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Abstract: We retrieved the mass-specific scattering coefficient b*sm(λ) = 0.60·(λ/650)−1.82 

of the inhomogeneous and optically complex water column of eastern Lake Constance in 

May 2012. In-situ measured and modelled remote-sensing reflectance Rrs(λ) were matched 

via a parameter search procedure using genetic algorithms. The optical modelling consisted 

of solving the azimuthally-averaged Radiative Transfer Equation, forced with in-situ 

suspended matter concentration (sm) data. b*sm(λ) was univocally determined at red 

wavelengths. In contrast, we encountered unresolved spectral ambiguity at blue wavelengths 

due to the absence of organic absorption in our dataset. Despite this, a surprisingly good 

sm retrieval regression is achieved (R2 > 0.95 with respect to independent data) using our 

b*sm(λ). Acquisition of accurate inherent optical properties in future field campaigns is 

needed to verify the estimated b*sm(λ) and related assumptions. 
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1. Introduction 

Remote sensing of inland water quality is receiving increased attention in recent years in light of the 

emerging water crisis and the need for enhanced water quality monitoring [1–4]. Standard water 

quality parameters (WQPs) retrieved by remote sensing are mass concentrations of chlorophyll-a (chl), 

suspended matter (sm), and yellow substance (y; also referred to as gelbstoff or coloured dissolved 

organic matter (CDOM), quantified by means of their light absorption at 440 nm [5]). The inherent 

optical properties (IOPs) are the responses of water and its constituents to an incident collimated  

light source, i.e., absorption and scattering coefficients (the latter, angularly resolved, is the volume 

scattering function). IOPs are useful because they vary with the concentration of each WQP through 

the specific inherent optical properties (SIOPs) [6]. In particular, the mass-specific absorption and 

scattering coefficients of suspended matter are obtained by: a*sm(λ) = asm(λ)/sm, and b*sm(λ) = bsm(λ)/sm. 

SIOPs are used as ancillary knowledge to obtain the actual WQPs from remotely-retrieved IOPs. The 

spatial variability seawater SIOPs has been described by many investigations [7–12]. Seasonal 

variability has also been reported [13]. However, little is known about SIOPs in inland waters and the 

few measurements that have been performed are not directly transferable to other lake systems. 

The spectro-radiometric quantities (radiances and irradiances) are determined by the IOPs and the 

ambient conditions through radiative transfer forward models. Early models ignored the vertical 

variation of WQPs, assuming a vertically homogeneous surface water layer [14]. However, the vertical 

distribution of WQPs is oftentimes non-uniform not only in oceanic chlorophyll-dominated waters [15] 

and coastal turbid waters [16], but especially so in inland waters [17]. Bélanger et al. [18] concluded 

recently that appropriate optical closure between measured and modelled radiometric quantities require 

the consideration of the vertical structure of near-surface IOPs. 

Inversion procedures retrieve IOPs from spectro-radiometric quantities. Such procedures can be 

based on solving the Radiative Transfer Equation (RTE) [19] or making approximations if the 

computational time is limiting [20]. In the cases where a closed algebraic expression for the IOPs is 

not possible, minimization routines are used. Global optimization methods provide the absolute 

minimum of a certain goal function defined over all possible values of the unknown parameters. 

Among them, genetic algorithms (GA; [21]) are particularly useful for dealing with complex problems 

and a large number of unknowns [22]. GA have been employed in numerous fields of science and 

technology and are especially popular in computer-aided design, where GA search for the set of 

parameters that leads to the best performance based on the design criteria [23]. An important 

advantage of GA is that they make no assumptions about the structure of the modelled system as it is 

treated as a black-box. During model calibration, GA search for the optimal set of model parameters to 

minimize the deviation between the model output and the desired result [24]. 
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In remote sensing, GA are widely used in land-cover classification [25–27] and retrieval of 

vegetation parameters [28–30]. However, despite their proven performance, GA have been less used in 

the context of water colour and corresponding quality. Chami and Robilliard [31] used GA to invert 

oceanic constituents from simulated data for case 1 and case 2 waters. Haigang et al. [32] described  

the performance in optically deep waters. Chang et al. [33] coupled GA to a semi-analytical algorithm 

with application to MODIS-Aqua imagery. Chen et al. [34] used GA to build an empirical equation 

with optimal coefficients to retrieve chl in a mesotrophic reservoir based on Landsat imagery.  

Chang-Chun et al. [35] used GA and a semi-analytical algorithm to evaluate the concentration of  

two different phytoplankton species in a eutrophic lake. Song et al. [36] combined GA and partial 

least-squares to build an empirical algorithm for the retrieval of chl in turbid waters. 

