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Abstract: We propose a procedure to detect significant changes in forest spatial patterns 

and relevant scales. Our approach consists of four sequential steps. First, based on a series 

of multi-temporal forest maps, a set of geographic windows of increasing extents are 

extracted. Second, for each extent and date, specific stochastic simulations that replicate 

real-world spatial pattern characteristics are run. Third, by computing pattern metrics on 

both simulated and real maps, their empirical distributions and confidence intervals are 

derived. Finally, multi-temporal scalograms are built for each metric. Based on cover maps 

(1954, 2011) with a resolution of 10 m we analyze forest pattern changes in a central 

Apennines (Italy) reserve at multiple spatial extents (128, 256 and 512 pixels). We identify 

three types of multi-temporal scalograms, depending on pattern metric behaviors, 

describing different dynamics of natural reforestation process. The statistical distribution 

and variability of pattern metrics at multiple extents offers a new and powerful tool to 
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detect forest variations over time. Similar procedures can (i) help to identify significant 

changes in spatial patterns and provide the bases to relate them to landscape processes;  

(ii) minimize the bias when comparing pattern metrics at a single extent and (iii) be 

extended to other landscapes and scales. 

Keywords: modified random cluster algorithm; pattern metrics; scalogram; forest regrowth; 

stochastic simulations; central Italy; statistical significance of change 

 

1. Introduction 

Forest ecosystems have played a major role in human history, and periodic deforestation has 

accompanied population growth and development throughout the world for thousands of years [1]. 

Although tropical forests are affected by intensive deforestation because of the dependence of local 

populations on land-based economic activities, harvesting practices, of vital importance in the postwar 

economy, have recently become moderate in temperate forests [1]. In particular, the current 

distribution of temperate forests in several hilly and mountainous landscapes of Europe derive from 

centuries of extensive forest exploitation followed by the abandonment of traditional agricultural 

practices [2–4]. In this context, the analysis of forest spatial pattern through time and, in particular, the 

study of the process of natural regrowth is of primary importance in ecological research because forest 

distributions could affect many ecosystem functions at multiple scales [4]. 

The most common approach for analyzing changes in forest spatial patterns over time is the mere 

comparison of pattern metrics extracted from areas of fixed size defined by administrative or natural 

limits [5,6]. However, such an approach could be problematic for at least three principal issues: (i) the 

arbitrary choice of the extent of the analyzed area [7]; (ii) the lack of specific scale breaks (thresholds) 

to identify significant changes in landscape structure and function [8]; and (iii) the negligence, or, in 

the worst cases, the absence of an analysis of statistical significance when comparing categorical  

maps [9]. Indeed, forests, like other ecological systems, are characterized by a hierarchical spatial 

structure [10–14] where specific patterns and processes may take place at certain “characteristic” 

spatial extents (scale effect) [15]. This means that, for example, different forest dynamics can be most 

effectively studied at a particular characteristic extent. Thus, identifying this characteristic extent 

provides a key to further understand the processes that occur in a specific ecological system. It follows 

that limiting the analysis of forest distribution to a single spatial extent could introduce potential bias 

or misleading conclusions in pattern analysis [16,17]. Furthermore, the majority of pattern metrics, 

commonly used to quantify and monitor forest spatial distribution, are scale-dependent, and their scale 

sensitivity has been demonstrated (see Šímová and Gdulová [7] for a review) for both empirical [18–22] 

and simulated landscapes [16,18,23]. In fact, the limitations and pitfalls introduced as a result of the 

use of landscape metrics to compare landscapes with different map sizes are well documented  

(see Sitzia et al. [24] for examples), and there is a critical need for further research addressing the 

influence of spatial extent on pattern analysis over time. An accurate knowledge of metric scaling 

relations could be given by empirical scalograms in which variations of pattern metrics are plotted 

directly against scale [25,26]. In this context, we believe that multi-temporal scalograms could help in 
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both cases: Relate the observed patterns to underlying ecological processes and correctly extrapolate 

the recorded information across scales. Finally, although the observed spatial patterns are the 

realization of specific spatial processes [27], it is of great importance to understand whether the 

observed differences between two patterns could have arisen purely by chance or whether a specific 

process has promoted this differences [9]. Nevertheless, the attribution of statistical significance to 

differences in forest pattern over time is still one of the most important and complex challenges to be 

faced [27]. The statistical comparison of two different landscapes is quite difficult to perform because 

field studies usually address only one or a few landscapes so that no simple test is available for making 

statistical inferences [9,15,27]. One possible way to compare and test the statistical significance of 

pattern metric values between two maps is the use of computer-generated simulations (e.g., Neutral 

