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Abstract: In this article, we present a new method of automatic 3D urban cartography in
which different imperfections are progressively removed by incremental updating,
exploiting the concept of multiple passages, using specialized functions. In the proposed
method, the 3D point clouds are first classified into three main object classes: permanently
static, temporarily static and mobile, using a new point matching technique. The temporarily
static and mobile objects are then removed from the 3D point clouds, leaving behind a
perforated 3D point cloud of the urban scene. These perforated 3D point clouds obtained
from successive passages (in the same place) on different days and at different times are
then matched together to complete the 3D urban landscape. The changes occurring in the
urban landscape over this period of time are detected and analyzed using cognitive functions
of similarity, and the resulting 3D cartography is progressively modified accordingly.
The specialized functions introduced help to remove the different imperfections, due to
occlusions, misclassifications and different changes occurring in the environment over
time, thus ncreasing the robustness of the method. The results, evaluated on real data,
demonstrate that not only is the resulting 3D cartography accurate, containing only the exact
permanent features free from imperfections, but the method is also suitable for handling
large urban scenes.
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1. Introduction

In the last few years, automatic 3D urban cartography and modeling have gained immense interest in
the scientific community, due to the ever-increasing demand for urban landscape analysis for different
popular applications coupled with the recent advances in 3D data acquisition technologies. Integrated in
several geographical navigators, like Google Street-Map Viewer, Microsoft Visual Earth or Géoportail,
several such models are accessible to a wide public, who enthusiastically view the real-like representation
of the urban environment, created by mobile terrestrial data acquisition techniques. However, in urban
environments, this task consisting in automatically generating accurate and reliable 3D cartography and
models, without imperfections, using the data obtained from these hybrid terrestrial vehicles still remains
a challenge. These imperfections mainly include missing features/regions, due to occlusions caused by
the presence of temporarily stationary and dynamic objects (pedestrians, cars, etc.) in the scenes [1], false
features resulting from misclassifications of objects in the scene [2] and failure to effectively incorporate
different changes occurring in the environment over time [3]. In this paper, we present a new method for
automatic 3D urban cartography that progressively removes these imperfections in an effective manner.

2. Related Work

The work on handling such imperfections in automatic 3D urban cartography is heavily biased
towards occlusion detection and management. Criminisi et al. [4] present a technique of inpainting
based on the patch exemplar-based method for completing occluded regions in images. Wang et al. [5]
extended this approach to also infer depth from stereo pairs. Wang et al. [6] used a similar method for 3D
data, but occlusions were found automatically using object-specific detectors, making it more suitable
for larger data sets. Several works have suggested that manual workload can be greatly reduced by using
interactive methods that allow a user to quickly mark foreground and background areas, while exact
segmentations are determined using graph cuts. In [7], the authors present a Patch-Match algorithm
that allows for interactive rates for inpainting and reshuffling via simple user-defined constraints and
efficient nearest neighbor search. In the context of building façades and urban reconstruction, increased
contextual knowledge is available by assuming the planarity of the structure and the repetition of
features, such as floors, windows, etc. Building models are reconstructed by detecting floors and
estimating building height in [8]. Occlusions are removed by cloning upper floors and propagating them
downward. In [9], multiple views and median fusion are used to remove most occlusions, requiring
inpainting only for smaller regions. A method relying on LiDAR point cloud to find and remove
occlusions by combining image fusion and inpainting is presented by Benitez et al. [10]. Xiao et al. [11]
semantically segmented street-side scenes into several classes, including vegetation and vehicles, but did
not actively fill in missing data. Instead, they relied on the missing information being available from
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other views. In [12,13], two methods for occlusion-free texture generation are presented, but a minimum
of three overlapping images is necessary, which requires a high acquisition rate or a very slow driving
speed in narrow streets.

A method is discussed in [14], which consists in aligning multiple scans from various viewpoints
to ensure the 3D scene model completeness for complex and unstructured underground environments.
A technique for extracting features from urban buildings by fusing camera and LiDAR data is discussed
in [15], but it does not specifically address this problem and relies on their simple geometrical modeling
to complete partially occluded features. Frueh et al. [16] propose a method in which the point
cloud is used to generate a 3D mesh that is then classified as foreground or background. Large
holes in the background layer, caused by occlusions from foreground layer objects, are then filled by
planar or horizontal interpolation. However, such an approach may result in false features in case of
insufficient repetitions or lack of symmetry [17]. In our work, we aim to resolve this problem by using
a multi-sessional approach in which multiple scans of the same environment obtained on different days
and at different times of the day are matched and used to complete the occluded regions.

Automatic detection of changes in urban environment for updating cartography and maps has
lately gained some interest in the scientific community. Most of the proposed techniques detect
changes in the urban environment from airborne data using Digital Surface Models (DSMs), such
as [18,19]. Vögtle and Steinle [2] propose a methodology for detecting changes in urban areas following
disastrous events. Instead of solely computing the difference between the laser-based DSMs, a region
growing segmentation procedure is used to separate the objects and detect the buildings; only then, an
object-based comparison is applied. However, this method remains susceptible to misclassifications.
Bouziani et al. [20] presented a knowledge-based change detection method for the detection of
demolished and new buildings from very high resolution satellite images. Different object properties,
including possible transitions and contextual relationships between object classes, were taken into
account. Map data were used to determine processing parameters and to learn object properties.
Matikainen et al. [21] also present a change detection method to update building maps, which compares
buildings detected by a classification tree method with an existing building map. Some additional rules
relying on existing map data are added to handle some likely misclassifications. Unlike these methods,
in our work, we handle the 3D point cloud at the 3D grid level for change detection, instead of the object
level, making it more robust against misclassifications.