In this study, we use GA to estimate an appropriate b*sm(λ) for Eastern Lake Constance using Rrs(λ) 

and sm(z) as model inputs. The approach is driven by the lack of a complete IOP measured dataset, 

which forces us to a number of assumptions, detailed in the corresponding sections. Despite the 

impossibility of a direct validation of b*sm(λ), we perform at least an indirect validation: we use the 

estimated b*sm(λ) to determine smret, which is compared to independent in-situ sm measurements. Our 

results are additionally compared to those obtained by the QAA_v5 algorithm [37], which also allows 

for the retrieval of spectral IOPs, using a sequence of arithmetic operations. 

2. Experimental Section 

2.1. Study Area 

Lake Constance is located on the plateau north of the Alps, between Switzerland, Germany and 

Austria (Figure 1). The Alpine Rhine River (2, in Figure 1) discharges into the eastern basin, 

accounting for 62% of the total water input. The discharge reaches its maximum in late spring and 

early summer, due to massive snow melting. During this period, the river carries large loads of mineral 

particles [38], which create marked contrasts with the clear and oligotrophic lake water. Regarding the 

particle composition, Müller and Quakernaat [39] reported a dominance of the mica-chlorite assemblage 

near the Rhine inflow, and an increase of the smectite/mica ratio as moving westwards. In a more 

recent study, Schmieder et al. [40] analysed water samples near the shore, and confirmed the high 

variability of particle composition across the lake, in particular the “contribution of siliciclastic and 

dolomite minerals […] was much higher in the eastern parts of the lake than in the western parts”. 

Other rivers may contribute to the lake’s IOPs only near their inflows. The Bregenzer Ach is 

another alpine river, and its waters are mineral-rich. In contrast, the catchment areas of the Leiblach 

and the Argen are plain lands of more intensive agricultural use, thus containing higher amounts of 

dissolved organic matter. Due to this complexity in the inflowing waters, the applicability of 

horizontally-invariant SIOPs needs to be tested. 
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Figure 1. Eastern Lake Constance. The sampling points on 25 May 2012, are indicated,  

as p5p24. The main inflows are: (1) Old Rhine, (2) Alpine Rhine, (3) Dornbirner Ach, 

(4) Bregenzer Ach, (5) Leiblach and (6) Argen. Reproduced with permission of the Federal 

Office of Topography swisstopo. 

 

2.2. Measured Data 

The data presented in this paper was measured on 25 May 2012, collected at the sampling points 

shown in Figure 1. The samples were acquired between 9 am and 5 pm CEST. 

A WET Labs C-star transmissometer measured light transmission profiles over a 10 cm optical path 

at 650 nm, from which the beam attenuation coefficient csm(650,z) (m−1) with respect to pure water 

was derived. csm(650,z) is expected to be linearly related to suspended matter [41], provided a 

background of low-to-medium CDOM absorption. 

Gravimetric measurements were performed using Whatman GF/F filters, diameter 47 mm, pore size 

0.7 µm, which were pre-heated at 450 °C for 100 min and then pre-weighted. Surface water samples 

(right below the surface to avoid floating particles) were taken, shaken and filtered. Afterwards, the 

filters were dried for 12 h at 50 °C and weighted again. The concentration sm(0−) was then calculated 

as the differential mass divided by the volume of filtered water. 

Hemispherical-directional above-surface reflectance spectra were acquired using the Water Insight 

WISP-3 [42]. It is a hand-held spectrometer with three radiometers: one cosine receptor to measure the 

downwelling irradiance Ed(λ), and two Gershun tubes to measure the downwelling radiance from the 

sky Ld(λ, θ = 42°), and the total upwelling radiance Lu(λ, θ = 138°), θ being the polar angle, according 

to Mobley [43]. The measurement procedure was performed following Hommersom et al. [42]. 

Rrs(λ) was calculated as: 

 (1)

with a reflectance factor ρ = 0.028 [43]. 
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The original dataset consisted of 26 sampling points, from p0–p25 (Figure 1). However,  

Mobley [43] showed that for a viewing angle respect to nadir θv < 45°, the relationship ρ = 0.028 

ceases to hold and ρ starts to increase with θv. By applying this constraint, we discarded p0–p04  

and p25. To ensure the condition of optically-deep water, we discarded p16 and p20, which had  

a bottom depth zb < 7 m. The rest of the sampling points had zb > 25 m, with the sole exception of p17, 

with zb = 10 m but a very turbid sub-surface layer, so that bottom reflectance was unlikely. 

We constructed sm(z) using a linear regression between the particle beam attenuation at 650 nm just 

below the surface, csm(650,0−), and the concentration sm(0−) measured gravimetrically for the same 

sampling point. For this regression (Figure 2), we used only the sampling points that showed smooth 

near-surface profiles (for the GA procedure, all points were included instead). Then, we assumed that 

the particle composition of the surface samples can be extended to the first optical depth, so that the 

same SIOPs remain applicable. Under this assumption, we extended Equation (2) to the whole water 

column to construct the profiles sm(z): 

sm(z) = 1.717csm(650,z) − 1.696 (2)

The non-zero intercept in Equation (2) implies that light transmission for gravimetric sm = 0 is 

~90%. This issue is perhaps due to drift of the factory-supplied dark offset and does not affect the 

slope of Equation (2). A minor part of this background attenuation can be caused by particles smaller 

than 0.7 µm that are not retained on the filters. 