Landscape Models) to reproduce a set of maps with spatial characteristics (composition and 

configuration) that are similar to real-world characteristics [27–31]. Among the neutral landscape 

models [9,31], the Modified Random Cluster Method (MRC) [32] is able to correctly represent forest 

aggregation (or fragmentation) caused by human land use pressure [33]. By varying simulation 

parameters (the proportion of forest cover pi and the degree of aggregation H), it is possible to obtain 

different levels of habitat aggregation and patchiness [32]. In view of the above, we are strongly 

confident that such statistical methods, if extended to multi-temporal analysis, could offer a consistent 

framework for assessing forest pattern changes over time and sound information necessary for relating 

them to landscape processes. 

Based on consideration of the aforementioned points, we propose and test a procedure in this study 

to quantify the spatial pattern of forests over time at multiple spatial extents with statistically robust 

methods. As an application, we focus on forest cover dynamics in hilly landscapes. We analyze the 

spatial pattern of temperate forest patches in a Man and Biosphere Reserve (MAB-UNESCO) in 

central Italy as a representative example of landscape transformation occurring during the past  

60 years in sub-Mediterranean hilly landscapes. In particular, we attempt to clarify the following 

questions by implementing the proposed procedure: (i) how did the forest pattern vary on the 

compared dates in relationship to various spatial extents? (ii) do specific scale breaks exist that indicate 

consistent changes in landscape structure and function? (iii) are the differences in the spatial pattern of 

forests over time statistically significant? To address this issue appropriately, we first used a set of 

pattern metrics to describe the forest spatial dynamics over time and across various extents and then 

assessed the statistical significance of any possible differences by comparing the metric values of real 

and simulated landscapes. An analysis at multiple spatial scales might help to better define the 

characteristic extents at which it is possible to focus on specific aspects of forest dynamics (e.g., forest 

loss or gain; forest fragmentation or coalescence of forest patches). The assessment of the statistical 

significance of forest pattern differences over time and across scales could also offer sound 

information to relate the observed spatial pattern to the specific underlying ecologic processes and to 

better understand the specificities of the study case, thus allowing for the application in other cases. 
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2. Materials and Methods 

2.1. Study Area 

The Collemeluccio-Montedimezzo Man and Biosphere Reserve (MAB-UNESCO) in Central Italy 

was selected for analysis (Figure 1). This MAB reserve was chosen because the recent historic changes 

occurring in this area offer a good example of the pattern of landscape transformation in all  

sub-Mediterranean hilly landscapes. Since the end of the Second World War, many socio-economic 

changes have occurred in Europe, where the abandonment of traditional rural activities has produced 

marked changes in the distribution of temperate forests [34–36]. The reserve and its buffer zone covers 

approximately 25,000 ha and currently consists of a hilly and mountain landscape dominated by 

broadleaved natural forests (60% of the area) and other semi-natural vegetation types, such as shrubs 

and meadows (20% of the area), along with agricultural land and pastures (20% of the area).  

Altitudes range from 380 m a.s.l., (the Verrino fluvial plain) to 1730 m a.s.l. (Mt. Capraro), and the 

climate is temperate [37]. The main potential natural vegetation (sensu Zerbe [38] and Ricotta et al. [39]) 

is a broadleaved temperate forest [36,37]. 

Figure 1. Location of the study area, with forest cover maps for the years 1954 and 2011 

with a pixel resolution of 10 m. The multi-scale analysis was performed by expanding the 

extent diagonally, starting from the upper left corner of the original area. The dimension of 

the maps was 128 × 128, 256 × 256 and 512 × 512 pixels, corresponding to 163.84, 655.36 

and 2621.44 hectares. The binary classification separates forest (dark grey) from no forest 

(light grey). fc is the proportion of forest cover, and H is the spatial autocorrelation or 

contagion of the map. 

 

2.2. Forest Cover Maps 

To assess changes in forest distribution, we used existing large-scale (1:8000) forest cover maps of 

the MAB reserve for the years 1954 and 2011. The 2011 forest cover map was derived by applying a 

manual classification process (manual segmentation and photointerpretation supported by field data 

performed in summer 2011) to panchromatic digital orthophotos (flight AGEA05) relative to the 
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Collemeluccio-Monte di Mezzo Reserve. For the preparation of the 1954 map, a series of greyscale 

aerial photographs (flight GAI) were acquired, georeferenced and digitized within a Geographic 

Information System. The 1954 aerial photos were scanned in 8-bit TIFF images with a resolution of 

600 dpi and orthorectified using OrthoEngine software (PCI Geomatica) with a 10 m Digital Elevation 

Model (DEM). For each data frame, 30 ground control points were used for the orthorectification 

process, and the resulting Root Mean Square Error (RMSE) was less than 4 m. A manual classification 

process was applied to produce the 1954 forest cover map. Next, both forest cover maps (1954 and 

2011) were rasterized with a spatial resolution of 10 m. To make the maps comparable, we set the 

minimum mapping unit to 0.5 ha by applying a majority filter. 

