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Abstract: Aquaculture coasts have become widely distributed in coastal zones as human 

activities are intensified. Due to the complexity in this type of coast, it is difficult to extract 

the coastline with traditional automated mapping approaches. In this paper, we present an 

automated method—object-based region growing integrating edge detection (OBRGIE) 

for the extraction of this type of coastline. In this method, a new object feature named OMI 

(object merging index) is proposed to separate land and sea. The OBRGIE method was 

applied to Landsat Thematic Mapper (TM) (pixel size 30m) and Satellite Pour 

l’Observation de la Terre (SPOT-5) (pixel size 10 m) images of two coastal segments with 

lengths of 272.7 km and 35.5 km respectively, and the accuracy of the extracted coastlines 

was assessed in comparison with the manually delineated coastlines. The mean and RMSE 

(root mean square error) are 16.0 m and 16.4 m respectively for the TM images, and 8.0 m 

and 8.6 m, respectively, for the SPOT-5 images, indicating that the proposed method 

derives coastlines with pixel accuracy. The OBRGIE method is also found to be robust to the 

segmentation scale parameter, and the OMI feature is much more effective than the spectral 

attribute in separating land and sea in aquaculture coasts. This method may provide an 

inexpensive means of fast coastline mapping from remotely sensed imagery with relatively 

fine-to-moderate spatial resolution in coastal sectors with intense human interference. 
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1. Introduction 

Coastline is the boundary of the land and ocean masses, and knowledge of the coastline is the basis 

for measuring and characterizing the resources and environment of the land and ocean. Automated 

analyses of the coastline, or coastline mapping techniques, have been pursued [1,2]. In practice, 

different types of seacoasts, such as bedrock, artificial, arenaceous, silty, and biological coasts, have 

their own characteristics, which impose different degrees of complexity on coastline mapping [3]. 

As a special type of complex artificial coast, aquaculture coast is formed by the farming of aquatic 

organisms on silt tidal flats. With the rapid growth of coastal aquaculture in recent years, aquaculture 

coasts have increased in some developing countries. It has been estimated that aquaculture coasts 

constitute about 30% of all coastlines in mainland China [4]. In order to identify, monitor, model, and 

manage the vast expanse of coastal aquaculture, effective methods of extracting aquaculture coastlines 

from remotely sensed imagery are desired. 

Automated methods of extracting coastlines from remote sensing imagery can be generally grouped 

into four categories: (1) the edge detection approaches, which treat the extraction of coastline as an 

edge detection problem [5]; (2) the band thresholding methods, in which a thresholding value is 

selected either by man-machine interaction or by a local adaptive strategy [6,7]. As this method is easy 

to implement and can obtain good accuracy for most coast types, it is widely used in coastline 

detection applications [8–10]; (3) the classification approaches, which aim to separate the image into 

land and water components, and then take the boundary line between them as the coastline. The 

supervised classification [11], unsupervised classification [12], soft classification [13,14], and 

association rule method [3] belong to this category; 4) the fusion techniques [2], which combine two or 

more data sources including optical, SAR (Synthetic Aperture Radar), and LIDAR (LIght Detection 

And Ranging) data for coastline extraction [15,16]. 

However, applying these methods to delineating aquaculture coasts may not be successful as these 

coasts have two special characteristics (Figure 1a): (i) both the aquaculture region and the ocean area 

are covered by water body with similar spectral attributes; (ii) the aquaculture zone and ocean are 

always spatially adjacent or even connected by narrow channels. Therefore, it would be difficult for 

the band thresholding and classification approaches to separate the aquacultural pond water from ocean 

water based on spectral attributes. The edge detection approaches may also encounter difficulties 

because so many edges exist in aquacultural regions (Figure 1b) that it is hard to identify and link the 

right edges for coastlines. 

By analyzing remotely sensed images of aquaculture coasts, we note that the common boundaries 

between the ocean and aquaculture ponds are quite clear in most cases, though the width of these 

boundaries is quite narrow, only one to two pixels in TM images. Moreover, the edge information is 

likely to play an important role in separating the sea from the aquacultural region, considering the 
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failure of spectral features, as long as the edge features between the ocean and the aquacultural region 

can be identified and distinguished from those inside the aquaculture region. 

