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Abstract: Offshore wind resource maps for the coastal waters off Shirahama, Japan were 
made based on 104 images of the Advanced Synthetic Aperture Radar (ASAR) onboard 
the ENVISAT satellite. Wind speed fields were derived from the SAR images with the 
geophysical model function CMOD5.N. Mean wind speed and energy density were estimated 
using the Weibull distribution function. These accuracies were examined in comparison 
with in situ measurements from the Shirahama offshore platform and the Southwest 
Wakayama buoy (SW-buoy). Firstly, it was found that the SAR-derived 10 m-height wind 
speed had a bias of 0.52 m/s and a RMSE of 2.33 m/s at Shirahama. Secondly, it was found 
that the mean wind speeds estimated from SAR images and the Weibull distribution 
function were overestimated at both sites. The ratio between SAR-derived and in situ 
measured mean wind speeds at Shirahama is 1.07, and this value was used for a long-term 
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bias correction in the SAR-derived wind speed. Finally, mean wind speed and wind energy 
density maps at 80 m height were made based on the corrected SAR-derived 10 m-height wind 
speeds and the ratio U80/U10 calculated from the mesoscale meteorological model WRF.  

Keywords: offshore wind resource assessment; synthetic aperture radar; ENVISAT； 
Japanese coastal waters; WRF 

 

1. Introduction 

From the satellite-borne Synthetic Aperture Radar (SAR) it is possible to retrieve a sea surface wind 
speed field with a high spatial resolution of tens to hundreds of meters, and it is thus expected that the 
SAR image can be used for wind resource assessment in coastal waters. In fact, the offshore wind 
resource assessment using SAR has been conducted in many places, especially in Europe (e.g., [1–3]).  

On the other hand, in Japan, since there has been little need for offshore wind resource assessment 
at least up to the accident of the Fukushima nuclear power plant, there are few papers in which offshore 
wind resource is practically assessed with SAR, except some preliminary papers like Kozai et al. [4]. But 
now, offshore wind energy is gradually regarded as a promising electric power resource, and there is 
increased need for assessing the offshore wind resource. It is thus desirable that the SAR-based 
offshore wind resource assessment, which is reported to work well in European seas, could also be 
applicable to Japanese coastal waters. However, compared to the European seas such as the North Sea, 
Japanese coastal waters have more complex coastlines and onshore terrains as well as they are affected 
by non-neutral atmospheric stability due to the Kuroshio Current. In fact, the authors have found that 
the performance and accuracy of the SAR-based wind speed estimation method are different between 
Europe and Japan, and thus have investigated how to use SAR for offshore wind resource assessment 
in Japanese coastal waters [5–7].  

First, Takeyama et al. [5] discussed the wind directions used as input to a geophysical model 
function (GMF) to derive 10 m-height wind speed from a SAR image. As a result, it was found that 
estimated wind speed became the most accurate when using a high resolution wind direction field 
output from numerical simulation with the mesoscale meteorological model WRF (Weather Research 
and Forecasting model) [8]. Thus, this study uses the WRF wind direction as input to GMF. Secondly, 
Takeyama et al. [6] compared the performances of four GMFs: CMOD4, CMOD5, CMOD_IFR2 and 
CMOD5.N [9] at two sites in Japanese coastal waters and concluded that CMOD5.N, which can 
correct the effect of atmospheric stability, retrieves the most accurate wind speeds of the four. Thus, 
the latest GMF CMOD5.N is used to derive wind speed from SAR images. Thirdly, it is generally 
believed that a larger number of SAR images leads to a higher accuracy of the assessment. Kozai et al. [7] 
examined the number of SAR images necessary to estimate long-term mean wind speed at Shirahama, 
and concluded that at least 74 to 128 SAR images are required when assuming a 10% error and 90% 
confidence interval. The number is a little bit larger than that of Barthelmie and Pryor [10], to which 
Kozai et al. [7] referred, reporting that 60 to 70 randomly selected images are required to characterize 
the mean wind speed and Weibull distribution scale parameter, and nearly 2,000 images are needed to 
obtain energy density. According to these results, the number of 104 SAR images, used in this study, 
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can be considered to be almost sufficient for mean wind speed estimation, but it might be insufficient 
for wind energy density estimation.  

This study aims at two things. One is to examine the accuracy of offshore wind resource estimation 
(long-term mean wind speed and wind energy density) using SAR images and the Weibull analysis, 
and the other is to finally make wind resource maps in the coastal waters off Shirahama. The methods 
of wind speed estimation from SAR images, comparison with in situ measurements, and application of 
the Weibull distribution function are described in Section 2. Accuracies of SAR-derived wind speeds 
and Weibull parameters are examined in Subsections 3.1 and 3.2, respectively. Subsection 3.3 describes 
the way to make the offshore wind resource maps, which are finally presented at the end of this paper.  