Figure 2. Scatter plot between beam attenuation at 650 nm at sub-surface and 

gravimetrically measured sm. Best linear fit: sm(0−) = 1.717csm(650,0−) − 1.696, with the 

units of mg·L−1 and m−1, respectively. Coefficient of determination: R2 = 0.992. 

 

The possible CDOM absorption at 650 nm is yet to be verified. Setting a spectral slope  

S = 0.014 nm−1 and a higher bound of CDOM absorption y(440) = 0.5 m−1 (higher values are unlikely 

in Lake Constance [5]) leads to y(650) = 0.264 m−1, which can be neglected for the magnitude range 

in Figure 2. 
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Figure 3 shows the measured Rrs(λ) and sm(z) for every sampling point. At first sight, sm(z) and 

Rrs(λ) seem to have a positive correlation. The profiles sm(z) always peak at a sub-surface layer, which 

in some cases is close to the surface. Therefore, it would be inappropriate to relate Rrs(λ) to surface 

values of sm. For instance, point p10 shows sm(0 m) < 1 mg·L−1 but a peak sm(4 m) ≈ 28 mg·L−1, 

whereas p11 shows a fairly constant sm ≈ 2.5 mg·L−1 from 0–10 m depth. As a result, Rrs(λ) is higher in 

p10 than in p11. The same happens between p05 and p06: p05 has a lower sm at the surface, but a 

higher Rrs(λ), due to a strong peak of sm(4.8 m) ≈ 16 mg·L−1, whereas for p06, sm(4.8 m) ≈ 12 mg·L−1. 

Figure 3. Attenuation-derived sm(z) (left) and Rrs(λ) (right) for all sampling points  

p05–p24. For legibility reasons, units are indicated only in two reference graphs at the 

bottom left. 

 

The regression of Equation (2) can also be used as validation data for b*sm(λ) (derived in this 

article) at the wavelength 650 nm. We first assume absorption and scattering as proportional to the 

concentration, so we get: 

 (3)

We divide Equation (3) by sm(z) and apply Equation (2) after neglecting its residual 

term (attenuation by sm depends only on the linear term). We thereby quantify the mass-specific 

particle attenuation: 
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 (4)

We assume a negligible a*sm(650) with respect to b*sm(650), which we justify as follows: non-algal 

absorption decays exponentially and can be estimated as negligible, or in the worst case, as a 

background value of 0.02 m2·g−1 (the existence of this background is controversial [44]). Mass-specific 

phytoplankton absorption at 650 nm has a value of ~0.01 m2·g−1 [45], which finally leads to a total 

0.03 m2·g−1. In contrast, b*sm(650) is never smaller than 0.3 m2·g−1 [44,46], which is 10 times more. 

Therefore, we obtain: 

 (5)

3. IOPs Modelling and Inversion 

3.1. Optical Properties of Lake Constance 

We model the IOPs of Lake Constance using a general case 2 scheme. Absorption a(λ,z) is 

separated into the following components: pure water (w), chl, and a single term for detritus, CDOM 

and mineral particles (dgm). Scattering b(λ,z) is assigned to water and particles. The spectral interval is 

between 400 and 800 nm. Table 1 includes all the variables used in the optical modelling. 

 (6)

Absorption of pure water is modelled using the measured spectra of Pope and Fry [47] and its 

scattering is computed using the formulas by Mobley [6]. 

Absorption by chl and its concentration are assumed to be linearly related [45,48]: 

 (7)

The choice of a*chl(λ) depends on the local phytoplankton species composition. This coefficient 

changes with space and time and is therefore a major source of uncertainty in spectral matching [49]. 

To partially overcome this problem, Gege [45] measured in-vitro a*chl(λ) of five typical phytoplankton 

classes in Lake Constance and proposed one average spectrum, which is used in this paper as in a 

previous study for Lake Constance [5]. We did not measure chl in our field work, so it is set as an 

unknown parameter. 

For CDOM, a spectral exponential decay has been found appropriate [50]. Miksa et al. [51] 

measured in Lake Constance a decay constant S between 0.009 and 0.019 nm−1. The value S = 0.014 nm−1 

was used to retrieve WQPs from MERIS data [5]. 