2.3. Data Analysis 

We quantified the spatial pattern of forests over time at multiple spatial extents using real and 

simulated maps and detected significant changes in forest spatial pattern relaying on bootstrapping 

procedures [29] to perform significance testing. The general framework is outlined in Figure 2. 

Figure 2. Flowchart representing the different steps of the proposed procedure for detecting 

significant changes in forest spatial pattern at different scales. T1: 1954; T2: 2011. 

 

2.4. Multi-Scale Analysis 

To perform the multi-scale (extent) analysis over time, we selected from both forest maps (1954 and 

2011), a set of three representative geographic windows of different dimensions. As suggested by Wu [22], 

we delineated a first window extent of 128 × 128 pixels (small) and diagonally expanded it starting 
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from the upper left corner to the bottom right corner of the original area with the following increasing 

dimensions: 256 × 256 (medium) and 512 × 512 pixels (large). It is important to note that also the 

window direction can influence the result of a pattern metric analysis, since landscapes are commonly 

anisotropic [20]. However, we overcome this issue by using neutral simulations (as described below) 

able to reproduce isotropic landscapes. The analyzed extents correspond to 163.84 ha, 655.36 ha and 

2621.44 ha, respectively (Figure 1). The selected widow dimensions are comparable with those 

commonly used for local and regional forest analysis at landscape scale [40]. As suggested by  

O’Neil et al. [19], the chosen extents are at least two times larger than the largest patch area in the year 

1954 (see Figure 1). To frame the landscape transformation patterns in an ecologically significant 

manner, the wider window was entirely included in one homogeneous environmental type [36], i.e., in 

one potential natural vegetation type [38,39], thus, in an area where in absence of human interventions 

or hazard events the vegetation would evolve in one potential natural type (see Zerbe [38] and  

Ricotta et al. [39] for details). Note that in our case the analysis on larger windows would include in 

the extent, areas with different and heterogeneous environmental characteristics (geology, morphology, 

soils and climate) and, thus, forest dynamics must be interpreted accounting of the presence of extra 

environmental heterogeneity. 

2.5. Spatial Pattern Analysis 

To analyze the spatial pattern of forests over time and across extents, we selected a set of eight 

pattern metrics that had been previously reported as ecologically meaningful and that have proven 

useful for describing and comparing the spatial structure of forests [41,42]. The selected metrics are 

adequate for describing forest patch size (MPS = Mean Patch Size), forest subdivision (NP = Number 

of Patches, PD = Patch Density), forest spatial geometry (LSI = Landscape Shape Index, ED = Edge 

Density TE = Total Edge), and connectivity (AI = Aggregation Index, CLUMPY = Clumpiness Index). 

The landscape pattern analysis software FRAGSTATS 4.0 [43] was used to calculate the metrics.  

The description of the pattern metrics used in the study (based on McGarigal and Marks [44]), along 

with their respective variation range, are provided in Table 1. 

Table 1. List of pattern metrics used in the study. Landscape metrics and the relative 

acronyms, descriptions, variation ranges and scaling relations based on published 

references were provided. Symbols: ▲ increase, ▼ decrease, ? unpredictable, = no 

sensitivity, ▲▼increase then decrease. 

Landscape Metrics Description Range Scaling Relation References 

Number of  

Patches (NP) 
The number of forest patches ≥1 ▲ 

(Baldwin et al. [21];  

Shen et al. [23]; Wu [22]) 

Patch Density (PD) 
The number of forest patches per 

unit area (patches/ha) 
>0 ? ▼ 

(Shen et al. [23]; Wu [22])  

(Saura and Martínez-Millán [16]; 

Baldwin et al. [21]) 

Mean Patch  

Size (MPS) 

The average area of all forest 

patches in the landscape (ha) 
>0 ? (Shen et al. [23]; Wu [22]) 

Total Edge (TE) 
The sum of the lengths of all 

forest edges in the landscape (m) 
≥0 ▲ 

(Turner et al. [18]; Baldwin et al. [21]; 

Shen et al. [23]; Wu [22]) 
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Table 1. Cont. 