Most of the work using terrestrial laser scans focuses on deformation analysis for designated objects.
Change is detected by subtraction of a resampled set of the data [22] or adjustment to surface models,
like planes [23] and cylinders [24]. In order to detect changes in large scenes, Hsiao et al. [25] combine
terrestrial laser scanning and conventional surveying devices to acquire and register topographic data.
The dataset is then transformed into a 2D grid and is compared with information obtained by the
digitization of these existing topographic maps.

In [26], changes are detected in the 3D Cartesian world, and the possibilities of scan comparison
in point-to-point, point-to-model or model-to-model manners are discussed. The authors then use
point-to-point comparison with some adaptations and make use of an octree as a data structure for
accessing the 3D point cloud. Comparison is then carried out by using the Hausdorff distance as a
measure for changes. Hyyppä et al. [27] also use the method of point-to-point matching for detecting



Remote Sens. 2013, 5 3704

changes in 3D urban scenes. However, due to bad point registration, incorrect corresponding point
pairs are likely to cause false change detection. Whereas our method is more robust to such situations,
as it not only analyzes the point cloud at the point level, but also at the grid level for this task.
Zeibak and Filin [28] extend this method by further characterizing the changes caused by occlusions.
Kang et al. [29] not only detect changes in buildings in the urban environment, but also quantify the
changed regions using a series of point cloud epochs over time and rebuilt building models. However,
this work only focuses on disappearing changes. In our work, we not only detect, but also analyze both
appearing and disappearing changes in the 3D urban scene by using 3D evidence grid and cognitive
similarity functions.

Algorithm 1 Automatic 3D Urban Cartography
Require: 3D urban point clouds for passage number, np

1: Classify 3D urban point cloud obtained from each of the two sensors into six groups: {road, building,
car, pole, tree, unclassified}

2: Compare the classified objects from the two point clouds to further classify them as: {permanently
static, temporarily static, mobile} and merge the two point clouds

3: Separate out temporarily static and mobile objects, leaving behind a perforated 3D point cloud,
P(np)

4: Store temporarily static objects in a register, R(np)

Sequential update function: {
5: Match and compare P(np) with P(np − 1) to fill in holes and complete 3D cartography }
6: Formulate 3D evidence grids for P(np) and P(np − 1) and compute 3D cell scores, CS , for both
7: Calculate similarity scores, Sym and ASyms, and uncertainty measures for the 3D cells
8: Update similarity map, SMap

Automatic reset function: {
9: Compare the Sym, ASyms and the uncertainty measures of the 3D cells in the SMap after nreset

number of passages
10: If there is low Sym and uncertainty measure, then reset those 3D cell(s) in P(np) with those in the

recently acquired point cloud (perforated) }
Object update function: {
11: Compare temporarily static objects in R(np) with R(np − 1)

12: Upgrade temporarily static objects in R(np) if they are repeated in nupdate number of passages as
permanently static and add in P(np) }

13: Delete 3D evidence grids for P(np) and P(np − 1)

14: Store SMap

15: Update and store R(np)

16: Store P(np)

17: R(np − 1)← R(np) and P(np − 1)← P(np)

18: return P(np)
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According to the best of our knowledge, no prior work has ever been presented that first effectively
detects, then analyzes the changes occurring in the 3D urban scene, in this manner, using terrestrial data
and, eventually, updates the 3D cartography accordingly.

Recently, the increasing demand for updated 3D maps and models for different popular applications
has prompted frequent scanning of the same urban environment (i.e., multiple passages) using mobile
terrestrial data acquisition vehicles. Although these applications utilize the recently acquired scans/data
to simply refresh/update the resulting maps and models, they fail to exploit the redundant data available
for further use, such as occlusion handling and accurate change detection and updating. Hence, our
method successfully takes advantage of the already available redundant data, not only to detect, analyze
and update changes in the urban environment, but also to complete occluded regions, so as to ensure
that the resulting 3D cartography contains only the exact, actual and permanent features free from
imperfections. The proposed method solves the above mentioned problems by handling the point cloud
at three different levels using special dedicated functions: (1) the point level to accurately complete
occluded regions; (2) the grid level to analyze and handle different changes occurring in the urban
environment; and (3) the object level to accommodate for misclassifications and other unclassified
objects. In this method, the 3D urban data obtained from mobile terrestrial LiDARs in each passage
is directly geo-referenced. These geo-referenced 3D point clouds are segmented and, then, classified
into three main object classes: permanently static, temporarily static and mobile. The temporarily static
and mobile objects are then removed from the 3D point clouds, which are then merged together, leaving
behind a perforated 3D point cloud of the urban scene. These perforated 3D point clouds obtained from
different passages (in the same place) on different days and at different times are then matched together to
complete the 3D urban landscape. Different changes occurring in the urban landscape over this period of
time are studied using cognitive functions of similarity, and the resulting 3D cartography is progressively
modified accordingly. An overview of the method is presented in Algorithm 1.

3. 3D Scan Registration

Different features and robust landmarks extracted from 3D images as points of interest and
as references for image mapping and scan registrations have commonly been used for different
multi-sessional SLAM (Simultaneous Localization And Mapping) algorithms [30]. This approach
works well in simple repetitive paths. However, some more complex situations can be found in urban
environments, where the selected features/regions can be occluded. When the data acquiring vehicle
enters from different directions, then the path is not repetitive. As a result, the selected features/regions
may not be readily visible. Thus, in order to cater to this problem, the method of direct geo-referencing
of 3D LiDAR points is found most suitable in our case. The method uses integrated GPS/IMUdata
to directly orient laser data from its local reference frame to the mapping reference frame (WGS84).
The advantage of using this method is that the transformation between the local laser reference frame
and the mapping reference frame is known at any given moment (as long as the laser is synchronized),
independently, if the laser is collecting data in a static mode or in kinematic mode. Thus, the laser can
be used as a push broom sensor sweeping the scene with profiles, while fixing the scan angles as the
vehicle moves.
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The data that we have used to evaluate our work are the dynamic data set of the 3D Urban Data
Challenge 2011, which contains dynamic scenes from downtown Lexington, Kentucky, USA, obtained
from the Vis Center’s (University of Kentucky) LiDAR Truck containing two Optech LiDAR sensor
heads (high scan frequency up to 200 Hz), a GPS, an inertial measurement unit and a spherical digital
camera, as shown in Figure 1.