The spectral variation of the IOPs related to sm is less known. Detritus and mineral particle 

absorptions have been neglected in previous retrieval applications at Lake Constance [5,52], since 

significant contributions of the former are only expected for the Rhine delta region. From a large 

number of samples in coastal areas across Europe, Babin et al. [53] suggested that the absorption 

spectrum of detritus and mineral particles is well approximated by exponential decays, with a spectral 

decay close to 0.014 nm−1. The coincidence with the shape of CDOM makes the separation of detritus, 
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CDOM and minerals from the bulk absorption an ill-posed problem, so we are forced to include them 

in a single exponentially-decaying term, with S = 0.014 nm−1: 

 (8)

Scattering by sm is widely modelled by a power law. Stramski et al. [46] found an exponent up to  

η = −1.3 for different types of particles in seawater. Odermatt et al. [5] used a power law for 

backscattering for remote sensing on Lake Constance, combined with a wavelength-independent 

bb,sm/bsm. The scattering magnitude at reference wavelengths varies between 0.5–1.5 m2·g−1 at  

555 nm in Bowers and Binding [44] and 0.3–1.1 m2·g−1 at 400 nm in mineral-dominated assemblages 

by Woźniak et al. [12]. 

We model scattering by sm using the following product 

 (9)

and set a power law for mass-specific scattering: 

 (10)

Both b*sm(555) and η are left as unknown variables for optimization. The sm phase function is  

chosen from the Fournier-Forand family [54], using the ratio bb,sm/bsm = 0.019 [5,52]. This value is in 

agreement with measured values in water dominated by inorganic sediments [55]. 

Table 1. Summary of variables used in the optical model, separated as fixed (assumptions 

from literature), unknowns (values calculated in the model), inputs (values defining the 

specific scenario to be simulated by the model) and intermediate (constructed from other 

variables, as part of the bio-physical model). 

Symbol Type Description Unit 

Rrs(λ) Input Remote-sensing reflectance sr−1 
a(λ) Intermediate Total absorption m−1 
aw(λ) Fixed Pure water absorption m−1 
achl(λ) Intermediate Phytoplankton absorption m−1 
chl Unknown Chlorophyll-a concentration µg·L−1 
a*chl(λ) Input Mass-specific absorption by phytoplankton m2·g−1 
adgm(λ) Unknown Detritus, CDOM and mineral absorption m−1 
adgm(440) Unknown Detritus, CDOM and mineral absorption, at 440 nm m−1 
S Fixed Spectral decay constant of the detritus, CDOM and mineral absorption nm−1 
b(λ) Intermediate Total scattering m−1 
bw(λ) Fixed Pure water scattering m−1 
    
    
bsm(λ,z) Intermediate Scattering by sm m−1 
sm(z) Input Total suspended matter profile mg·L−1 
b*sm(λ) Intermediate Mass-specific scattering by sm m2·g−1 
b*sm(555) Unknown Mass-specific scattering by sm, at 555 nm m2·g−1 
η Unknown Exponent of the power-law model of mass-specific scattering of sm - 
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3.2. Solving the Radiative Transfer Equation with Ecolight 

Forward radiative transfer calculations are done using Ecolight, by Sequoia Scientific, Inc. [19]. 

Ecolight solves the azimuth-averaged RTE to obtain the radiance distribution as a function of depth, 

polar angle and wavelength. Ecolight is gaining popularity due to its good trade-off between speed and 

precision [16,56]. In this work, Ecolight is used instead of the more popular Hydrolight since the full 

angular radiance distribution is not needed, but only Rrs(λ). Our preliminary simulations showed  

a negligible difference in Rrs(λ) between Hydrolight and Ecolight, but at least 40 times faster 

performance for Ecolight. The source code of Ecolight has been compiled with the Intel Fortran 

Compiler 11.1 (IA-32) for Linux, included in the Intel® Composer XE 2013 compiling suite, and 

called from GNU Octave [57]. The input text files are automatically generated each run by ad-hoc 

Octave scripts. 

Fluorescence by chl and CDOM, as well as Raman scattering are included in the simulation.  

The quantum yield of phytoplankton fluorescence is set to 0.02. CDOM fluorescence is not computed. 

The Raman scattering coefficient is set to 2.6 × 10−4 m−1 at the reference wavelength 488 nm and its 

corresponding phase function is set isotropic. The sun zenith angle is computed from time and location 

data. Normalized sky radiances are computed using the sky model of Harrison and Coombes [58], for 

an average cloud cover of 0.3. Diffuse and direct sky irradiances are computed using the RADTRANX 

model, included in the Ecolight software. The clear-sky irradiances are adjusted for cloudiness by the 

model of Kasten and Czeplak [59]. Other parameters are: atmospheric pressure 1012.53 hPa, air mass 

type 3, relative humidity 80%, precipitable water 2.5 cm, wind speed 4 m·s−1, visibility 15 km, ozone 

330.1 Dobson units and an aerosol optical thickness of 0.261 at 550 nm. The index of refraction of 

water is calculated for an average water temperature of 14 °C and negligible salinity. The parameters 

mentioned in this paragraph are left constant for all sampling points, which were sampled within a few 

hours. Finally, the water column is considered infinitely deep. 

