1). According to geographical coordinates of soil samples measured in the field, the 

corresponding ECe was extracted from Landsat-based soil salinity maps. The predicted values were then 

compared with the true (laboratory) values using R2 and RMSE parameters. 
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3. Results 

3.1. Evaluation of ETM+ Data 

The trends in the spectral reflectance derived from ETM+ bands and the resampled measured 

reflectance spectra were consistent with variations in the soil salinity values (Figure 3). The spectral 

reflectance values from the ETM+ data’s six bands for all of the soil samples were lower than the 

corresponding field and laboratory-measured spectral reflectance. This result may be attributed to the 

differences between the Landsat sensor and the sensor that was used for measuring soil spectra. In 

addition, the accuracy of atmospheric correction is another factor impacting the spectral reflectance of 

the ETM+ data [35]. From the data in Figure 3, it is apparent that there was a high correlation between 

the measured spectral reflectance and the spectral reflectance derived from ETM+ data. 

Figure 3. Comparison of the field-measured, laboratory, and Landsat 7 ETM+ spectral 

reflectance of soil samples with different salinity values (ECe). 

 

In Figure 4, the results of the analysis of the regression coefficients for a PLSR model with six latent 

variables are shown. The NIR (i.e., Band 4) and SWIR-1 (i.e., Band 5) bands had the highest contribution 

to the estimation of soil salinity, followed by the red (i.e., Band 3), SWIR-2 (i.e., Band 7), green band 
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(i.e., Band 2) and the blue band (i.e., Band 1), which made the lowest contribution to the estimation of 

soil salinity. There was a high correlation between the reflectance values for resampled spectra and the 

Landsat spectra (R2 > 0.93). These results indicated that the measured spectral reflectance and the 

reflectance values derived from Landsat have great potential for predicting and mapping soil salinity. 

Figure 4. PLS regression coefficients of the six bands of Landsat data. 

 

3.2. Soil Salinity Estimation Using the PLSR and MARS Models 

The application of the PLSR and MARS models based on resampled measured spectra resulted in the 

calibration models in Figure 5. For the PLSR model, the optimal number of latent factors used to estimate 

ECe was defined by analyzing the R2, RMSE, and RPD values. It is apparent from the results that the 

PLSR model exhibited good performance, with the values of R2 of 0.70, RMSE of 6.95, and RPD of 

1.82 (Figure 5a). The MARS model resulted in good performance, with R2, RMSE, and RPD values of 

0.73, 6.53, and 1.96, respectively (Figure 5b). This result indicates that the MARS model is suitable for 

the estimating and mapping of soil salinity. 

Using the Landsat images, the PLSR and MARS calibration models were used to produce soil salinity 

maps for 2006 and 2012 (Figure 6). The maximum estimated ECe values were the same and equal to 

56 dSm−1, the minimum values were −1.6 dSm−1 and −1.8 dSm−1, the mean values were 15.4 dSm−1 and 

15.8 dSm−1, and the standard deviations were 12.3 dSm−1 and 13.6 dSm−1, for the PLSR and MARS 

resulting maps for 2006, respectively (Figure 6a,b). For 2012 the maximum estimated ECe values were 

51 dSm−1 and 50 dSm−1, the minimum values were the same and equal to −1.2 dSm−1, the mean values 

were 13.6 dSm−1 and 14.6 dSm−1, and the standard deviation were 11.6 dSm−1 and 12.4 dSm−1, for the 

PLSR and MARS maps, respectively (Figure 6c,d). The negative values are not reasonable for both 

models and all maps, comprised less than 3% of all pixels. These negative values may be explained by 

a number of different factors. One factor is the uncertainty of the atmospheric correction. Another factor 

is that the PLSR model was established based on laboratory-measured spectral data that are different 

from the pixel reflectance in the Landsat images, which are influenced by spectral mixture [35]. 
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Figure 5. Evaluation of the PLSR model (a) and the MARS model (b) based on resampled 

laboratory spectra and the measured ECe. 

 

Figure 6. Soil salinity maps (ECe). (a) PLSR results for 2006; (b) MARS results for 2006; 

(c) PLSR results for 2012; and (d) MARS results for 2012. 