Figure 1. (a) The Vis Center’s LiDAR truck; (b) Optech LiDAR/GPS system along
with IMU mounted on a rigid frame; (c) the different viewing angles of the mounted
LiDAR systems.

(a)

(b)

(c)

4. Classification of 3D Urban Environment

In urban environments, the quality of the data acquired by different mobile terrestrial data acquisition
systems is widely hampered by the presence of temporary static and dynamic objects (pedestrians,
cars, etc.) in the scene. As a result, there is a problem of occlusion of regions. Moving objects or certain
temporary stationed objects (parked cars, traffic, pedestrian, etc.) present in the area hide certain zones
of the urban landscape (buildings, road sides, etc.). Therefore, the first step for 3D urban cartography is
to obtain the permanent cartography. This is achieved by removing/extracting the temporarily static and
dynamic objects from the scene/point cloud, leaving behind only the permanent features.

In order to achieve this, we classify the urban environment into three main categories: permanently
static objects, temporarily static objects and mobile objects. In order to achieve this goal, the 3D point
cloud is first segmented into objects, which are then classified into basic object classes. Once classified
into these basic classes, they are then grouped under one of the three mentioned categories. Although
several methods have been proposed for the classification of urban environments, we have used one
of the most recent methods [31] for this task. This method presents a super-voxel-based approach in
which the 3D urban point cloud is first segmented into voxels and then converted into super-voxels by
assigning properties to them based on the constituting 3D points. These are then clustered together using
an efficient Link-Chain method to form objects. Using local descriptors and geometrical features, these
objects are then classified into six main classes: road, building, car, pole, tree, unclassified. The salient
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features of this method are data reduction, efficiency and the simplicity of the approach. Some results of
this method are shown in Figure 2.

Figure 2. (a) Voxel-based segmentation of a particular scene; (b) classified 3D points.

(a)

(b)

Figure 3. 3D points of moving vehicles in the urban scene. In red, the 3D points acquired
from S− 01, and in white, the 3D points acquired from S− 02.

The 3D point cloud obtained in a single passage from each of the two mounted LiDAR sensors is
divided into the six object classes using this method. This step may be sufficient for characterizing static
objects, but not for dynamic ones. In order to separate out moving objects from these classified objects,
the two 3D point clouds obtained in the same passage are matched and merged together. This not only
helps in distinguishing mobile objects, but also completes the 3D cartography (building façades, etc.)
due to the different viewing angles of the two sensors (from now on referred to as S− 01 and S− 02), as
shown in Figure 1(b). This configuration of the LiDAR sensors is very common for this type of sensor
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and is used for acquiring detailed 3D data along both sides of the road. In addition to this, we exploit
this difference in viewing angle to identify mobile objects. Due to this difference in viewing angle, these
sensors see the same point in the 3D scene with a slight time difference. We use this time difference
to infer whether an object is static or moving by comparing the position of these classified objects at
these two different times corresponding to the two different point clouds. Those objects are considered
static if the constituting 3D points of the objects have the same position in the two point clouds, while
those with different positions are considered mobile (see Figure 3). As this time difference is very small,
object/point association or matching in the two point clouds is not an issue. Simple matching based on
the constituting points, color and intensity of all the objects in the two point clouds is sufficient. Let P
and Q be the two point clouds obtained from sensor, S− 01 and S− 02, respectively, then an object, n,
denoted by Objn in the two point clouds is given as PObjn and QObjn . This Objn is considered static if and
only if the following three conditions are satisfied:

Card(PQObjn)

Card(min[PObjn , QObjn ])
× 100 ≥ wp (1)∣∣∣PObjnR,G,B

− QObjnR,G,B

∣∣∣ ≤ 3
√
wc (2)∣∣∣PObjnI

− QObjnI

∣∣∣ ≤ 3
√
wI (3)

where PQObjn = PObjnX,Y,Z
∩ QObjnX,Y,Z

. PQObjn is the set containing the matched points obtained by
point-wise intersection of the 3D points in the two sets if and only if the difference in the distance
along the x-, y- and z-axes between two points in the PObjnX,Y,Z

and QObjnX,Y,Z
is ≤ 2 × Pe. Here,

Pe is taken as the measurement accuracy of the LiDAR sensor (the value can be obtained from the
data sheet) and Card is the cardinal number function. PObjnX,Y,Z

and QObjnX,Y,Z
are the sets of the

3D coordinates of the points of the object, while PObjnR,G,B
and QObjnR,G,B

are the mean R, G and
B values of the object in P and Q point clouds, respectively. PObjnI

and QObjnI
are the mean laser

reflectance intensity values in P and Q point clouds, respectively. wp is the matching weight equal
to the allowable percentage of the object points whose position matches the two point clouds. wc

is the color weight equal to the maximum variance of R, G and B values for PObjn and QObjn . wI

is the intensity weight equal to the maximum variance of intensity values for PObjn and QObjn . It
should be noted here that based on the basic characteristics of the classified objects (like roads,
buildings, trees and poles that cannot move), we only compare (using Equations (1)–(3)) the objects
classified as cars and unclassified to determine which of them are temporarily static and which ones
are mobile. Here, it is observed that Equations (2) and (3) along with Equation (1) help to increase
the robustness of the method in different precarious situations that often arise in urban environments;
for example, two different vehicles coming from the opposite direction in the neighboring lane could
be detected at the same place, i.e., Equation (1) would suggest it is just one static object, whereas
Equations (2) and (3) would then differentiate the two objects (classifying them as two dynamic
objects) based on their different appearance (i.e., RGBcolor and laser reflectance values). Moreover,
any apparition or disappearance of an object belonging to one of these two classes in any of the two
point clouds is automatically considered mobile (i.e., a moving car detected by one of the sensors, which
moves out of the field of view of the second sensor in the short time delay, or a moving car, which has just
entered the scene after the first sensor has already scanned). Similarly, extending this basic reasoning,
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we infer the objects, classified as buildings, roads, trees and poles, as permanently static, whereas cars
and pedestrians can be either temporarily static or mobile. The classification chart as per our inference
is presented in Table 1, whereas some of the results of this method are shown in Figure 4.