Figure 1. Illustration of spectral and spatial complexities of aquaculture coasts. (a) SPOT5 

grey image of near-infrared band; (b) edge information extraction by the Canny algorithm. 

 

In this study, we present a method, integrating image segmentation, region growing, and edge 

detection, to delineate aquaculture coastlines. This integrated procedure is called object-based region 

growing integrated with edge detection (OBRGIE), and a new feature object merging index (OMI) is 

proposed to integrate edge information into the processing of region growing. The influence of 

segmentation scale parameter on the OBRGIE method is assessed and the effectiveness of OMI is 

evaluated as well. 

2. Case Background—Location and Data 

Before getting into details of the method, background information of the cases to be studied is 

introduced. To evaluate the applicability of the methods in different locations, two sites were selected 

for case studies (Figure 2). One site is located in the Bohai Sea in Northern China, with a coastline 

sector of 272.7 km and abundant aquaculture ponds and salt pans along the coastline. In addition, a 

large area of land has been reclaimed from the sea for urban construction in the lower central part of 

the area. The other site is located in the Zhujiangkou Estuary in Southern China, with a coastline sector 

of 35.5 km. This coastal area has been greatly urbanized, and large area of aquaculture ponds is 

distributed along the north part of the coast. 

Two different data sources are used in this study. A Landsat Thematic Mapper (TM) image, 

acquired on 30 August 2009, is used for the Bohai case, which consists of six multispectral bands. For 

the Zhujiangkou case, a SPOT-5 multispectral image, acquired on 9 November 2010, is used, which 

consists of four multispectral bands. The main parameters for the Landsat TM and SPOT-5 images are 

shown in Table 1. 
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Figure 2. Study area and images used in this study. (a) TM image for the Bohai case;  

(b) SPOT-5 image for the Zhujiangkou case. The yellow lines indicate the “true” coastline 

obtained by manual interpretation. 

 

Table 1. Band wave length and pixel size for Landsat Thematic Mapper (TM) and SPOT-5 images. 

 Landsat TM   SPOT-5  

Band No. Wavelength (nm) Pixel Size Band No. Wavelength (nm) Pixel Size 

1 0.45–0.52 30 m 1 0.50–0.59 10 m 

2 0.52–0.60 30 m 2 0.61–0.68 10 m 

3 0.63–0.69 30 m 3 0.78–0.89 10 m 

4 0.76–0.90 30 m 4 1.58–1.75 20 m 

5 1.55–1.75 30 m    

7 2.08–2.35 30 m    

In order to assess the accuracy of the coastline extracted by the automated approaches, the “true” 

coastlines are prepared in advance by the method of visual interpretation. The image source used in 

manual interpretation for the Bohai case is pansharpened SPOT-5 multispectral imagery (2.5 m per 

pixel), aquired in 2008, and TM image is used where coastline has changed from 2008 to 2009. For the 

Zhujiangkou case, the true coastline is delineated manually from the pansharpened SPOT-5 image 

(2.5 m per pixel) acquired in 2010. The manually delineated “true” coastline is shown in yellow in 
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Figure 2a,b. Four coastline transacts were obtained by field survey with differential GPS in 2010 for 

the Bohai case, and comparison between the field survey line segments and the manually delineated 

coastline shows an average difference of 2.1 m, indicating good positioning accuracy of the manually 

interpreted coastlines.  

3. Methodology 

The coastline extraction method of OBRGIE is first presented in this section, and then the method 

of accuracy assessment is introduced. Multi-scale analysis is performed in order to test the robustness 

of the OBRGIE method on the segmentation scale parameter. The method of region growing with 

spectral attributes (RGSA) is also introduced for coastline extraction in comparison with the 

OBRGIE method. 