Landscape Metrics Description Range Scaling Relation References

Edge Density (ED) 
The total length of all forest edges per ha 

(m/ha) 
≥0 ? = 

(Shen et al. [23]; Wu [22]) 

(Saura and Martínez-Millán 

[16]) (Baldwin et al. [21]) 

Landscape Shape  

Index (LSI) 

Equals 0.25 times the sum of the entire 

forest boundary divided by the square 

root of the total landscape area 

≥1 ▲▼ (Shen et al. [23]; Wu [22]) 

Aggregation Index 

(AI)ܫܣ =ቂ ௚೔೔௠௔௫ି௚೔೔ቃ ሺ100ሻ 
Equals the number of like adjacencies 

involving the corresponding class (gii), 

divided by the maximum possible 

number of like adjacencies involving the 

corresponding class (max-gii), which is 

achieved when the class is maximally 

clumped into a single, compact patch (%)

0 ≤ AI ≤ 100 

▼ ? 

For the aggregation metrics 

(sensu McGarigal and  

Marks [44]) Baldwin et al. [21] 

reported a general decreasing 

function, while Wu et al. [20] 

reported unpredictable 

function 
Clumpiness Index 

(CLUMPY)ܻܲܯܷܮܥ =ቂீ೔ି௉೔ଵିீ೔ ቃ 
Equals the proportional deviation of the 

proportion of like adjacencies (Gi) 

involving the corresponding class (Pi) 

from that expected under a spatially 

random distribution (%) 

1≤ CLU ≤ +1 

The scaling behavior of the Number of Patches [21–23], the Total Edge [18,21,22] and the Shape 

Index [22,23] is well documented, whereas the relation between Mean Patch Size and the extent has 

been found to be unpredictable [22]. However, current information about the response of Edge 

Density, Aggregation, Clumpiness and Patch Density to changing scales is highly controversial (see 

Table 1 for details). Several studies have reported that Edge Density, Patch Density [16] Aggregation 

and Clumpiness [20] were insensitive or weakly sensitive to the spatial extent of the analysis, whereas 

several others have stated that they could show different types of scaling behaviors [21–23]. 

2.6. Map Simulations and Inference 

In the real world, replications of a given landscape are often difficult to obtain because each single 

landscape shows a specific degree of land cover proportion and spatial autocorrelation [30].  

To overcome the limited number of replications in natural landscapes, it is possible to rely upon 

simulations based on computer-generated models that serve to reproduce an expected pattern that 

shares statistical properties with an empirical pattern of interest [30]. Among the spatial models 

developed in ecology, Neutral Landscape Models (NLMs) can produce an expected pattern in the 

absence of specific landscape processes [45]. In this study, we used the Modified Random Cluster 

Method (MRC) implemented in the software SIMMAP 2.0 [32] to generate categorical (thematic) 

landscape spatial patterns in raster format (grid-based data). MRC is a stochastic simulation procedure 

that, through the variation of simulation parameters (the proportion of forest cover, fc, and the initial 

probability, p, which controls the degree of spatial autocorrelation), provides a wide range of simulated 

landscapes with intermediate levels of spatial dependence and in which the fragmentation and 
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abundance of land-cover classes can be systematically and independently controlled (see, for details, 

Saura and Martínez-Millán [32]). 

First, for each year and extent, we simulated 15 maps (see Appendix A) that adequately 

characterized the mean values for the metrics considered [46]. We ran specific simulations for each 

extent and date, using their corresponding actual fc and p values as input. Because the initial 

probability p is not an explicit spatial pattern metric, we iteratively generated landscapes with different 

levels of p and then chose those simulated landscapes in which the level of autocorrelation, measured 

as Contagion H [47], was similar (based on a 99% confidence interval) to those of the observed real 

landscapes. Thus, by computing selected pattern metrics (Table 1) on both real and simulated 

landscapes, their empirical distributions (sensu Fortin et al. [29]) for each date and extent were 

derived. The empirical distributions, which are functions of the parameters used to generate the 

landscapes (fc and p), are often non-Gaussian but they provide the basis for determining confidence 

intervals [30]. Since pattern metrics are not statistics per se, that is their distributions are not derived 

analytically, to statistically compare them randomizations, resampling techniques or bootstrapping 

procedures are needed [48]. To compare real map pattern indices at different scales and time a 

bootstrap procedure (Bias-Corrected and accelerated bootstrap) was applied. By bootstrapping pattern 