Table 1. Object classification chart.

Object Type Permanently Static Temporarily Static Mobile

Road x
Building x

Tree x
Pole x
Car x x

Pedestrian x x
Unclassified x x

Figure 4. Classification of the objects present in the urban scene into three main classes.

Figure 5. The objects classified as temporarily static and mobile are extracted out from the
scene, leaving behind a perforated point cloud for each passage.

Once the objects present in the urban scene are classified into these three main classes, in each
passage, the objects classified as temporarily static and mobile are extracted out from the scene, leaving
behind a perforated point cloud for each passage,, as shown in Figure 5. This perforation is due to
occlusions caused by the temporarily static and mobile objects in the scene. These perforated 3D
images/point clouds of the same place obtained via a single passage on different days and at different
times are then combined together to complete the 3D cartography, as discussed in the following section.
The unclassified objects found to be static are considered temporarily static by default, because all the
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objects classified as temporarily static are compared in the update phase. If the same objects belonging
to this class are found in repeated passages, they are then upgraded as permanently static objects in the
object update phase discussed in Section 5.4.3 and are considered part of the 3D cartography.

5. 3D Cartography and Removal of Imperfections Exploiting Multiple Passages

The perforated 3D point clouds obtained in subsequent passages of any particular place (on different
days and/or at different times) are combined together to fill in the occluded regions and complete the
3D urban cartography. The perforated point cloud is first mapped onto a 3D evidence grid, and the
corresponding 3D cell scores are calculated. A similarity map is generated in subsequent passages.
Based on this similarity map and the associated uncertainty, different changes occurring in the urban
environment are analyzed and appropriate actions are taken to cater for these changes. The details are
provided below.

Figure 6. Formulation of 3D evidence grids and similarity map. ((a) and (b)) show the
3D point clouds (P(np) and P(np − 1)) mapped onto an evidence grid of cell size, L3,
respectively. In (c), the similarity map obtained from the two evidence grids.

5.1. 3D Evidence Grid Formulation

As the 3D point cloud is directly geo-referenced, the use of an occupancy grid for comparison
in subsequent passages as compared to the elaborate graph theory is more logical and practical.
The perforated 3D point cloud obtained in each passage is mapped onto a 3D evidence grid, as shown
in Figure 6. Each 3D cell or voxel of this grid occupies a volume, L3, and is assigned a cell score, CS ,
based on certain attributes of the constituting 3D points using Equation (4). These attributes include the
ratio of occupied volume VOcc, surface normal along x-, y- and z-axes, NX,Y,Z , mean laser reflectance
intensity and mean RGB color values, i.e., RI , Rc (c ∈ {R̄, Ḡ, B̄}), respectively, and the number of the
current passage, np. The normalized values of these attributes are used to compute the cell score:

Cj
S =

wOccV
j
Occ + wNN

j
X,Y,Z + wRIR

j
I + wRcR

j
c + wnpnp

wOcc + wN + wRI + wRc + wnp
(4)
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where j is the number of cells. wOcc = 1 and wN = 0.5 are occupation weight and normal weight, while
wRI = 0.25 and wRc = 0.125 are intensity and color weight, respectively. wnp = 0.0625 is the passage
number weight. The values of these weights are chosen to bias the score more towards occupancy
(magnitude and orientation) and less towards representation (intensity and color), as the former is more
invariant in the urban environment and also keeps our approach closer to the classical occupancy grid
method [32]. These 3D evidence grids are constructed in each passage for both the previous (P(np− 1))
and latest perforated 3D point cloud acquired and are used to formulate and update the similarity map
along with the associated uncertainty. They are then deleted at the end of the process in each passage
(Algorithm 1). This makes this approach most suitable for analyzing large mapping areas.

5.2. Similarity Map Construction

The 3D evidence grid in successive passages is compared to obtain a similarity map in each passage.
Instead of finding the overall graph/grid similarity, we are more interested in measuring the similarity of
each cell, as this indicates exactly which part of the 3D cartography has changed. Currently, many
distances have been developed to compare two objects (in this case, cell) according to the type of
attributes, such as χ2 or Mahalanobis. However, when working with real values, the most widely used
(and simplest) metric is the Minkowski measure, dp:

dp(x, y) =
[ k∑
i=1

Wi

∣∣xi − yi∣∣p] 1
p

with p > 0 (5)

In this measure, xi and yi are the values of the ith attribute describing the individuals, x and y. Wi

is the numerical weight correlated with this attribute. k is the total number of attributes. In order to
transform Minkowski distance Equation (5) into a similarity measure, sp, a value, Di, is introduced,
which corresponds to the difference between the upper and the lower bounds of the range of the ith

attribute:

sp(x, y) =
[ k∑
i=1

Wi

Di −
∣∣xi − yi∣∣p
Di

] 1
p

with p > 0 (6)