Figure 3. Flow chart of the OBRGIE method for coastline extraction. 
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3.1. The OBRGIE Method for Coastline Extraction 

The OBRGIE method includes four main processes, as shown in the flowchart in Figure 3, and 

separating the sea and aquaculture region is essential. The first step performs image segmentation and 

prepares the object primitives. The second step implements edge detection and provides edge 

information. The third step is the most essential, which identifies the ocean seeds and candidates, 

and lets the ocean area grow to, and only to, the land-ocean boundary. The final step performs  

post-processing, in which unnecessary objects are removed and the coastline is refined. Details of the 

procedures are described in the following sections through step-by-step processing of a subset of 

SPOT-5 images, illustrated in Figure 4. 
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3.1.1. Image Segmentation 

Segmentation is conducted using the multiresolution segmentation algorithm [17] provided in 

eCognitionTM [18]. This algorithm has been used in many applications [19–23]. An image is 

partitioned into object primitives, which have small internal spectral heterogeneity with respect to their 

neighboring objects. This algorithm requires three user-defined parameters to control the size and 

shape of the generated image objects: (1) scale, (2) shape weight, and (3) compactness weight. The 

shape weight is fixed to be 0.5 and the compactness weight is fixed to be 0.2 for the images processed 

in this study as experiments show that this parameter setting can achieve good object shape for 

aquaculture ponds. The scale value controls the extent of the image object primitives, and may affect 

the accuracy of extracted coastline. The effect of the segmentation scale parameter on the coastline 

extraction is discussed in Section 3.3. An example of segmented image can be found in Figure 4c with 

scale setting of 15. 

Figure 4. Illustration of coastline extraction by the OBRGIE method: (a) image subset of 

SPOT-5 NIR band; (b) edge layer by the Canny detector; (c) image segments; (d) ‘obj 1’ is 

selected as seed, but ‘obj 2’ is not; (e) seed selection (blue); (f) candidate selection (green); 

(g) ocean object growing result; (h) coastline after morphological operation; and 

(i) vectorized coastline (red). 

 



Remote Sens. 2013, 5 4476 

 

3.1.2. Edge Layer Generation 

The Canny edge detection algorithm [24] is employed to identify the edge pixels in the image, and 

the edge detector is applied to the near-infrared (NIR) bands (band-3 for SPOT-5 and band-5 for TM) 

as the edges of land and water are sharp in these bands. This edge detection step produces an edge 

intensity layer, in which the pixels with intensity value greater than zero are considered to be “edge 

pixels”. Edge detection for the subimage is shown in Figure 4b, in which white pixels represent edge 

pixels and black pixels represent non-edge background. 

3.1.3. Ocean Identification by Region Growing 

The following procedures are used for ocean identification: 

(1) identify ocean seed objects; 

(2) identify candidate objects; 

(3) grow ocean seeds to proper candidates; 

(4) repeat step (2) and step (3) until no candidates can be merged. 

Ocean Seed Objects Identification 

Ocean seed is selected in an automated way in this step. In order to select the water objects from the 

ocean region as ocean seeds, and filter out the water objects from the aquaculture region, the seed 

objects should meet two requirements: (1) they should be edge free because the center area of the 

ocean region seldom contains edge pixels; (2) they should be a water body. The second requirement 

can be realized by evaluating the NIR band intensity, which is sensitive to water and non-water 

substance, and the NIR bands used in this study are band-3 for SPOT-5 and band-5 for TM imagery. 

For the first requirement, we propose a new object feature—seed_index, which is calculated as 

follows: (i) segment the selected object into pixels by chessboard segmentation [18] and create an 

object level below (pixel level); (ii) identify the border pixels for the object (see Figure 5a), and count 

the number of border pixels as Nb; (iii) identify the edge pixels (edge layer value > 0) among the 

border pixels, and count the number of edge pixels as Neb, then the seed_index is calculated as: 

= eb b_ /seed index N N  (1)

Image objects with seed_index equal to zero are considered to be edge free, and they are, thereby, 

selected as ocean seeds. In Figure 4d, the object ‘obj 1’ satisfies the seed_index condition but object 

‘obj 2’ does not. The result of ocean seeds (blue objects) selection for the subimage is shown in 

Figure 4e, which demonstrates that no objects from the aquacultural area have been selected as 

ocean seeds. 