metric values of each set of simulated MRC maps (three window sizes and two time periods) we 

derived the arithmetic mean and the 99% confidence intervals necessary to perform the significance 

testing [23,30,48]. If the confidence intervals (e.g., 99%) of a given spatial metric between different 

extents or time periods overlap, it can be stated that there are no significant differences between the 

compared landscapes. In order to better interpret the magnitude of the observed temporal processes, we 

measure the effect size of forest pattern change by computing the weighted average of the standardized 

difference (based on pooled variance measures) between mean metric values (for small medium and 

large windows) in 1954 and 2011 landscapes (that is, Hedges’ g [49]). The effect size is positive when 

the metric value of the 2011 maps is greater than that of the 1954 ones and is negative when the metric 

value decrease in the recent time period. The magnitude of the effect size indicates which pattern 

metric has changed more than the others. We used a resampling procedure based on 10000 bootstrap 

samples (with replacement) to generate the mean effect size and 99% confidence intervals. All the 

analyses were performed in the R statistical computing program [50] by using the BootES  

package [51]. Then, for each metric, we built a multi-temporal scalogram by representing real map 

values (three map extents 128 × 128, 256 × 256 and 512 × 512 pixels and two temporal periods 1954 

and 2011) and the 99% confidence intervals (obtained by bootstrapping procedures on metric values of 

simulated MRC maps). Each multi-temporal scalogram reported the response curve of one pattern 

metric to changing extents on both the compared time periods (1954 and 2011). 

3. Results 

3.1. Pattern Metrics across Extents 

The analysis of the multi-temporal scalograms underlined the existence of many significant differences 

between the compared extents of analysis and pinpointed specific behaviors of pattern metrics for each date 

(Figure 3; Table 2). Note that although the changes in the 2011 response curves were strongly linear, the 



Remote Sens. 2014, 6 9306 

 

 

1954 curves appear to show a scale break (sensu Wu et al. [25]). For most of the metrics measured on the 

1954 maps, an abrupt variation in the response curve at medium scale is evident. 

Figure 3. Multi-temporal scalograms showing the effects of changing extent on forest 

pattern metrics in the two years analyzed (1954 and 2011). Lines connect real map metric 

values. Error bars denote the 99% confidence intervals for each pattern metric, obtained by 

applying bootstrap procedures (BCa) on simulated MRC maps. For methodological details, 

see Figure 2; for pattern metric acronyms, refer to Table 1. Type A, where the pattern 

metric curves for the compared data did not intersect and did not converge with each other; 

Type B, in which scalograms intersected each other and diverged; and Type C, with metric 

curves that converged but did not intersect. 

 

Table 2. Real values of pattern metrics obtained from three different map extents  

(128 × 128, 256 × 256 and 512 × 512 pixels) and two temporal periods (1954 and 2011) 

along with the 99% confidence intervals (CIs) obtained by applying bootstrapping 

procedures (BCa) on specific simulated MRC maps. 

Landscape Metrics 
1954 2011 

Window Size Real Value Upper CI Lower CI Window Size Real Value Upper CI Lower CI 

Number of Patches (NP) 

128 a 5 * 5.26 3.26 128 a 7 * 9.8 6.93 

256 b 13 * 15.73 11.73 256 b 19 * 20.42 16.79 

512 c 53 * 63.08 49.29 512 c 35 * 38.00 33.78 

Patch Density (PD) 

128 a 3.03 * 3.23 1.99 128 a 4.24 * 6.06 4.19 

256 a 1.98 * 2.42 1.79 256 b 2.89 * 3.15 2.56 

512 a 2.08 * 2.41 1.90 512 c 1.33 * 1.45 1.29 

Mean Patch Size (MPS) 

128 a 5.95 ns 9.71 5.61 128 a 10.07 ns 10.94 7.19 

256 b 15.53 * 16.92 13.88 256 b 19.33 * 22.05 18.27 

512 b 17.53 * 18.97 14.97 512 c 46.74 * 43.83 49.75 

Total Edge (TE) 

128 a 6000 * 7226 5871 128 a 18,200 * 19,414 16,953 

256 b 30,760 * 33,638 28,944 256 b 64,180 * 68,893 62,195 

512 c 153,680 * 165,624 141,188 512 c 191,730 * 207,541 190,012 
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Table 2.Cont. 