This similarity function may provide a measure indicating the amount of changes occurring in a 3D
grid cell in subsequent passages, but it remains silent on the type of change taking place. Now, this
information could be useful when deciding how to handle these changes in the 3D cartography. Thus,
in order to get more insight into the type of changes, we incorporate the notion of distance between
individuals or objects studied in the cognitive sciences. For this purpose, we use the method proposed
by Tversky [33] to evaluate the degree of similarity, Sx,y, between two individuals, x and y, respectively,
described by a set of attributes, A and B, by combining the four terms, A∪B, A∩B, A−B and B−A,
into the formula:

Sx,y =
f(A ∩B)

f(A ∪B) + αf(A−B) + βf(B − A)
(7)

As we want to compare a pair of individuals (in this case, cells in successive passages) described by a
set of numerical attributes, we combine the definitions proposed by Tversky and Minkowski. In these
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measures, we use Tversky’s model to compare the two sets of attributes describing the individuals; the
function, f , of this model is the Minkowski’s formula, as rewritten in Equation (6). The parameter, p, of
this formula equals one, since in Tversky’s model, the function, f , corresponds to a linear combination
of the features. Now, depending upon the way the parameters, α and β, are instantiated, different kinds
of cognitive models of similarity can be expressed. By instantiating α = β = 0, we obtain the symmetric
similarity measure, Sym, while by instantiating α = 0 and β = −1, we obtain the asymmetric similarity
measure, ASym. Now, we use these values to fill up similarity map, SMap, as shown in Figure 6; the
values of ASym allow us to evaluate the degree of inclusion between the first cell (reference) into the
second cell (target). Hence, with the attributes (along with their corresponding weights) assigned to
these cells (discussed in Section 5.1), the value of ASym can be used to assume the type of changes
occurring in the 3D grid cell, as summarized in Table 2, where x and y are the same 3D grid cell in
different passages. These values of Sym and ASyms help in ascertaining the most suitable function
required for that particular 3D grid cell. Condition 1 is automatically handled by the default sequential
update function, whereas for Condition 2 and 3, the automatic reset function is called into action.

Table 2. Type of changes.

# Condition Possible Assumption

1 ASymx,y < ASymy,x Addition of structure
(could be new construction)

2 ASymx,y > ASymy,x Removal of structure
(could be demolition)

3 ASymx,y = ASymy,x Modification of structure
(depending on the value of Sym)

The similarity map, SMap, is updated in each passage, and only the different cells (with Sym <

Similaritythreshold) along with their associated uncertainty values are kept in the map, whereas the
remaining cells considered as identical cells (with a high level of similarity) are deleted from the map.
Hence, this not only reduces the size of the map progressively in subsequent passages, but also avoids
possible storage memory issues for large point clouds in the case of large mapping areas. See Section 6.2
(Figure 7) for more details.

Figure 7. The progressive reduction of the size of similarity map, SMap.
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5.3. Associated Uncertainty

Let the cell scores of a particular cell, j, in n number of passages, Cj
S1, Cj

S2, . . ., C
j
Sn, be an

iidsequence of random variables; then the nth sample variance sjn
2 is given as:

sjn
2

=

∑n
k=1

(
Cj
Sk
− C̄j

Sn

)2
n− 1

then, by adding and subtracting C̄j
Sn−1

:

sjn
2

=
1

n− 1

[ n∑
k=1

(
Cj
Sk − C̄

j
Sn−1

+ C̄j
Sn−1
− C̄j

Sn

)2]
expanding and solving this to get:

sjn
2

=
1

n− 1

[
(n− 2)sj

2

n−1 + (n− 1)(C̄j
Sn−1
− C̄j

Sn
)2

+ 2
n−1∑
k=1

[
(Cj

Sk
− C̄j

Sn−1
)(C̄j

Sn−1
− C̄j

Sn
)
]

+
(
Cj
Sn
− C̄j

Sn

)2]
Using the standard mean, (

∑n−1
k=1 C

j
Sk

= (n− 1)C̄j
Sn−1

), the sum-term simplifies to zero:

sjn
2

=

[
(n− 2)sj

2

n−1 + (n− 1)(C̄Sj,n−1
− C̄j

Sn
)2 + (Cj

Sn
− C̄j

Sn
)2
]

n− 1

Further simplification yields:

sjn
2

=
[((n− 2)

(n− 1)

)
sj

2

n−1 +
(Cj

Sn
− C̄j

Sn−1
)2

n

]
The uncertainty associated with each cell in the map, uj , is, hence, estimated and updated in each

passage (n > 1) using the following relations:

ujn =
[((n− 2)

(n− 1)

)
(ujn−1)

2 +
(Cj

Sn
− C̄j

Sn−1
)2

n

] 1
2 (8)

where C̄j
Sn

is the moving or running average given as:

C̄j
Sn

=
(Cj

Sn
+ (n− 1)C̄j

Sn−1

n

)
(9)

There is no need to initialize Equations (8) and (9), as for n = 2, the first term in Equation (8) equals zero
and in Equation (9), C̄j

S1
= Cj

S1
. This uncertainty measure, updated using Equations (8) and (9), for each

cell, in each passage, sheds light on the reliability of the state of the mapped cells as high uncertainty
value means that the contents of the 3D cell are changing quite frequently; that could suggest high
traffic circulation and other movements in the urban area. On the other hand, low uncertainty means that
the contents of the 3D cell are fairly stable, indicating an established change (for example, permanent
modifications in buildings or any other part of the cartography). This measure can also be added as a
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criterion for selecting the different specialized functions for the changing 3D cells; see Section 5.4.2 for
more details. The uncertainty distribution of neighborhood-1 can be seen in Figure 8. The figure clearly
shows a high level of uncertainty in the bottom part of the environment (close to the ground), due to
different temporarily static and mobile objects present in the scene.

Figure 8. Uncertainty distribution map of the busy neighborhood-1 presented in the form of a
color-coded heat map (with yellow being the lowest and red the highest level of uncertainty).
The map clearly shows that the bottom part of the environment (close to the ground) is highly
uncertain, whereas the top part is generally stable.