Ocean Candidate Objects Selection 

Candidate objects should satisfy two conditions: (1) they should be the direct neighbor of seed 

objects, and (2) should be ‘water’ objects. The first condition can be judged by spatial relationship and 

the second can be judged by band intensity. The second condition filters out non-water objects as 

candidates and could save the computation cost in the following merging step, by predefining a fixed 
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threshold value in the ocean seed selection step. In Figure 4f, candidate objects selected in the first 

round of iteration are shown in green. 

Figure 5. Illustration of (a) border pixels of an object and (b) common boundary pixels of 

two image objects. 

 

Ocean Object Growing 

The OBRGIE method replies on the edge information to grow ocean objects, it is assumed that 

edges can hardly exist along the common border of a true ocean object and an ocean seed object, but 

they appear along the common border of a true ocean object and an aquaculture object, or other land 

object. This characteristic of edges is represented by a new feature, OMI (object merging index), which 

is used for the judgment of proper candidates for ocean growing.  

The OMI value for a candidate is calculated in the following steps: (i) segment the selected 

candidate and the neighboring seed objects into pixels by chessboard segmentation and create an 

object level below (pixel level); (ii) identify the common boundary pixels (see Figure 5b) of the 

candidate object and the neighboring ocean seed, count the number as Ncb; and (iii) identify edge 

pixels among the common border pixels, and count the number of edge pixels as Necb, then the OMI 

value for the candidate is calculated as: 

= ecb cb/OMI N N  (2)

The OMI value represents the percentage of the edge pixels among the common boundary pixels of 

the seed and the candidate, and it is in the range from 0 to 1. It is assumed that the OMI values for 

ocean candidates are close to 0, whereas non-ocean candidates have OMI value close to 1 (discussed in 

Section 5.1). The candidates belonging to the ocean can be separated from the non-ocean candidates by 

applying a threshold OMI value, then the ocean seeds grow to candidates which satisfy the OMI 

threshold condition, and the increased region is selected as the new seeds for the next growing 

iteration. The iteration stops when no candidates are available for growing. The ocean object growing 

processing for the subimage is illustrated in Figure 4g. 

3.1.4. Post Processing 

Post processing includes four tasks: lake removal, ship removal, boundary refinement, and 

vectorization. When processing large images with wide geospatial coverage, some large lakes may be 

extracted as ocean. These water regions will be removed if they are enclosed by the land region. In the 
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same way, ships in the ocean are removed if they are enclosed by ocean objects. The area attribute of 

the object is defined to avoid large island being removed as ships. Boundary refinement is based on 

mathematical morphological operations [25], and morphological opening and closing operation are 

used to generalize the jagged boundaries of image objects, making the coastline morphologically 

smoother (Figure 4h). Finally, the rater representation of land ocean boundary is converted into a 

vector format, and the Douglas-Peucker [26] algorithm is employed to simplify the boundary 

line (Figure 4i).  

3.2. Accuracy Assessment Method 

In accuracy assessment, the baseline approach, also known as the transact method, is used, which 

was first proposed by Dolan et al. [27] for determining the degree of shoreline resession. 

Thiele, et al. [28] developed an ArcGISTM extension, the Digital Shoreline Analysis System (DSAS), 

to automate the process of calcating shoreline changes. In this study, we employ the DSAS tool to 

calculate the degree of matching between the true coastline and the test coastline, and detailed 

information about DSAS can be found on the following website, http://woodshole.er.usgs.gov/ 

project-pages/dsas/. 

Figure 6. Illustration of the baseline approach for accuracy assessment. xi represents the 

length of a transact segment between the true coastline and the test line.  