 

The received soil salinity values were grouped into five classes (<4, 4–8, 8–16, 16–32, and >32 dSm−1) 

(Figure 7). The soil salinity distribution in Figure 7 is consistent with our prior knowledge of the area 
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and field investigation. The spatial distribution of soil salinity had the same pattern for all four maps 

(PLSR and MARS models for 2006 and 2012). The areas with high salinity were located mostly in the 

northern and western parts of the study area, and the areas with low salinity occupied the southern and 

eastern parts of the study area; the soil salinity tended to increase from south to north in the direction of 

the El-Salam Canal and the Mediterranean Sea, which validated the trend of the effect caused by the 

seepage from the canals and the Mediterranean sea. The soil salinity in 2012 was higher than in 2006, 

mostly in the southern part of the study area, primarily due to the expansion of classes  

4–8 dSm−1, 8–16 dSm−1, and 16–32 dSm−1, and an accompanying decrease of the class with the lowest 

salinity (<4 dSm−1). At the same time, there was a decrease of the class with the highest salinity  

(>32 dSm−1) in the northern part of the study area in 2012, due to the cultivation and leaching in 

these areas. 

Figure 7. (a) PLSR results for 2006; (b) MARS results for 2006; (c) PLSR results for 2012; 

and (d) MARS results for 2012. 
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The MARS model showed higher salinity values than the PLSR model in both 2006 and 2012. The 

proportion of classes 4–8, 8–16, 16–32 and >32 dSm−1 was 53.54% for PLSR and 62.54% for MARS in 

2006 (Figure 7a,b), consistent with the results for 2012 (63.35% for PLSR and 76.95% for MARS; 

Figure 7c,d). Consequently, the very slightly saline class (<4 dSm−1) covered a larger area in the PLSR 

and MARS results and decreased in area over the period 2006–2012. 

The quantitative soil salinity maps produced by the PLSR and MARS models were successfully 

validated with 37 and 26 soil samples for the 2006 and 2012 maps, respectively. The predicted and 

measured values are plotted in Figure 8. The results indicated a satisfactory relationship between the 

measured data and predicted ECe values (R2 = 0.71 and 0.72 and RMSE = 5.37 and 5.30), for PLSR and 

MARS maps in 2006, respectively (Figure 8a,b). The validation results for MARS (R2 = 0.74 and 

RMSE = 5.23) and PLSR (R2 = 0.73 and RMSE = 5.18) maps for 2012 were of similar quality  

(Figure 8c,d). The results indicate that the MARS model using Landsat reflectance data is stable, and 

slightly better than the PLSR model for mapping and monitoring the soil salinity. It is apparent from 

Figure 8 that when the ECe values are high, some of the predicted values are deviated further from the 

measured ECe values, implying a nonlinear relationship between the ECe and the spectral data.  

The MARS model showed an ability to model the nonlinear relationship better than the PLSR model 

(Figure 8b,d). 

Figure 8. Scatterplots of measured versus extracted ECe values for (a) PLSR results for 

2006; (b) MARS results for 2006; (c) PLSR results for 2012; and (d) MARS results for 2012. 
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4. Discussion 

4.1. Soil Salinity Estimation Using the PLSR and MARS Models 

Two predictive models, PLSR and MARS, based on measured reflectance spectra and Landsat data, 

were applied to estimate and map soil salinity in the El-Tina Plain, Egypt. The performances, as well as 

their usefulness in monitoring the soil salinity of these models, were compared. PLSR was successfully 

used for predicting and mapping soil salinity elsewhere in the world, for example, in New South Wales, 

Australia [19], the Yellow River delta region in China [24], and Pingluo County, China [35]. MARS was 

successfully used for estimating soil salinity and other soil properties in laboratory work [28,32,45]. 

In this study, the results revealed that there was potential for the MARS and PLSR predictive models to 

improve soil salinity mapping using remote sensing data. The obtained results indicate that using MARS 

as a nonlinear modeling approach has improved predictive quality compared to the PLSR method. These 

results support the findings of Bilgili et al. [32] and Nawar et al. [33], which demonstrated that the 

MARS predictive models provided more robust predictions of soil salinity than the PLSR models. This 

difference is probably because MARS is a non-linear and flexible modeling method, capable of fitting 

complex and non-linear relationships and specifying the interaction effects as well as the linear 

combinations of variables [26,28,59]. Several studies have demonstrated that the prediction of high soil 

salinity levels implies some non-linear relationship between the measured soil salinity and the soil 

reflectance spectra [18,35,60]. MARS enables the reduction of the effects of the multistep process and 

any other unknown nonlinearity, and therefore is more effective than the PLSR model [59]. Although 

the PLSR method assumes a linear relationship between the ECe and soil reflectance spectra, a small 

deviation from linearity is acceptable and can be readily suppressed by including additional modeling 

factors [61]. 