5.4. Specialized Functions

There are three specialized functions that are introduced in the method to make it more robust to
different changes occurring in the urban environment and to remove different imperfections in the
resulting cartography. These functions are described below.

5.4.1. Sequential Update Function

This is the default function (see Algorithm 1). It has two main purposes. Firstly, it offers a fine
registration of the various 3D point clouds in subsequent passages. Secondly, it not only enriches the 3D
point cloud by carefully adding 3D points in subsequent passages and, hence, completing the occluded
regions in the process, but also automatically caters to the first type of change (Table 2) occurring in the
urban environment.

Each subsequent 3D point cloud is registered with the former point cloud by using the ICP (Iterative
Closest Point) method [34]. This method is most suitable for this task, as the 3D point clouds are already
geo-referenced, hence lying in close proximity. It is observed that the major part of the 3D urban point
clouds is composed of building points, which are also found to be most consistent. Thus, instead of
applying the ICP method to complete 3D point clouds, only the building points are taken into account
(see Algorithm 2). First, the profile/envelope of the buildings is extracted, and then, the ICP method is
applied, matching these boundaries to obtain the transformation matrix. The outlines/envelopes of the
buildings are extracted using a sweep scan method. As the bottom part of the building outline close to the
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ground is often occluded and, hence, inconsistent, due to the presence of different objects in the scene
(see Figure 8), only the boundary of the top half of the building outline is subjected to ICP, as shown
in Figure 9.

Algorithm 2 Extraction of outlines of buildings
Require: 3D points of building objects

1: for minimum x and y values of 3D points to maximum x and y values of 3D points do
2: Scan building points in the x− y plane
3: Find the maximum and minimum value in the z-axis
4: end for
5: for minimum z values of 3D points to maximum z values of 3D points do
6: Scan building points in the z-axis
7: Find maximum and minimum value in the x− y plane
8: end for
9: return envelope/profile of building objects

Figure 9. In red and blue, the building outline obtained from the first passage. In green and
black, the outline obtained from the second passage. Only the top half of the two outlines in
blue and black, respectively, is subjected to Iterative Closest Point (ICP).

Once the transformation matrix (rotation matrix Rm and translation matrix Tm) is found, the whole
3D point cloud, P(np), is transformed into P′(np) and, then, registered with the former P(np − 1)

using Equation (10).
P′(np) = Rm(P(np)) + Tm (10)

In order to avoid redundant points, a union of 3D points belonging to the two registered images is
performed. Each 3D point of the first point cloud is matched with that of the second, if Equation (11)
is satisfied:

pOa − pOb ≤ 3
√
etol (11)

where pOa and pOb (3 × 1 vectors) are point positions in two point clouds along the x-, y- and z-axes.
etol (3 × 1 vector) is equal to the inverse of the maximum number of 3D points per cubic meter that is
desired in the 3D cartographic point cloud/image. The matched 3D points are considered as one point,
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i.e., the earlier point is retained, whereas the latter point is ignored. This ensures that only the missing
points are added completing the perforated 3D point cloud/image.

Now, this specialized function also ensures that even if there is some new construction or addition of
certain 3D points in the scene in subsequent passages, they are automatically added, hence catering for
the first type of change (Table 2).

5.4.2. Automatic Reset Function

The main purpose of this function is to detect and analyze different changes occurring in the urban
environment, over a number of passages, before incorporating them in the resulting 3D cartography.
The function analyzes the similarity map, SMap, and compares the Sym, ASyms and the uncertainty
measures, u, of the 3D cells after every nreset number of passages. Those 3D cells, Cj

n, which satisfy
Conditions 2 and 3 (Table 2) along with a low value of uncertainty measure, u, Equation (12) are reset
with those in the recently acquired image/point cloud (perforated), i.e., their contents are replaced by the
contents of the same 3D cells in the recently acquired point cloud/image. This ensures that any changes
that occur in the urban environment are automatically incorporated in the resulting 3D cartography in a
very smooth manner without affecting the remaining part of the 3D cartography.

Reset(Cj
n)

if−→ ∀m(
ASym(Cj

m−1, C
j
m) ≥ ASym(Cj

m, C
j
m−1)

)
∧(

ujn < uthreshold
) (12)

wherem = {(n−nreset) · · ·n}, with n > nreset. The proposed reset method was verified by synthetically
modifying and demolishing different parts of the urban environment, including parts of buildings, roads
and poles, in the datasets (for details, you can see Figure 10).

Figure 10. The different changes detected in one of the urban scenes are presented in
red. These changes were due to a demolished building wall, larger poles cut in half and
trimming/cutting of bushes/trees in the scene.
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Now, Equation (12) ensures that a detected change is incorporated in the resulting cartography, only
if we are certain about it. If the change is well-established, the uncertainty value of changing cells will
progressively decrease, and when it falls below the uthreshold, these changes are incorporated in the 3D
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cartography via the reset function (as shown in Figure 11(a)). On the contrary, detected change with
increasing or high uncertainty indicates the occurrence of rapid continuing changes, which could be
either due to ongoing construction/reconstruction or rapid traffic movement in the scene (as shown in
Figure 11(b)). In such situations, the detected changes are not incorporated at once, but in fact, we wait
for the u to progressively decrease below uthreshold as the number of passages, np, increases. This ensures
the reliability and accuracy of our method.

Figure 11. The uncertainty, u, variation of a group of three adjacent cells in which change
was detected. (a) represents the case of established changes, while (b) represents the case of
rapid or continuing changes.