 

As illustrated in Figure 6, a baseline is, at first, determined. Transacts are then generated 

perpendicular to the baseline, and these transacts should intersect with the true coastline and the 

testline. For the ith transact, the distance between the two intersection points is denoted as xi, which is 

calculated as Net Shoreline Movement (NSM) in DSAS. From these NSMs, we compute two statistical 

measures to represent the degree of matching between a test line and the true coastline - the mean and 

RMSE (root mean square error). These measures are calculated as: 
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where n is the total number of transacts. 
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Two more measures are used to represent the closeness between a test line and the true coastline: 

(1) PGSD—the percentage of  the testline within 1 pixel distance (ground sample distance, GSD) of the 

true coastline; (2) D90%—the distance within which 90% of the testline are included. 

3.3. Multiscale Analysis for OBRGIE 

The segmentation step produces the image object primitives for ocean growing, and the 

segmentation result depends on the value of the scale parameter. In order to understand how the 

accuracy of extracted coastline changes when the scale parameter varies, we design an experiment to 

study the influence of the scale parameter on the accuracy of the coastline extracted with the OBRGIE 

method. In the Bohai case, the scale parameter value is increased from 10 to 60 with a step value of 10 

for the Landsat TM image; in the Zhujiangkou case, the scale parameter value is increased from 10 to 

30 with a step value of 5. The accuracies of the coastlines extracted by the OBRGIE method, with 

these scale values, are then computed. 

3.4. Region Growing with Spectral Attributes for Coastline Extraction 

White and El Asmar [29] used region growing algorithms for coastline extraction, but they used 

spectral attributes to grow the ocean region. In the OBRGIE method, we use the OMI feature for ocean 

growing. To demonstrate the effectiveness of the OMI feature, the region growing with spectral 

attributes (RGSA) method, by White and El Asmar [29], is used to produce coastlines in comparison 

with those generated by OBRGIE in both study cases. 

In this study, the RGSA method shares almost the same work flow with the OBRGIE method, thus, 

we only change the OMI feature to the SA (spectral attribute) in the ocean object growing step. The SA 

value of an object primitive is computed as the mean object value of an NIR band. We select TM 

band-5 for the Bohai case and SPOT band-3 for the Zhujiangkou case, respectively, as these NIR 

bands are considered to reveal greater variation resulting from the difference between the reflectance 

of the land and the water [30]. The accuracy measures of the extracted coastlines are then calculated 

and compared. 

4. Results and Analysis  

4.1. Result of Coastline Extraction by OBRGIE 

Figure 7 illustrates the processing sequences of OBRGIE applied to the TM image in the Bohai 

case. The ocean seed selection result in Figure 7a shows that most of the selected seed objects are 

located in the ocean, with only three located in large lakes on the land side. After the step of region 

growing with OMI features, almost the exact profile of the ocean region has been delineated 

(Figure 7b). Small features are removed and land-ocean boundaries are smoothed after post processing 

(Figure 7c). The OBRGIE method provides a visually representative coastline (Figure 7d) in a 

relatively long coastline (272 km). Three subareas in Figure 7d–f show that despite small errors along 

some coast segments, this method successfully captured the land-ocean boundary, even in complex 

areas with landward water features. 
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Figure 7. Automated coastline extraction from TM imagery in the Bohai case: (a) ocean 

seed selection result (blue) dropped on the TM band 5; (b) ocean (blue) identified by 

region growing; (c) land-ocean separation after post-processing; (d) extracted coastline 

(yellow) dropped on TM band 5; (e–g) magnified coastline segments with landward 

water features. 

 

The coastline detection result of the SPOT-5 image by the OBRGIE method is shown in Figure 8. 

Result from Figure 8a–c shows that this method captures the ocean region with success, without 

confusing with water feature on the land side. The delineated coastline appears concave to the land 

side (Figure 8d), as there are many narrow channels along the coast and the spatial resolution (10 m) of 

the image is relatively high. Figure 8e,g shows two complex subareas with landward water features 

and the coastline extracted is visually acceptable. 