Landscape Metrics 
1954 2011 

Window Size Real Value Upper CI Lower CI Window Size Real Value Upper CI Lower CI 

Edge Density (ED) 

128 a 36.34 * 44.11 35.84 128 a 110.22 * 118.50 103.47 

256 b 46.75 * 51.33 44.17 256 a 97.55 * 105.12 94.902 

512 c 58.51 * 63.18 53.86 512 b 72.99 * 79.158 72.487 

Landscape Shape  

Index (LSI) 

128 a 3.37 * 3.73 3.07 128 a 6.04 * 6.39 5.64 

256 b 5.97 * 6.41 5.56 256 b 9.03 * 9.66 8.91 

512 c 13.37 ns 14.21 12.07 512 c 12.72 ns 13.63 12.55 

Aggregation Index (AI) 

128 a 95.53 * 96.01 95.53 128 a 93.93 * 94.39 93.01 

256 b 96.47 * 96.72 96.47 256 b 95.78 * 95.79 95.41 

512 ab 95.92 * 96.35 95.63 512 c 97.10 * 97.14 96.86 

Clumpiness Index 

(CLUMPY) 

128 ab 0.9455 * 0.9515 0.9376 128 a 0.8949 * 0.9043 0.8784 

256 a 0.9491 * 0.9526 0.9451 256 ab 0.9045 * 0.9049 0.8962 

512 b 0.9369 * 0.9434 0.9327 512 c 0.9230 * 0.9237 0.9166 
a,b,c Uppercase letters indicate significant differences among scales. * Asterisks indicate significant differences 

and ns, no significant differences, among time periods.  

In the more recent landscape (2011), significant differences across all three compared extents were 

found for six of the eight metrics (except for ED and CLUMPY). In particular, ED significantly 

decreased between the small and the large extent as well as the medium and the large extent.  

The clumpiness index significantly increased from the smallest and the largest extents as well as 

between the medium and the large extents. The MPS, TE, NP, LSI and AI showed significant increases 

across the considered extents, whereas PD showed a significant decrease. The 1954 scalograms 

showed significant differences across all the extents for four of the analyzed parameters (TE, NP, SI 

and ED). All these metrics increased as the extent expanded. Mean Patch Size (MPS) significantly 

increased between small and medium extents as well as between small and large extents.  

The Aggregation Index (AI) significantly increased between the small and the medium extent, but no 

significant changes were evident between medium and large extents. Both patch density (PD) and 

Clumpiness Index (CLUMPY) tended to decrease across extents, but no significant changes were evident. 

3.2. Pattern Metrics over Time 

Comparing the maps for 1954 and 2011 (Figure 1), we found significant temporal changes in both 

the abundance and the spatial distribution of forests. Although the effect size varied between pattern 

metrics and scales (Figure 4). The magnitude of the effect sizes for each metric varies in 

correspondence of the different scales and tends to be higher on small and medium extents.  

For medium and small scales we found that TE and ED are the most sensitive metrics with an effect size 

substantially higher than that of the other metrics (Figure 4). For large extents, the most sensitive 

parameters are MPS and AI (Figure 4). Overall we found that all the significant changes on pattern 

metrics over time are relevant. The analysis of the multi-temporal scalograms (Figure 3) showed a strong 

influence of the spatial extent on forest pattern, and a specific response curve for the compared dates was 

also evident. The observed scaling relationships over time were schematically summarized in three main 

types of multi-temporal scalograms: Type A, where pattern metric curves for the compared data did not 
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intersect and did not converge with each other; Type B, in which scalograms intersected each other and 

diverged; and Type C, with metric curves that converged but did not intersect. 

Figure 4. Effect size estimations. Mean values and 99% confidence intervals of the effect 

sizes estimation (10,000 bootstrap resampling) are reported. The vertical dashed lines 

represent an effect size of zero. For pattern metric acronyms, refer to Table 1. 

 

Type A metrics tend to increase over time regardless of the extent of analysis. Total Edge (TE) and 

Mean Patch Size (MPS), increased between 1954 and 2011 across all extents, and belonged to this 

group. However, note that the MPS values at the smallest extent were not significantly distant from 

each other (99% confidence interval overlap between them). The scalograms of Type B intersected 

each other; furthermore, depending on the chosen extent of analysis, opposite temporal changes in the 

spatial metrics emerged. Interestingly, most of the metrics belong to this Type B group: Number of 