3.3. Inverting the Radiative Transfer Equation with Genetic Algorithms 

The goal of the optimization procedure (Figure 4) is to retrieve the unknown variables of Table 1 by 

spectral matching of Rrs(λ). The goal function f in Equation (11) is built consequently, as the relative 

RMS error across the spectrum, and posteriorly averaged across sampling points. Nλ is the number of 

spectral bands and Np is the number of sampling points. The error is chosen as relative instead of 

absolute to give the same importance to all the sampling points, which have largely different peak 

values of Rrs(λ). 

 (11)

We arbitrarily choose six first valid points (p05–p10, Figure 1) to derive b*sm(λ). The optical model 

is forced at each point with the corresponding sm(z). The parameter search finds the b*sm(λ) leading to 

the best fitness, as defined in Equation (11). A general scheme of this GA procedure is shown in 

Figure 5. The mass-specific scattering coefficient b*sm(λ) is expected to have much less spatial 

variability than any IOP, as far as the particle composition remain constant at the given lake area. 
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On the other hand, adgm(λ) depends on the actual concentrations of CDOM and sm, thereby its value 

needs to be determined individually at each point. 

Figure 4. Scheme of the internal functioning of the genetic algorithms (GA) optimization 

procedure. The contents of the search space, initial population and the best individual of 

the final population are detailed below each box. 

 

Figure 5. Scheme of the usage of the genetic algorithms (GA) for the retrieval of the  

mass-specific scattering coefficient, using as input data vertical profiles and reflectance  

at 16 wavelengths from six sampling points. 

 

For the spectral range, we use 16 spectral bands for simulation in Ecolight, from 400–800 nm with 

25 nm bandwidth, covering the full range measured by the WISP-3. The measured Rrs(λ) are 

interpolated to the same grid for comparison. 

We use the GA software package developed by Houck et al. [60] under the GNU General Public 

License. Figure 4 illustrates the flow chart of a GA routine. The working principle mimics the 

evolutionary “survival of the fittest” [61]. Every unknown variable (every row of the column 

“Parameter” of Table 2) is called a gene, and the vector formed with a set of genes is called an 

individual. One individual is a complete set of model parameters that provide one model result (in our 
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case, one set of bio-physical parameters that determine a single solution of the RTE). GA are 

initialized with an initial random population of individuals (first generation, k = 1), taken from a 

search space, which is the set of all possible values of the individuals, based on numerical bounds and 

other constraints. The bounds are specified in Table 2, column “Range”. No further constraints are set. 

The goal function f is evaluated by calling the bio-physical model (in our case, the solution of the 

RTE) for all individuals. The individuals that perform worst in terms of the goal function (in our case, 

the highest deviation from the observations) are eliminated and the rest are exposed to crossover, in 

which couples are formed and their genes exchanged, giving each birth to a pair of children. A subset 

of the offspring is exposed to a mutation process, in which several genes from certain individuals 

undergo a change in their values. The offspring forms the next generation (k → k + 1) and the process 

is repeated. The set-up of the GA parameters are left as the default values in Houck et al. [60]. The 

process is repeated until the maximum number of generations is achieved (k = N) or the goal function 

meets the requirements (f < fmax). The random component of GA lies in the crossover and mutation.  

On the other hand, the selection is deterministic. For detailed explanations, with focus on practical 

applications, the reader is referred to Haupt and Haupt [62]. 

Due to the random component of the GA, different optimizations do not necessarily lead to the 

same results, despite having the same initial search space. In a multidimensional space, a sufficient 

number of individuals must be spread, and for a given population density, the number of individuals 

grows exponentially with the number of dimensions. In our case (14 dimensions, see Table 2), the number 

of individuals should be high, but this is limited by computing and memory resources. We iteratively 

increased the population of the GA and found sufficient convergence when 200 individuals are chosen. 

The number of generations was set to 60. This lead to 12,000 evaluations of the bio-optical model. 

3.4. Vertical Averaging of the Suspended Matter Profiles 

Remote sensing algorithms retrieve sm concentrations that compare to a vertically-weighted average 

of the in-situ measured sm profiles, according to light extinction. To average our in-situ data, we use 

the following weighting function, which includes the round trip attenuation to depth z according to the 

diffuse attenuation coefficients of upwelling and downwelling irradiances (Kd and Ku) [63]: 

 (12)

Ecolight provides inaccurate Kd and Ku if the output depths are not closely spaced. Instead, Hydrolight 

adds automatically new depths close to the output depths to provide accurate values. We therefore 

obtain Kd and Ku by Hydrolight simulations of each sampling point, using the same input data as  

for Ecolight. 