2. Methods and Data 

2.1. Target Area and in situ Measurements  

The target area of this study is the coastal waters off Shirahama, shown in Figure 1. This area is 
located in the western part of Japan, including the Kii Channel facing the Pacific Ocean, and known as 
a relatively windy coastal area in this region, because this channel gives passage to the northwesterly 
winter monsoon wind. In this area there are two observation sites; the Shirahama offshore platform and 
the South Wakayama buoy (Hereinafter, SW-buoy). The first one, the Shirahama offshore platform 
(33°42'32''N, 135°19'58''E) is the oceanographic and meteorological observation station operated by 
the Disaster Prevention Research Institute, Kyoto University since 1994. On the platform, wind speed 
and direction are measured at a height of 23 m above mean sea level with a propeller anemometer. 
This study uses the hourly 10-min averaged wind speed from 2003 to 2011. The second one, the  
SW-buoy (33°38'32''N, 135°09'24''E) is a buoy for wave observation and is operated by the Ports and 
Harbors Bureau, Ministry of Land, Infrastructure, Transport and Tourism. On the buoy, wind speed 
and direction are measured with a propeller anemometer at a height of 7 m. The hourly 10-min 
averaged wind speed data for two years from 2009 to 2010 is used in this study. 

In order to compare the SAR-derived wind speed at 10 m height with in situ measured wind speeds, 
the in situ wind speeds at 23 m height at Shirahama is corrected to the 10 m-height wind speed. For 
this height correction, the LKB code [11], which can calculate vertical profile of wind speed based  
on the Monin-Obukhov similarity theory, is used. Three kinds of inputs; air temperature, relative 
humidity, and sea surface temperature (SST) are required in the LKB code. The wind profile, which 
can take the effect of atmospheric stability expressed as Ψu(ζ) into account, is shown as  ݑ ൌ ߢכݑ ൤݈݊ ൬ ଴൰ݖݖ െ Ψ௨ሺߞሻ൨ (1)

Here, u* is frictional velocity, z0 is roughness length, and κ is the von Karman constant (=0.4). The 
relation between z0 and u* is given as ݖ଴ ൌ 0.11 כݑߥ ൅ ߙ ଶ݃ (2)כݑ

where α is Charnock’s parameter with a value of 0.011 [12], υ is the kinematic viscosity, and g is the 
acceleration due to gravity. The parameters, z0 and u* can be determined iteratively through the 
Equations (1) and (2) and other equations regarding the stability parameter ζ. In the height correction 
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Table 1. Cont. 

Date 
(year/month/

day) 

Time  
(h:min:s) 

Ascending 
or 

Descending 

Observation 
Mode 

Date 
(year/month/

day) 

Time  
(h:min:s) 

Ascending 
or 

Descending 

Observation 
Mode 

20050805 01:07:05 DS IMP 20100921 12:53:38 AS WSM 
20050909 01:07:02 DS IMP 20100922 01:09:01 DS WSM 
20051014 01:07:05 DS IMP 20111018 12:58:01 AS WSM 
20051118 01:07:03 DS IMP 20111019 01:11:12 AS WSM 
20051223 01:06:57 DS IMP 20111026 13:04:41 AS WSM 
20060111 01:09:42 DS IMP 20111030 01:07:59 DS WSM 
20060215 01:09:45 DS IMP 20111106 13:01:28 AS WSM 
20060303 01:06:54 DS IMP 20111109 12:51:34 AS WSM 
20070829 01:09:47 DS IMP 20111114 13:08:08 AS WSM 
20071107 01:09:43 DS IMP 20111125 13:04:54 AS WSM 
20071123 01:06:48 DS IMP 20111206 13:01:39 AS WSM 
20071208 12:48:10 AS IMP 20111207 01:14:50 AS WSM 
20071209 01:03:59 DS IMP 20111209 12:51:45 AS WSM 
20071212 01:09:41 DS IMP 20111210 01:04:56 DS WSM 
20080112 12:48:12 AS IMP 20111214 13:08:19 AS WSM 
20080113 01:04:01 DS IMP 20111217 12:58:25 AS WSM 
20080116 01:09:43 DS IMP 20111218 01:11:36 AS WSM 
20080131 12:51:01 AS IMP 20111221 01:01:42 DS WSM 
20080201 01:06:50 DS IMP 20111228 12:55:10 AS WSM 
20080216 12:48:09 AS IMP 20120105 13:01:49 AS WSM 
20080217 01:03:59 DS IMP 20120106 01:15:00 AS WSM 
20080220 01:09:42 DS IMP 20120108 12:51:55 AS WSM 
20080306 12:51:02 AS IMP 20120109 01:05:05 DS WSM 
20080307 01:06:51 DS IMP 20120113 13:08:26 AS WSM 
20080322 12:48:13 AS IMP 20120116 12:58:33 AS WSM 
20080323 01:04:02 DS IMP 
20080326 01:09:43 DS IMP 