The efficiency of the selected MARS and PLSR models to predict the soil salinity is demonstrated by 

all the indicators used in model testing (R2 = 0.73, RMSE = 6.53 dSm−1, and RPD = 1.96, for MARS; 

and R2 = 0.70, RMSE = 6.95 dSm−1, and RPD = 1.82 for PLSR). This efficiency is in part due to the 

high correlation between the measured soil salinity and the soil spectra. The PLSR model in this study 

exhibited superiority in the prediction power (R2 = 0.70) of soil salinity over those reported by 

Shamsi et al. [62] (R2 = 0.39) and recently by Allbed et al. [63] (R2 = 0.65), which were developed using 

a simple regression model and multispectral satellite images. Nonetheless, differences between the 

simple regression and the predictive models can have a high impact on the accuracy of estimating and 

mapping the soil salinity. Our findings further support the idea that the prediction of soil salinity based 

on the MARS and PLSR models and measured spectra yield better results than those based on simple 

regression and multispectral image spectra alone [64]. 

In this research, the method of resampling measured spectral reflectance was an important step in the 

processing. There are differences between the spectral reflectance of Landsat data and the simulated 

spectral bands. The method that was used for resampling the measured reflectance spectra only 

considered the spectral resolution of the Landsat sensor. Moreover, other factors such as radiometric 

resolution, spatial resolution, sensor geometry, and signal-to-noise ratio were not considered and should 

be involved in the simulation process in future research. Sidike et al. [35] used the resampled spectral 

reflectance with the PLSR model for estimating the soil salinity using QuickBird data; only the spectral 
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resolution of the QuickBird sensor was considered. Other advanced simulation methods, such as  

Liu et al. [65], which include effective parameters such as sensor geometry and signal-to-noise ratio, 

should be tested in further research. The field spectroscopy measurements were used only to assess the 

resulting image spectra after the atmospheric correction pre-processing due to the limitation of the 

number of field spectrometry measurements. Only the laboratory-measured reflectance spectra were 

used for statistical modeling in this study. 

The good results of the predictive models can be attributed to: (1) the good correlation between the 

soil salinity and the clay content [28,33], and (2) a strong decrease in the soil albedo with increasing soil 

salinity [18,66]. The influence of several factors, such as vegetation, soil moisture, and organic matter 

(OM), which could decrease the predictive capabilities of the models, was reduced. The vegetated areas 

were blacked out in the image classification process. Because this study was based on dry soils, the 

influence of moisture content on the soil spectra was also likely negligible. As long as the organic matter 

(OM) content is lower than 2%, the soil spectra are hardly affected by OM [20,67]. Therefore, in this 

study, the OM could not have affected the spectral reflectance because 97.15% of the soil samples in 

this study had an OM content of less than 2%, while the average OM content was 0.82%. According to 

Farag [68] and Reda [69], the dominant clay mineral type in the study area is montmorillonite, so the 

influence of clay mineral type on spectra may be the same for all soil samples. 

4.2. Soil Salinity: Mapping and Assessment 

The mapping of soil salinity with satellite imagery is based on the premise that the spectral reflectance 

of soil salinity is affected by the physical and chemical properties of the soil: quantity and mineralogy 

of salts, moisture content, soil texture, organic matter, and surface roughness [2]. Several researchers 

have studied the spectral response of salt crusts and other deposits recorded by Landsat sensors with 

simple regression models [23,64,70], and their findings justify why predictive regression models based 

on Landsat surface reflectance data have potential for use in the mapping of soil salinity. The good 

performance and accuracy of the predictive models in this study may be attributed to the effectiveness 

of atmospheric correction in removing radiometric distortions and the retrieval of true reflectance 

values [35,71]. Next, this study demonstrated that salt-affected soils exhibit a clear decrease in the 

spectral reflectance (Figure 2), consistent with the results of Metternicht and Zinck [2], Schmid et al. [72], 

and Sidike et al. [35]. In addition, our findings indicate that there is a high correlation between the 

measured reflectance spectra and the reflectance values derived from multispectral image data 

(Figure 4). This result indicates that the measured spectral reflectance and the Landsat data have great 

potential for predicting and mapping the soil salinity. This finding is in agreement with Sidike et al. [35], 

who found that a PLSR model based on measured reflectance spectra with multispectral image data is a 

promising tool for estimating and mapping the soil salinity. However, more investigation into factors 

influencing modeling and mapping accuracy—for example, types of salt minerals, types of clay 

minerals, soil moisture, and texture—should be considered in future research. 

The PLSR models tended to underestimate ECe at high salinity levels, but matched well at a low 

salinity level (<16 dSm−1), suggesting a non-linear relationship between the soil salinity and the soil 

reflectance [18]. The high R2 values obtained from the maps indicated that, similar to the MARS models, 

the PLSR models also learned well and had good generalization ability (Figure 5). The validation results 
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of ECe maps for 2006 and 2012 (0.71 < R2 < 0.73 and 5.18 < RMSE < 5.37) were found to be good. 

Both the MARS and PLSR results (Figure 8) indicate that Landsat imagery provided suitable data 

for predicting and mapping the soil salinity over large areas if an accurate and robust predictive model 

is available. 