The weighting function of Equation (12) is wavelength-dependent. To obtain a single depth-averaged 

sm, we need to perform a wavelength average, 

 (13)

  

( ) ( ) ( )[ ]{ } λ+λ−=λ
0

'd,','exp,
z ud zzKzKzg

( ) ( )
( )


λ

=
∞−

∞−

λ λ

λ
=

N

j
j

j

zzg

zzgz

N 1
0

0

d,

d,sm1
sm



Remote Sens. 2014, 6 9541 

 

 

3.5. Comparison to the Quasi-Analytical Algorithm 

The QAA (version 5) [37] is a semi-analytical algorithm that combines analytical IOP modelling 

with empirical coefficients. It was calibrated using data of oceanic and coastal waters and introduces 

several changes with respect to former versions. Contrary to analytical algorithms, the QAA does not 

require optical closure for the full spectrum and therefore does not make use of any assumed SIOP.  

For further details, the reader is referred to Lee et al. [37]. 

Spectral backscattering is modelled through a power law: 

 (14)

The reference value at 555 nm bb,sm(555) and the exponent η have been estimated from Rrs(λ). 

For sm, QAA’s output value is bb,sm(555). To relate backscattering to the actual concentration,  

a given mass-specific backscattering (external to the QAA procedure) is needed as ancillary 

knowledge. Here, we use our assumed back-scattering to scattering ratio bb,sm/bsm = 0.019 and the 

reference value b*sm(650) = 0.6 m2·g−1 in order to get: 

 
(15)

4. Results and Discussion 

4.1. Derivation of the Mass-Specific Suspended Matter Scattering Coefficient 

We performed eight independent optimizations with the same range of parameter search (Table 2). 

As GA have random components (initial solution and mutation), results may vary among optimizations. 

Figure 6 shows the matched Rrs(λ) for each point and each optimization. All the optimizations 

achieved a good degree of agreement (f < 5.1%). Table 2 below summarizes the different solutions. 

b*sm(555) shows values between 0.80 and 1.02 m2·g−1, and the exponent η varies between −2.70 and 

−1.73. Figure 7 depicts the reconstructed spectral b*sm(λ) for each optimization. The relatively steep 

slope η for all cases suggests a predominance of small particles in the size distribution, which could 

also explain the residual scattering found in Equation (2). Differences among curves at blue wavelengths 

indicate that adgm(λ), achl(λ) and bsm(λ) are affected by spectral ambiguity, due to similar spectral 

shapes [64]. On the contrary, ambiguity is minor at green to red wavelengths, because adgm(λ) vanishes 

and because the shapes of achl(λ) and bsm(λ) are very different at that region of the spectrum. Therefore, 

all the optimizations show very similar b*sm(λ), approaching b*sm(650) ≈ 0.6 m2·g−1, in agreement with 

the value derived from the transmissometer measurements in Equations (2)–(5) (red dot in Figure 7). 
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Table 2. Retrieved model parameters for each of the eight optimizations. 

Parameter Range opt1 opt2 opt3 opt4 opt5 opt6 opt7 opt8 

b*sm(555) (m2·g−1) [0.1, 1.5] 0.97 0.91 0.79 0.95 0.85 1.02 1.05 0.80 
η (--) [−3, 0.5] −2.44 −2.32 −1.73 −2.36 −2.07 −2.59 −2.70 −1.82 
adgm(440)p5 (m

−1) [0.05, 1] 0.32 0.40 0.27 0.32 0.39 0.37 0.40 0.19 
adgm(440)p6 (m

−1) [0.05, 1] 0.66 0.57 0.28 0.63 0.53 0.69 0.65 0.53 
adgm(440)p7 (m

−1) [0.05, 1] 0.34 0.36 0.29 0.42 0.20 0.32 0.58 0.28 
adgm(440)p8 (m

−1) [0.05, 1] 0.81 0.80 0.53 0.68 0.75 0.93 0.91 0.69 
adgm(440)p9 (m

−1) [0.05, 1] 0.68 0.61 0.42 0.68 0.56 0.68 0.74 0.46 
adgm(440)p10 (m

−1) [0.05, 1] 0.15 0.23 0.12 0.13 0.15 0.20 0.32 0.11 
chlp5 (µg·L−1) [1, 20] 7.21 5.19 5.87 6.95 4.69 7.17 6.72 7.60 
chlp6 (µg·L−1) [1, 20] 7.74 7.64 10.58 7.43 7.22 8.51 9.66 5.82 
chlp7 (µg·L−1) [1, 20] 5.37 4.38 4.79 3.88 6.50 5.88 2.11 4.96 
chlp8 (µg·L−1) [1, 20] 15.00 13.54 12.83 16.88 11.13 15.88 16.57 10.39 
chlp9 (µg·L−1) [1, 20] 7.40 6.87 7.30 6.45 6.21 8.21 8.50 6.68 
chlp10 (µg·L−1) [1, 20] 19.53 15.97 17.31 19.69 16.97 18.61 18.05 17.37 
f (%)  5.01 5.04 4.91 4.97 5.08 5.14 5.26 4.85 

Figure 6. Remote sensing reflectance (16 bands) for the six sampling points p05–p10. Blue 

circles: measured. Rest: Results of the eight optimizations, whose outcome parameters are 

shown in Table 2. 
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Figure 7. Retrieved b*sm(λ) for each optimization, corresponding to the columns of  

Table 2. The red dot corresponds to the predicted value by Equation (5). 