(a) (b)

5.4.3. Object Update Function

This function caters to different misclassifications and other unclassified objects. With every new
passage, once the urban cartography is completed, the objects classified in each passage as temporarily
static are also analyzed using Equation (1)–(3). If the same objects belonging to this class are found at the
same place in repeated passages, they are then upgraded as permanently static objects and are considered
part of the 3D cartography (Algorithm 1). They are then added to the 3D cartography. Otherwise,
non-repetitive objects are deleted from the update register, R(np). This number of allowable repetitions,
nupdate, can be fixed, based upon the frequency of repetition, time of repetition, etc. This not only allows
gradual update of the 3D cartography, but also accommodates the unclassified objects in the scene; for
example, certain parts of building walls in neighborhood-1 (Figure 12(e)) and a few roadside trashcans in
neighborhood-2 (Figure 13(e)), which were unclassified, were added to the cartography, after repetition
in the successive passages, during the update phase.

5.5. Automatic Checks and Balances

If certain 3D points or objects are wrongly added in the 3D cartography, due to either misclassification
or certain repetitions in the object update function, these are then detected in subsequent passages as
changes and, after analysis, are progressively removed by the automatic reset function. Hence, this
ensures that the resulting 3D cartography contains only the exact, actual and permanent features.
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Figure 12. (a) Shows the initial point cloud related to urban cartography full of
imperfections. In (b), (c) and (d), completion of occluded and missing features in the
urban cartography, by incremental updating, using the default sequential update function
as a change of type-1 is detected. (e) shows the point cloud after the object update function;
certain parts of the roadside and building walls are added to the 3D cartography after
repetition in subsequent passages. (a) 3D point cloud, P(np), after first passage; (b) 3D
point cloud, P(np), after second passage; (c) 3D point cloud, P(np), after third passage; (d)
3D point cloud, P(np), after fourth passage; (e) 3D point cloud, P(np), after object update.

(a)

(b)

(c)

(d)

(e)
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Figure 13. (a) shows the initial point cloud related to urban cartography full of
imperfections. In (b), (c) and (d), completion of occluded and missing features in the
urban cartography, by incremental updating, using the default sequential update function
as a change of type-1 is detected. (e) shows the point cloud after the object update function;
certain parts of the roadside and building walls along are added to the 3D cartography after
repetition in subsequent passages. (a) 3D point cloud, P(np), after first passage; (b) 3D point
cloud, P(np), after second passage; (c) 3D point cloud, P(np), after third passage; (d) 3D
point cloud, P(np), after fourth passage; (e) 3D point cloud, P(np), after object update.

(a)

(b)

(c)

(d)

(e)
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6. Results, Evaluation and Discussion

In order to validate our method, the dynamic data set of the 3D Urban Data Challenge 2011 was
used. This data set contains four sets of the same dynamic scenes of downtown Lexington, Kentucky,
USA, obtained on different days and at different times. The data set consists of 3D points coupled
with corresponding laser reflectance intensity values. As the corresponding RGB values are not readily
available, Equation (2) was not used. This did not have much impact on the results, as laser reflectance
values are found to be more consistent than RGB values in an urban environment, which is more
illumination invariant [31]. The results for two different neighborhoods are discussed in this paper. In
Figures 12–14, the detailed results for neighborhood-1, neighborhood-2 and neighborhood-1(modified)
are presented, respectively. The figures clearly show how different imperfections are progressively
removed using the specialized functions, while the different changes occurring in the urban scene are
updated after successful detection and analysis. Figure 15 shows the successful completion of occluded
features along with the imperfection removal of a particular street corner using this method.

Figure 14. (a) shows the initial point cloud related to urban cartography full of
imperfections. In (b), (c) and (d), completion of occluded and missing features in the
urban cartography, by incremental updating, using the default sequential update function
as a change of type-1 is detected. In (e), the automatic reset function came into action after
changes of type 2&3 were detected, to update the modifications in the 3D cartography. (f)
shows the point cloud after the object update function; certain parts of the roadside and
building walls are added to the 3D cartography after repetition in subsequent passages. On
(f) are also marked the changes successfully detected and updated after four passages. These
include: 1—building wall/roof added, due to initial misclassification; 2—part of building
demolished; 4, 5 and 6—trimmed or cut trees/bushes; 3, 7 and 8—longer poles cut in half.
(a) 3D point cloud, P(np), after first passage; (b) 3D point cloud, P(np), after second
passage; (c) 3D point cloud, P(np), after third passage; (d) 3D point cloud, P(np), after
fourth passage; (e) 3D point cloud, P(np), after automatic reset; (f) 3D point cloud, P(np),
after object update.

(a)

(b)
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Figure 14. Cont.

(c)

(d)

(e)

(f)

6.1. Change Detection and Reset Function

Now, in order to evaluate the reset function, we assessed the ability of the proposed method to
successfully detect changes occurring in the urban environment before they can be updated in the
cartography. We first constructed an ROC (Receiver Operating Characteristic) curve. The value of
Similaritythreshold (used as a discriminatory threshold) was varied from zero to one, and corresponding
true positive rates (TPR) and false positive rates (FPR) were calculated for neighborhood-1 (modified).
The variation of this ROC curve with respect to uthreshold (varying from zero to 0.5) is presented by a 3D
ROC curve (surface, in this case) in Figure 16. From the figure, it could be observed that the best/optimal
results (A in the figure) can be obtained from Similaritythreshold = 66% and uthreshold = 0.15.
This analysis was conducted at the 3D cell level. Figures 10 and 14(f) show some of these detected
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changes in the urban scene. These values of Similaritythreshold and uthreshold along with L = 2 m,
etol = (0.000125 0.000125 0.000125)T (in m3) and nreset = 3 (the maximum number of passages
possible in our case is four) were then used to evaluate the performance of our method for all three
neighborhoods.

Figure 15. Different missing features and imperfections belonging to shop windows, walls,
pole and road in (a) are successfully completed and removed in (b), respectively, using this
method for neighborhood-1. (a) 3D point cloud, P(np), after first passage; (b) 3D point
cloud, P(np), after fourth passage.