Patches (NP), Patch Density (PD), Aggregation Index (AI) and Shape Index (SI). For example, the 

curves describing Number of Patches (NP) and Patch Density (PD) relative to the years 2011 and 1954 

intersected each other after the medium extent. Thus, the analysis of forest pattern at medium and 

small extents showed significant increments in the number and density of forest patches. In contrast, at 

the largest extent, a significant decrease in the number and density of patches between 1954 and 2011 

was found. SI showed similar behavior, but the decline in the 2011 map was not significant at the 

largest extent. For the Aggregation Index at smaller extents, the 1954 curve was higher than the 2011 

curve, whereas the 1954 curve dropped below the 2011 curve at the largest extent. Specifically, the AI 

values decreased significantly between 1954 and 2011 at smaller extents but significantly increased at 

the largest extent. In the Type C scalograms, the 1954 and 2011 curves tended to converge but 

maintained significant distances at all the investigated spatial extents and did not intersect. Type C 

curves included ED and CLUMPY. In particular, CLUMPY significantly increased over time as ED 

significantly decreased. 

4. Discussion 

The observed increase in forest cover over the past 60 years, along with the significant changes in 

forest spatial pattern and the effect sizes analysis, suggest that the analyzed area has undergone an 

intense process of natural recolonization that began after World War II and that is still in progress.  

The phenomenon that we observed could be considered reforestation (sensu Sitzia et al. [24]), i.e., the 

natural reestablishment of a forested landscape on disused agricultural lands following farm 

abandonment in regions where the potential natural vegetation (sensu Zerbe [38]) is a forest. 
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The statistical comparison of pattern metrics at different window sizes over time allows the 

recognition of the characteristic extent, highlighted by the scale breaks, at which specific patterns of 

the ongoing process of reforestation are more evident. For the compared dates, significant variations in 

many metric values were found to correspond with different map extents. The multi-temporal 

scalograms of type A summarize the behavior of metrics (MPS and TE) that describe similar temporal 

changes in forest pattern regardless of the extent of analysis. Even if such parameters can be sensitive 

to the map boundary effect [21,52], they unambiguously depict the ongoing landscape process of forest 

regrowth in our case. The increase in patch size and edge length over time suggests that forest 

regrowth has occurred evenly over the entire landscape. At small extents, the absence of significant 

differences in patch size in association with an increase in the total edge length depicts a landscape 

with many small patches that, most likely, are the new nuclei of young forests [34]. In the  

multi-temporal scalograms of type B, the curves intersect each other due to the presence of a scale 

break at the medium extent for the 1954 scalograms. The curves of type B include parameters such as 

NP, PD, AI and LSI that describe opposite temporal trends in the pattern of forests depending on the extent 

of analysis. Such findings serve as a warning to researchers and planners. If these parameters are used over 

time, it is strongly recommended to analyze them at multiple scales to avoid misleading or partial 

conclusions. In our case, the parameters of type B describe different aspects of the forest regrowth process. 

At small and medium extents, the general increase in the number of patches and their spatial density over 

time describe the ongoing process of natural recolonization. Indeed, the establishment of several new forest 

nuclei is characteristic of the natural colonization of abandoned lands in Mediterranean ecosystems [34].  

In contrast, the observed decrease at larger extents in NP, PD and SI describes the expansion and the 

coalescence of several secondary forest patches into larger ones [31,34,35,53]. Similar behavior is also 

evident for the AI index. At smaller extents, decreasing values of AI pinpoint the typical disaggregated 

pattern that characterizes the initial stages of natural forest regrowth [34]. In contrast, at the larger 

extent, the significant decline in forest pattern aggregation over time highlights the process of 

coalescence of forest patches and the consequent increase in forest connectivity. In the scalograms of 

type C, the 1954 and 2011 curves are significantly distant but tend to converge at the largest extent. 

The growth of ED over time and the reduction of CLUMPY values clearly indicate a more dispersed 

distribution of present-day forests relative to past forests. The convergence of ED values in association 

with a significant increase in forest cover-from 35% (1954) to 62% (2011)-is most likely related to the 

parabolic distribution of the index as a function of forest cover [54,55]. In particular, ED values 

increase as forest cover expands and peak when the proportion of forest reaches 50% of the landscape 

extent. For this reason, markedly different landscapes exhibit very similar ED values. On the other 

hand, the significant decrease in CLUMPY values over time and across all the extents reveals an 

increase in forest dispersion. Most likely, the process of natural forest recolonization in abandoned 

lands occurs in a stochastic manner [34]. 