 

In order to decide which optimization to choose as best result, we apply a posteriori physical 

constraints: Values b*sm(400) > 1.5 m2·g−1 are very unlikely [46], so we select only optimizations 

resulting in b*sm(400) < 1.5 m2·g−1 (opt3 and opt8 in Table 2). Additionally, they show the best Rrs(λ) 

match. opt8 has a slightly lower error, so we finally choose it as the best solution. Figure 8 shows 

b*sm(λ) = 0.80(λ/555)−1.82 (opt8) together with previously published data. 

Afterwards, we performed several optimizations in which we replaced the constrain  

b*(555) ∈ [0.1, 1.5] m2·g−1 with b*(400) ∈ [0.1, 1.5] m2·g−1. For a typical spectral shape of b*, this 

constrain is more restrictive, as b* tends to increase towards the blue. We find b*(400) ranging from 

0.75–1.2 m2·g−1 and η ranging from −0.8 to −1.6. Again, b*(400) and η combine in a fashion leading to 

b*(650) close to 0.6 m2·g−1, as already depicted in Figure 7 (the most distant, 0.52 m2·g−1). Thus, the 

range of ambiguity in b*(400) extends towards lower (and probably, more physical) values than those 

depicted in Figure 7, but always tending to uniqueness towards the red. Therefore, it is more 

illustrative to present the specific scattering with a reference wavelength of 650 nm instead of 555 nm,  

so that the reference value is quite certain, while all the uncertainty is contained in the exponent.  

The final expression is then: b*sm(λ) = 0.60(λ/650)−1.82. 

Although the goal of this paper is to retrieve b*sm(λ), we make some comments on the other 

quantities. The chl and adgm(λ) retrievals are affected by the spectral ambiguity previously commented. 

They are too high for all but opt3 and opt8 (adgm up to 0.93 m−1, chl up to 19 µg·L−1). For opt3 and 8 

they show more realistic values but are probably still too high [65] (pp. 46–47). 

Figure 6 shows that p10 yields the worst spectral fitness of all, probably due to a higher degree of 

measurement uncertainty. In fact, p10 shows the most unrealistic chl values. However, as the goal 

function f in Equation (11) is an average of six points, a higher error in one of them is accepted,  

yet keeping f low. It is worth noting that, although the spectral shape of adgm(λ) is accepted to be 

exponential, the achl(λ) used in this article [45] can have significant deviations from the real value. 
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Figure 8. Comparison of b*sm(λ) retrieved in this work (solid, blue) to other values from 

literature. Green, dashed: lower and upper limits of values found in Stramski et al. [46]. 

Red, dot-dashed: lower and upper limits of values found in Woźniak et al. [12]. Grey 

diamonds: values reported by Bowers and Binding [44] at 555 nm. Beige, dotted:  

Heege [52] for Lake Constance. Pink, dashed: Odermatt et al. [5] for Lake Constance. 

Solid, black: example values for Hydrolight/Ecolight [19] taken from various authors. 

Solid, green: point retrievals of the QAA, after imposing b*sm,QAA(λ) = 0.6 m2·g−1. Red dot: 

predicted value by Equation (5). 

 

4.2. Validation 

In the previous section, we derived b*sm(λ) = 0.60(λ/650)−1.82 (opt 8 in Table 2) using the sm 

concentrations of p05–p10. Now, as validation, we leave b*sm(λ) fixed as ancillary knowledge and 

retrieve the apparent, vertically constant sm profiles (smret) for comparison with the in-situ measured 

sm(z). The retrieval is made separately for each sampling point by spectral matchup of Rrs(λ) with 

points p050–p10 (calibration dataset) and p11–p24 (independent dataset). We performed a single sm 

retrieval (for every single sampling point) in Section 4.2 because we found very satisfactory results 

(shown in Figure 9). Posterior repeated runs (results not shown) for each point revealed a remarkable 

robustness of the retrievals for the high sm values (sm > 3 mg·L−1). However, for the clearest waters, 

the retrieval is affected by some uncertainty. It seems that, when sm dominates the optical properties 

(wavelength-averaged in our approach), the solution of the inverse problem tends to uniqueness. The 

reader should also note that the good correlation coefficient is mainly driven by the high sm values 

(Figure 10). This outcome is of no surprise, since it would be difficult to have such good retrieval  

by coincidence. 

