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Abstract: This paper examines a land surface solar radiation partitioning scheme, i.e., that 

of the Community Land Model version 4 (CLM4) with coupled carbon and nitrogen 

cycles. Taking advantage of a unique 30-year fraction of absorbed photosynthetically 

active radiation (FPAR) dataset, derived from the Global Inventory Modeling and Mapping 

Studies (GIMMS) normalized difference vegetation index (NDVI) data set, multiple other 

remote sensing datasets, and site level observations, we evaluated the CLM4 FPAR’s 

seasonal cycle, diurnal cycle, long-term trends, and spatial patterns. Our findings show that 

the model generally agrees with observations in the seasonal cycle, long-term trends, and 

spatial patterns, but does not reproduce the diurnal cycle. Discrepancies also exist in 

seasonality magnitudes, peak value months, and spatial heterogeneity. We identify the 

discrepancy in the diurnal cycle as, due to, the absence of dependence on sun angle in the 

model. Implementation of sun angle dependence in a one-dimensional (1-D) model is 

proposed. The need for better relating of vegetation to climate in the model, indicated by 

long-term trends, is also noted. Evaluation of the CLM4 land surface solar radiation 

partitioning scheme using remote sensing and site level FPAR datasets provides targets for 

future development in its representation of this naturally complicated process. 
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1. Introduction 

Partitioning of incident solar radiation among various components at the land surface, especially 

from vegetation and underlying soil for vegetated regions, determines the energy absorbed by 

vegetation, evapotranspiration, partitioning between surface sensible and latent heat fluxes, and the 

energy and water exchange between the land surface and the atmosphere [1–10]. How solar radiation 

reaches underlying soil through between-crown gaps and within-crown gaps is an essential part of 

micrometeorological, climatological, biogeochemical, and hydrological modeling [11–15]. Various 

authors have explored numerical solutions to the partitioning problem, in both one-Dimensional (1-D) 

and three-Dimensional (3-D) geometries [13,16–19]. Though the complexity of the problem fully 

justifies the need for a 3-D model, 1-D models have been popular because of their ability to 

approximate it in a relatively simple form and to give reasonable results [16,17]. In the Community 

Land Model (version 4.0, CLM4), this process is formulated by a 1-D land surface solar radiation 

partitioning scheme: each sub-grid land cover type, plant functional type (PFT) patch, and bare soil, is 

a separate column for energy calculation [18,20]; a 1-D radiative transfer approximation is employed 

to simulate the radiative transfer process within canopy at PFT levels [18]. This study aims to address 

the performance of this modeling and how to improve it. 

The fraction of absorbed photosynthetically active radiation (FPAR) is employed as the diagnostic 

parameter for the land surface solar radiation partitioning scheme. FPAR is defined to be the fraction 

of PAR absorbed by the canopy [21], and hence, should be decided mainly by the radiative transfer 

process within the canopy. However, it can also be affected by the solar radiation reflected by the 

ground since plants are not separated from their background in FPAR observations, either at site level 

or in remote sensing. Below-canopy PAR sensors at flux sites measure not only the PAR transmitted 

through the canopy, but also the PAR directly incident on the ground; digital information at each pixel 

in remote sensing represents the averaged spectral information from each surface type within the 

instantaneous field of view (IFOV). Therefore, FPAR is an appropriate parameter for this study. 

In order to evaluate model performance, the dynamics of the fraction of absorbed photosynthetically 

active radiation (FPAR)’s seasonal cycle, diurnal cycle, long-term trends, and spatial patterns are used. 

The seasonal cycle of FPAR is essentially driven by leaf presence, growth, and foliage, so it can be 

interpreted as a manifestation of plant phenology. The diurnal FPAR cycle, however, is a more 

complicated process. It is orchestrated by the angular effect of direct solar radiation, fraction of direct 

radiation in total solar radiation, and vegetation coverage in the forest. The study of the diurnal cycle 

of FPAR is a novel utilization of flux tower observations. Diurnal cycle observations represent all 

aspects of canopy-sun-surrounding relations, while traditional studies, using site level observations, 

focus on the seasonal cycle and absolute value at the time when measurements are made, although 

series of these measurements may be collected over multiple days [22–26]. The long-term trends of 