Remote Sens. 2013, 5 4481 

 

Figure 8. Automated coastline extraction from SPOT-5 imagery (10m) in the Zhujiangkou 

case: (a) ocean seed selection result (blue) dropped on the SPOT-5 NIR band; (b) ocean 

(blue) identified by region growing; (c) land ocean separation after post-processing; 

(d) extracted coastline (yellow) dropped on TM band 5; (e–f) and (g–h) illustrate the 

magnified coastline segments with landward water features. 

 

4.2. Multiscale Analysis Result with OBRGIE 

Multiscale analysis with the OBRGIE method generates several coastlines on different 

segmentation scales, and the accuracy measures of these coastlines are shown in Figure 9. In both 

study cases, the accuracy lines remain stable, while the scale value varies, although the mean and 

RMSE value rise slightly when the scale value increases from 30. 

The result indicates that the OBRGIE method is not sensitive to the segmentation scale, and a range 

of scale values can generate coastline with good accuracy. Therefore, there is no need to find the 

“optimal” segmentation scale and a fixed scale value is applicable to different coastal areas. It should 

be noted that extremely large or very small values of scale parameter are not applicable to the 
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OBRGIE method.  We suggest users set the scale parameter to 30 for TM images and 15 for SPOT-5 

multispectral images when applying the OBRGIE method for land-sea separation in practice. 

Figure 9. Accuracy measures (mean and RMSE) of coastlines extracted by the OBRGIE 

method under different segmentation scale values for (a) Bohai case and (b) Zhujiangkou case.  
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4.3. Quantitative Comparison between OBRGIE and RGSA 

The OMI feature is used in the OBRGIE method for land-ocean separation, while the spectral 

attribute is used in the RGSA method. Table 2 shows the quantitative accuracy measures for the 

coastlines extracted by the OBRGIE and RGSA methods. 

The OBRGIE method generates coastlines with good accuracy in both study cases. In the Bohai 

case, the mean and RMSE value obtained is about 16 m, half the value of the pixel size (30 m) of TM 

image, and 84.5% of the coastline segments lie within 1 pixel distance of the true coastline. In the 

Zhujiangkou case, the RMSE is 8.6 m and mean is 8.0 m, and 74.2% of the extracted coastline lies 

within 1 pixel distance (10 m) of the true coastline. 

The RGSA method provides less accurate coastlines (Table 2). The mean is 31.7 m and RMSE is 

80.5 m in the Bohai case, and 77.2% of the extracted line is within 1 pixel distance (30 m) of the true 

coastline. In the Zhujiangkou case, 63.1% of the extracted line by RGSA is within 1 pixel distance (10 

m) of the true coastline, which is 10% less than that obtained by the OBRGIE method. The relatively 

large values of mean (54.3 m) and the RMSE (136.1 m) obtained by RGSA are caused by outliers in 

coastline segments. Figure 10 shows the condition of outliers in two coastline segments for which the 

RGSA method failed to capture the position of the true coastline. 

Result shows that the OBRGIE method generates coastlines with better accuracy than the RGSA 

method, indicating that the OMI feature is more effective that spectral attributes for land-ocean 

separation in complex aquaculture coasts. 
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Table 2. Closeness of the extracted coastline to the true coastline indicated by RMSE, 

mean, D90% (the distance within which 90% of the testline are included.), and PGSD (the 

percentage of  the testline within 1 pixel distance of the true coastline.). OBRGIE is the 

proposed method, using the new OMI feature for region grow, and RGSA is the method 

using spectral feature. The pixel size of image is 30 m in the Bohai case and 10 m in the 

Zhujiangkou case. 

Cases Methods 

Accuracy Measures 

RMSE(m) Mean(m) 
90% within (m) 

D90% 

Within 1 Pixel (%) 

PGSD 

Bohai 
OBRGIE 16.4 16.0 37.4 84.5 

RGSA 80.5 31.7 48.2 77.2 

Zhujiangkou  
OBRGIE 8.6 8.0 15.1 74.2 

RGSA 136.1 54.3 213.5 63.1 

Figure 10. Illustration of outliers of coastline segments by RGSA method in (a) coastal area 

with a large lake and narrow dam, and (b) aquaculture region with channels and ponds. 