Overall, the observed differences in the scaling behaviors over the compared time periods are most 

likely related to the various ways in which humans exploited landscape resources in the compared 

years. In 1954, for example, land-based economic activities (such as grazing and agriculture) had 

forced forests into areas in which productivity was low [36] promoting the development of an 

anisotropic pattern. Instead, the more recent process of natural reforestation has been driving the entire 

landscape toward a more natural and homogeneous pattern [35]. Forest regrowth on abandoned lands 
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occurs in a stochastic manner [34], with patches that expand isotropically (in all directions) and tend to 

be uniformly distributed over the entire landscape (statistically stationary). In such situations, pattern 

metrics manifest predictable and simple scaling relations. Note that the obtained results are strongly 

dependent on the specific type of landscape, which, in our case, is characterized by a homogeneous 

underlying environmental structure [36] (geology, morphology, climate, soil). Indeed, we are 

observing the natural reestablishment of a forested landscape in regions where the potential natural 

vegetation (sensu Zerbe [38]) is a temperate forest. Different results should emerge in landscapes with 

high environmental heterogeneity, in which, by tuning the extent of analysis, specific scalograms and 

metric behaviors could emerge. 

Many of the understandings and conclusions obtained in this study have been facilitated by the 

proposed statistical framework. The chosen modeling procedure, which incorporates the temporal 

variation in landscape composition (forest cover) and configuration (spatial autocorrelation) occurring 

in real landscapes [16,19] offers useful insights to address the influence of spatial extent on pattern 

variation over time. In particular, the utilization of the observed proportions of forest (fc) and the 

values of spatial autocorrelation (H) as input parameters for the stochastic simulation procedures 

allows an adequate description of the process of forest regrowth and, at the same time, has yielded a 

robust statistical and defendable framework. In particular, the application of the MRC algorithm allows 

the following approaches: (i) modeling a plausible set of maps, with different levels of forest 

proportion and patchiness, that adequately describes the spatial pattern of forests through time and across 

scales; (ii) generating a set of landscape replications that recognizes the most relevant real landscape 

information; (iii) defining the landscape expectations, allowing the statistical comparison of patterns 

through time and across scales; and (iv) avoiding the effects of the window direction of analysis. 

5. Conclusions 

Although many authors have stressed the importance and limitations of employing pattern metrics 

for comparing landscapes [56], the use of these metrics for characterizing and monitoring forest 

distribution over time continues to be highly popular [57,58]. We proposed and tested a procedure to 

detect significant changes in forest spatial patterns and relevant scales. This approach enriches the set 

of the existing methods for multi-scale/multi-temporal landscape studies by including the statistical 

analysis of the observed differences. As a demonstration, we analyzed the change in the spatial pattern 

of temperate forests in a Mediterranean hilly landscape over the last 60 years across different extents. 

Our results highlight that if landscape pattern is analyzed at a single extent that does not match the 

scale at which a given phenomenon occurs (e.g., reforestation), the results are incomplete and obscure 

the effective landscape variation over time. For example, we found that different patterns of the 

ongoing process of natural reforestation emerged (e.g., nucleation and coalescence of the existing 

patches in a unique bigger one) at different spatial extents. 

The proposed multi-temporal analysis, which incorporates the effects of scale on pattern metrics 

and the statistical significance of the differences in metric values, have helped to relate the changes in 

pattern parameters to landscape processes. It overcame and minimized the potential bias introduced in 

traditional studies that simply resort to the comparison of pattern metrics at a single extent, ignoring 

information about the distribution and variability of the pattern metrics. 
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Even if the obtained results are strongly dependent on both the specific type of landscape and the 

chosen spatio-temporal scales, analogous methods could be used for the study of pattern changes and 

statistical expectations across a large ensemble of landscapes. In any case, consistent scale breaks 

could be expected in strongly human-shaped landscapes, where anthropogenic driving forces lead to 

the juxtaposition of different ecosystems (natural, semi-natural and artificial), whereas linear scaling 

relations should emerge in more natural landscapes. 

From a practical point of view, the obtained results offer scientifically sound bases for orienting 

decisions in various fields, such as forest management and monitoring. For example, the correct choice 

of the spatial extent might help to better define conservation measures oriented to increase landscape 

connectivity values [59]. Furthermore, the proposed approach could allow for the examination of the 

long-term effects of the extent of the protected area on forest distribution and other conservation 

features, which is essential for assessing their effectiveness [60,61]. 

We believe that similar procedures, designed to perform statistically robust multi-temporal and 

multi-scale analyses, could become a standard method for the comparison of categorical maps, 

especially if the investigated landscapes, are samples extracted from areas of fixed size and shape [6]. 

Such procedures are particularly necessary in the consideration of change detection and when 

uncertainties about the scale and pattern metric values exist and could provide relevant indications 

regarding the changes in landscape structure over time and all the ecological and cultural consequences 

linked to this issue. 
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