Figure 9 shows the superimposed measured sm(z) (blue) and smret (red) for every point. For all 

points, the match between smret and the measured sm(z) seems excellent for the upper layer, even for 

the independent dataset, which was not used to derive b*sm(λ). 

Application of the QAA to our dataset yields values for η ranging from −0.26 at p07 to −0.75 at 

p19, which are much flatter than our retrieved η = −1.82. By defining b*sm,QAA(650) = 0.6 m2·g−1 and 
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applying the QAA spectral slopes at each point, all the point-specific b*sm,QAA(λ) are plotted in  

Figure 8. Retrievals of sm by the QAA are calculated using Equation (15) and shown in green in 

Figure 9. The QAA seems to underestimate high sm values. 

Figure 9. Measured sm profiles sm(z) (blue), retrieved constant sm profiles smret (red) and 

QAA retrievals (green). The red line is hardly visible in the cases with very good match 

(p06, p09, p12 and p24). (a) Sub-data set used for model calibration. (b) Rest of the data set. 

 

To perform a numerical comparison among profiles in Figure 9, the measured sm(z) are vertically 

averaged using Equation (12). The regression analysis performed in Figure 10 between <sm> and smret 

shows the quality of the sm retrievals using our algorithm for the calibration dataset (p5–p10) in blue, 

using our algorithm for the validation dataset (p11–p24) in green, and using the QAA for all points 

(in red). The left graph (a) compares the retrievals with respect to a single sub-surface measured value, 

sm(0−), whereas the right graph (b) compares with respect to the vertically-averaged measured value, 

<sm> (Equation (12)). These results highlight the following: 
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(1) R2 improves if we consider the entire profile to evaluate the retrieval ((b) in Figure 10) than if 

we only consider a sub-surface measured value ((a) in Figure 10). The reason is due to the 

strong vertical variability of sm(z) (blue in Figure 10, in particular, p3, p4, p5, p8, p13, p19 and 

p20). In these cases, a single depth is not representative for the sake of algorithm development 

and evaluation, but the whole profile is needed due to light penetration [15,16,18]. 

(2) R2 does not significantly decrease for the validation dataset (green in Figure 10) compared to 

the calibration dataset (blue in Figure 10), in spite of the expected ambiguity of our b*sm(λ) 

estimate and the absorption variables in the bio-optical model. We can thus conclude that the 

expected ambiguity does not lead to retrieval failure as far as our limited dataset is concerned. 

(3) The QAA underestimates <sm> by a factor of 1/0.577 when using the derived  

b*sm(650) = 0.6 m2·g−1 and the assumed bb,sm/bsm = 0.019 in Equation (15). To compensate for this 

factor, we could keep bb,sm/bsm = 0.019 and set b*sm,QAA(650) = 0.6·0.577 m2·g−1 = 0.346 m2·g−1. 

This value is in the lower range of published data (Figure 8) and differs from  

b*sm(650) = 0.6 m2·g−1, which we derived independently. On the other hand, if we keep 

b*sm,QAA(650) = 0.6 m2·g−1, we get bb,sm/bsm = 0.011, unlikely for mineral-dominated suspended 

matter [55]. The discrepancy seems to rely on the QAA retrieval of backscattering. Given the 

good correlation R2 = 0.91 to in situ data, it seems that, after a custom QAA calibration,  

the best fit could be brought to the 1:1 line. Nonetheless, this latter task is beyond the scope of 

this article. 

Figure 10. (a) Scatter plot of in-situ measured sm just below the surface versus  

algorithm-retrieved sm. (b) Same as (a), but using the vertically averaged sm as in-situ 

data. In both plots the colours represent as follows: blue for p50–p10 (calibration dataset) 

using our algorithm; green for p11 to p24 (validation dataset), using our algorithm; red for 

all points p5 to p24, using the QAA; and black-dashed for the 1:1 line. The coefficients of 

determination R2 are calculated with respect to the best linear fits. 
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5. Conclusions 

In this paper, we achieved radiative transfer closure between IOPs and Rrs(λ) using Ecolight for 

Radiative Transfer modelling and genetic algorithms (GA) for parameter search. Using a subset of our 

field data, we retrieved a b*sm(λ) consistent with independent measurements at 650 nm. This b*sm(λ) 

was used as ancillary data to perform a remote sensing retrieval of suspended matter smret, comparing 

very well to in-situ independent data (R2 > 0.95). The robustness in the sm retrievals is somehow 

surprising given the insufficient constraint of the bio-optical model with our available measurements. 

Further evaluation of the algorithm will aim at a validation with accurate SIOP measurements. This will 

allow assessing different additional constraints, and making a direct comparison of measured and 

retrieved b*sm(λ). 
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