(a)

(b)

Figure 16. True positive rate (TPR) is plotted against false positive rate (FPR) to obtain a
3D Receiver Operating Characteristic (ROC) curve for neighborhood-1 (modified). Point A
on the surface represents the optimal/best results.
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Change detection for the automatic reset function was evaluated using different standard evaluation
metrics, as described in [35] (see Table 3). Although all these metrics are commonly used to evaluate
such algorithms, MCC (Matthews Correlation Coefficient) is regarded as the most balanced measure,
as it is insensitive to different class sizes (as is the case with our application, the number of changed
cells (changes) is generally quite inferior as compared to unchanged cells in the urban environment).
The MCC, like the other measures, is calculated based on the count of the true positives (i.e., correct
detection of changed 3D cells), false positives, true negatives and false negatives. A coefficient of
+1 represents a perfect prediction, zero is no better than random prediction and −1 indicates total
disagreement. The detailed results, including the overall accuracy, ACC, and MCC greater than 85%

and +0.6, respectively, clearly demonstrate the efficacy of the proposed method.

Table 3. Change detection evaluation.

Neighborhood Neighborhood Neighborhood
1 (Modified) 1 2

ACC Accuracy 0.864 0.891 0.903

PPV Positive Predictive Value 0.842 0.850 0.900

NPV Negative Predictive Value 0.864 0.902 0.901

FDR False Discovery Rate 0.158 0.150 0.100

F1 F1 measure 0.695 0.650 0.782

MCC Matthews Correlation Coefficient +0.624 +0.692 +0.729

6.2. Evolution of Similarity Map Size

Figure 7 shows the progressive reduction of the size of the similarity map in subsequent passages.
This is due to the fact that in subsequent passages, as occluded regions are completed, the number of low
similarities caused by the missing occluded features decreases, and also, the different changes occurring
in the cartography are catered to by means of the automatic reset function. In the case of neighborhood-1
(modified), Figure 7, the large size of SMap is due to large parts of the building, poles, trees, etc., being
demolished in neighborhood-1 (see Figure 10), whereas a sharp decrease in size occurs at np = 4, due
to the automatic reset function (nreset = 3). We see that some non-repeating cells or those with high
associated uncertainty remain even after the automatic reset. This number of cells in the SMap should
ideally reduce to zero as the number of np increases.

6.3. Handling Misclassifications and Improvement in Classification Results

To assess the removal of imperfections due to misclassification, the improvement in classification
results by the proposed method as compared to single passage classification (standard practice) was
evaluated using standard F -measure as described in [35,36]:

Fβ = (1 + β2)
p.r

(β2.p+ r)
(13)

where p and r are the precision and recall, respectively, and β is the weight constant. Table 4 shows
that the proposed method improves the classification results (permanently static objects are analyzed
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here, as they constitute the permanent cartography, and, hence, are of most interest to us). The value of
β = 1 was used to obtain a balanced F1 score. The classified objects were considered as a percentage
of their constituting points in the 3D scene. This improvement is due to different misclassifications
being progressively corrected, hence reducing the imperfections caused by them in the resulting
3D cartography.

Table 4. Classification results for permanently static objects (F1-Score).

Passage 1 Passage 2 Passage 3 Passage 4 Proposed Method

Neighbor-1 0.943 0.977 0.958 0.959 0.981
Neighbor-2 0.979 0.975 0.981 0.984 0.992

6.4. Accuracy Evaluation

In order to evaluate the accuracy of the completed permanent features/regions and, hence, the
effectiveness of the imperfection removal, we selected a corner building in neighborhood-1. As
no ground truth was readily available, we generated the ground truth by creating a simplified 3D
model of the building using standard CAD software, as shown in Figure 17. The 3D points from
the initial acquisition were used for this purpose, while the missing features were completed by
horizontal and vertical interpolations, exploiting the symmetry of the building design; these features were
confirmed/matched with the images of the building, from different viewing angles, acquired by the digital
spherical camera mounted on the vehicle (see Figure 17). A number of features, including the occluded
ones, were selected for comparison. The dimensions of these selected features extracted in the 3D image
obtained at each passage, using our method, were then compared with their corresponding dimensions
in the ground truth. The average absolute errors in x-, y- and z-axes (height) of the available dimensions
obtained in each passage are presented in Figure 18. These error values include both registration and
sensor measurement errors. Low average absolute error values obtained for passage-1 are due to the
fact that part of these 3D points was used for ground truth generation. These generally low and fairly
constant error values make this method suitable for most applications.

Figure 17. (a) shows the generated 3D model of the buildings according to dimensions; In
(b), one of the camera images of the building is presented.

(a) (b)
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Figure 18. Average absolute errors in x, y and z (height) directions.

7. Conclusions

In this work, we have presented a new method for automatic 3D urban cartography that progressively
removes different imperfections caused by occlusions, misclassifications of objects in the scene and
ineffective incorporation of changes occurring in the environment over time, by taking advantage of
incremental updating using specialized functions. Different changes occurring in the urban landscape
are automatically detected and analyzed using cognitive functions of similarity, and the resulting 3D
cartography is modified accordingly. The proposed method ensures that the resulting 3D point cloud
of the cartography is quite reliable, and it contains only the exact and actual permanent features, free
from imperfections.

The results evaluated on a real data set using different evaluation metrics demonstrate the technical
prowess of the method. The thorough analysis exhibits accurate change detection (including values
of overall accuracy ACCand a Matthew’s Correlation Coefficient (MCC) greater than 85% and +0.6,
respectively), improved classification results (with a standard F1 score > 0.98) and high accuracy of
the completed permanent features/regions of the urban cartography. The results also show that the
method is well scalable and that it can both be easily integrated and ideally suited for removing various
imperfections for different commercial or non-commercial applications pertaining to urban landscape
modeling and cartography requiring frequent database updating.
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