 

5. Discussion 

5.1 OMI vs. Spectral Attribute in Ocean Growing 

To better understand why the OMI feature is more effective, the histograms of OMI and SA (NIR 

band mean) features of candidate objects in the object growing step are studied. Figure 11 shows the 

frequency distribution histogram of OMI and SA. The histogram graph of the OMI feature clearly 

shows two peaks, indicating that the candidates objects can be easily separated into two groups. In 

contrast, the histogram for SA values shows only one peak, thus, it is difficult to find a threshold value 

to divide the candidate objects. Although the NIR band was considered to be effective in separating the 

land and the sea, as reported in previous research [2,30,31], results of this study show that the spectral 

feature is not enough to separate the sea and aquaculture ponds in complex aquaculture coasts. Instead, 

the OMI feature shows good adaptability in aquaculture coasts under object based context, so the 

OBRGIE method can generate coastlines with good accuracy. 
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Figure 11. Histograms for OMI and SA features of candidate objects in object growing 

processing. SA is the object mean of NIR band. 
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5.2. Limitations and Uncertainties 

The first limitation for the proposed procedure lies in the unsatisfying performance in detecting 

shoreline changes for coastal segments with low rates of variation. As addressed by Gens [2], the 

accuracy of shoreline detection depends on the spatial resolution of the source image. The pixel 

accuracy of coastlines derived from low-resolution satellite imagery may not be good enough to 

capture small changes along the coast. Sub-pixel mapping approaches [13,14,30] may provide good 

alternatives under these situations, but these methods were only tested on short coastline sectors. In 

fact, coastlines with pixel level accuracy can be used as a priori knowledge and be useful for sub-pixel 

coastline mapping. For example, pixel level coastline extraction is a critical step for sub-pixel coastline 

mapping in the approach proposed by Pardo-Pascual et al. [30]. Therefore, combining sub-pixel 

mapping algorithms with the OBRGIE procedures may provide good potential for mapping coastlines 

with sub-pixel accuracy in relatively long coastal sectors. 

Secondly, the method may fail to capture the real coastline position in coastal areas having large 

tidal ranges. In the case of tidal flats, especially during the ebb tide, large areas may be swamped close 

to the shoreline, as pointed out in [31]. In fact, the delineated line by the method is waterline, and the 

position of low tide waterline should deviate from the position of High Water Line (HWL) on tidal fat 

areas; the HWL is usually considered as a better indicator for shoreline position [2]. Therefore, the 

tidal effect should be taken into account when applying the method to silty coasts with large areas of 

tidal flats, and high tide time imagery is necessary to ensure that the line delineated is High Water 

Line. 

6. Conclusion 

Automated coastline mapping for aquaculture coasts is a difficult task due to the spatial and spectral 

complexities of these coastal segments. This study aims to make a contribution by proposing a new 

automated method (object-based region growing integrating edge detection, OBRGIE) for mapping 
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aquaculture coastline from multispectral imagery. The method combines image segmentation, region 

growing, and edge detection in the processing chain, and a new feature—object merging index (OMI) 

is proposed to utilize edge information in the key step of region growing. Test results show that the 

method derives coastlines with pixel accuracy, either from Landsat TM imagery, or from SPOT-5 

imagery, in relatively long coastal sectors (272.7 km and 35.5 km). The proposed OMI feature has 

been demonstrated to be more effective than spectral attributes for separating coastal sea-water bodies 

and aquacultural water bodies. Furthermore, the method is robust to segmentation scale parameter, 

which means there is no need for the tiresome parameter tuning when applying the method. 

The method could derive coastlines with pixel level accuracy in an automated way from relatively 

fine-to-moderate spatial resolution imagery (such as SPOT, Landsat TM/ETM+), and it may provide 

an inexpensive means of mapping coastlines with large spatial coverage. As the pixel level accuracy 

from low resolution imagery may not be good enough to detect small changes along coasts, future 

work will be focused on combing super-resolution techniques with the OBRGIE procedures, and it is 

expected to provide sub-pixel accuracy for relatively long coast sectors.  
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