For deriving wind speed from the SAR image, CMOD5.N [9] is used to derive wind speed from 
normalized radar cross section (NRCS) represented in the SAR images. The primary equation of 
CMOD5.N can be written as  

( ) 6.1
210 )2cos(cos0.1 φφσ bbbo

vv ++=  (3)

where ߪ௩௩௢  is the VV-polarized NRCS obtained from a SAR image, φ  is the relative wind direction 
defined as the angle between the radar look direction and true wind direction, and b0, b1, and b2 are the 
parameters depending on the radar incidence angle and wind speed. Here, it is necessary to acquire 
values of wind direction from another external data source. Same as [5], this study uses the wind 
direction obtained from numerical simulation with the mesoscale meteorological model WRF [8]. 
Details of the WRF simulation are described in Subsection 2.3.  
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2.3. Conversion from Equivalent Wind Speed (ENW) to Stability-Dependent Wind Speed (SDW) 

The output from CMOD5.N is the equivalent neutral wind speed (ENW) [13], which is the wind 
speed obtained under the assumption of neutral atmospheric stability in the surface layer. Thus, the 
LKB code [11] is used to convert the ENW to the stability-dependent wind speed (SDW), which is 
comparable to a true wind speed. Since Takeyama et al. [6] provides an in-depth description of how to 
calculate SDW from ENW with the LKB code, this paper omits to describe it. What is important is that 
the LKB code requires three parameters; air temperature, relative humidity, and sea surface temperature 
(SST) to calculate SDW, and this study obtains these three values from numerical simulation with the 
mesoscale meteorological model WRF. 

Table 2. Configurations of the mesoscale meteorological model WRF and input data.  

Initial data 
 

JAM Meso-Analysis (MANAL)  
5 km × 5 km, 10 km × 10 km (before April 2009)  
3-hourly, 6-hourly (before February 2006) 

  
Met Office OSTIA SST  
(0.05° × 0.05°, daily) 

Nesting option two-way nesting 
Vertical resolution 28 levels (surface to 100 hPa) 
Time period 24 h including the time of passage of ENVISAT 
Domain Domain 1 Domain 2 
Horizaontal resolution 5.0 km 1.0 km 
Grid points 100 × 100 101 × 101 
Time step 30 s 6 s 
Physics option Surface layer Monin-Obukhov (Janjic Eta) 

Planetary Boundary Layer MYJ (Eta) TKE 
Short wave radiation Dudhia 
Long wave radiation RRTM 
Cloud micropysics WSM3 
Cumulus parameterization Kain-Fritsch (new Eta) none 
Land surface Five-layer soil 

FDDA option Enable Enable 
including PBL excluding PBL 

The WRF (Weather Research and Forecasting model) [8] is the mesoscale numerical weather 
prediction system developed by seven institutes in the United States including the National Center for 
Environmental Prediction (NCEP) and the National Center for Atmospheric Researches (NCAR). In 
this study, WRF is set up with two domains consisting of 100 × 100 grids with horizontal resolutions 
of 5 km and 1 km, and 28 vertical layers. As the initial and boundary conditions, 3-hourly (6-hourly 
before February 2006) 5 km × 5 km (10 km × 10 km before April 2009) mesoscale analysis MANAL 
provided from Japan Meteorological Agency and daily 0.05° × 0.05° sea surface temperature OSTIA 
SST provided from Met Office [14] are used in the simulation. WRF is run for 24 h for each SAR 
image, corresponding to the time of passage of ENVISAT (mostly at 01 and 13 UTC) with two-way 
nesting, which allows the interaction between the mother and child domains. More in-depth model 
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speeds calculated from the mesoscale meteorological model WRF, mean wind speed and wind 
energy density maps at 80 m height were made and presented at the end of the paper.  

Further work is necessary to increase the accuracy of the maps by combining them with information 
from remote sensing measurements by satellite-borne scatterometers and radiometers and simulation 
results from a mesoscale model, as well as by increasing the number of SAR images used in the analysis.  
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