The descriptive statistics derived from the soil salinity maps indicate that the predicted ECe values in 

the selected areas are lower than the observed ECe values. The reason behind the tendency of the MARS 

models to overestimate the measured ECe is not clear, but it can probably be attributed to spectral 

characteristics of the imagery or model generalization [18]. In spite of this tendency, the MARS models 

are satisfactory and resulted in very good R2 values for all maps, indicating that the models mostly 

learned well and had good generalization ability (Figure 8b,d). The validation results of ECe maps for 

2006 and 2012 (0.72 < R2 < 0.74 and 5.23 < RMSE < 5.30) were very good. 

Factors causing soil salinization include soil texture, land management practices (e.g., leaching, 

cultivation, and irrigation), a rising water table, and climate [73–75]. Therefore, the excess accumulation 

of salts at the soil surface is probably varied due to the distribution of different factors across the study 

area. For example, Akramkhanov et al. [74] found that the spatial distribution of soil salinity in the 

Khorezm Province, Uzbekistan, is likely due to soil texture, land management practices, and water table. 

We found that the spatial distribution of soil salinity was variable over the investigated areas. Patches 

with very strongly saline soil (>32 dSm−1) were found mainly in non-vegetated and clayey wet areas. 

Wet areas, shown in dark brown and brown (Figure 1), form in the El-Tina Plain due to a rising water 

table through subsurface seepage of seawater and leakage from irrigation and drainage canals. In 

addition, dissolved salts in the irrigation water can gradually accumulate in the soil and shallow water 

table. Thus, the rising water table within two meters causes potentially very high salinization  

rates [73,76]. However, the salinization of dry land occurs when saline groundwater approaches the soil 

surface, especially during drier seasons; the high evaporation rate causes the accumulation of salts at the 

soil surface [70]. Thus, the findings of this study suggest that the spatial variation in soil salinity over 

the investigated area may be explained mostly by the dominance of clayey soils, the rising saline 

groundwater, and the accumulation of salts at the soil surface combined with a high evaporation rate. The 

confirmation of this explanation requires further work in the study area. Similar results in an arid region, 

Al Hassa Oasis, Saudi Arabia, were found by Allbed et al. [63]. 

5. Conclusions 

The study reveals that estimation of soil salinity with predictive models based on the resampled 

laboratory spectra is promising. Good results were achieved for predicting soil salinity based on the 

PLSR model (R2 = 0.70, RMSE = 6.95, and RPD = 1.82) and even better for the MARS model  

(R2 = 0.73, RMSE = 6.53, and RPD = 1.96). The efficiency of both models is in part due to the high 

correlation between the measured soil salinity and the soil spectra. The models were subsequently 

applied on a pixel-by-pixel basis to the reflectance values derived from two Landsat images (2006 and 

2012) to map soil salinity in the study area of El-Tina Plain in Egypt. The accuracy assessment of the 

resulting maps with independent soil samples provided satisfactory results for both images and both 

models (MARS: R2 = 0.72 and 0.74 for 2006 and 2012, respectively; PLSR: R2 = 0.71 and 0.73 for 2006 
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and 2012, respectively). Overall, MARS was found to be a more suitable technique for the estimation 

and mapping of soil salinity than PLSR, especially in areas with high levels of salinity. 

Previous studies (e.g., [28,32,33]) showed that MARS and PLSR allows for modeling of soil salinity 

under laboratory conditions with sufficient accuracy. This study extended these findings and 

demonstrated how these predictive models, coupled with freely available satellite imagery, could 

successfully map soil salinity over the large agricultural area of the El-Tina Plain in Egypt. Mapping the 

soil salinity with remotely sensed data, the successful approach presented here, can help decision makers 

by providing up-to-date digital soil maps to better manage salt-affected soils in the studied area. The 

main strength of this method, besides its accuracy in soil salinity mapping, is the lower cost as compared 

to conventional field-based approaches. Consequently, the predictive models described in this study can 

be used to model and map other soil properties, such as cation exchange capacity, total nitrogen and 

phosphorus, soil pH, and organic matter, clay, and CaCO3 contents. Furthermore, using soil spectra 

resampling methods, the approach is robust enough to use various sensors for mapping and monitoring 

of agricultural arid areas, for example, the sensors onboard the newly launched Landsat 8. In future work 

we assume that the approach to mapping soil salinity presented in this paper should be tested with very 

high spatial resolution multispectral images, such as those provided by the WorldView-3 satellites. With 

their increasing availability, the spatial resolution and accuracy of salinity maps may most likely be 

improved, provided the approach elaborated in this study is fine-tuned to the specific properties of the 

very high resolution data. 
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