FPAR could be impacted by two factors: plant phenology changes, such as leaf area index (LAI) and 

leaf out time, and plant distribution changes [27]. In addition to temporal dynamics, FPAR spatial 
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patterns are also evaluated. Spatial patterns are decided mainly by plant types and geographical 

conditions [28]. As analyzed above, the accuracy of the solar radiation partitioning solutions depends, 

on not only the performance of the land surface solar radiation partitioning scheme, but also on the 

accuracy of input information on vegetation (e.g., LAI) and other conditions. Therefore, our evaluation 

needs to generally identify the reasons for discrepancies and focus on those problems related to the 

land surface solar radiation partitioning scheme. 

Current remote sensing (RS) data, and the application of photosynthetically active radiation (PAR) 

sensors in flux tower networks, provide appropriate observations for evaluating the CLM4 land surface 

radiation partitioning scheme. Some satellite FPAR datasets have been produced based on various 

retrieval algorithms and radiative transfer assumptions [23,29,30]. Although they differ in absolute 

values, most remote sensing FPAR products are compatible with one another in seasonal cycle and 

spatial patterns [26,28,31]. The application of PAR sensors in a flux tower network enables evaluations 

of the FPAR diurnal cycle. PAR sensors provide highly accurate measurements of PAR, and have been 

put into service in many flux tower sites [22,32,33]. A systematic FPAR observation should consist of 

four parameters: incident PAR, reflected PAR, PAR transmitted through the canopy, and PAR 

reflected by the ground. Transmitted PAR should be measured by a group of PAR sensors because it is 

highly location-sensitive, while PAR reflected by the ground could be ignored if the soil reflectance is 

low. Such an integrated observing system exists at limited sites [32]. Hence, it is of great potential to 

use both satellite-based and site-level observations to investigate CLM4 performance regarding FPAR 

dynamics and spatial patterns. 

We have three objectives: (1) to evaluate CLM4 performance in representing FPAR dynamics and 

spatial patterns; (2) to identify the agreements and disagreements between CLM4 FPAR and observations; 

and (3) to understand the reasons for those differences, and focus on the problems related to the land 

surface solar radiation partitioning scheme. In Section 2 we present the data and methods. The 

comparisons regarding FPAR dynamics and spatial patterns are shown in Section 3. Specific findings 

and implementations are discussed in Section 4, with conclusions drawn in Section 5. 

2. Methodology 

2.1. Model Description 

As the diagnostic parameter for the model, FPAR’s accuracy reflects justifications of the land 

surface solar radiation scheme, but is not limited to this. Solar radiation (i.e., direct vs. diffuse 

radiation) and plant phenology (i.e., leaf area index (LAI)) are two factors also entering into the 

model’s calculation of FPAR. In this study, solar radiation (including direct and diffuse radiation), as 

prescribed in forcing data CRUNCEP [34], as estimated based on meteorological station observations 

(CRU dataset) and reanalysis product (NCEP dataset). 

CLM4 represents the land surface as a hierarchy of subgrid types including glacier, lake, wetland, 

urban, and vegetated landunits. The vegetated part is further divided into patches of 16 PFTs and bare 

soil. Each subgrid land cover type is a separate column for energy and water calculation [18]. 

In each PFT patch, the vegetation fractional coverage is 100%. The two-stream module is employed 

to calculate the solar radiant fluxes that are reflected, transmitted, absorbed by the canopy, and that are 
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absorbed by the underlying soil. Several assumptions are made, including that fluxes are isotropic in 

only two directions (upward and downward), the canopy is horizontally homogenous and elements 

inside the canopy (including leaves, stems, and trunks) are randomly distributed. The daily output of 

CLM4 sums up the fluxes from each PFT that includes bare soil and accounts for the fraction of 

vegetated area in the grid. In this study, CLM4 FPAR is defined as:  

     
       

  
           

  
   

       
   

           
   

   

 
(1) 

where            is the direct (diffuse) solar radiation absorbed by the canopy in the visible band for 

plant type  .      
      

   is the direct (diffuse) incident solar radiation at the land part of the grid in the 

visual band for plant type   [35], and     is the areal weighting of the plant functional type in the grid, 

       
   , including bare soil (   ). 

As for plant phenology, the plant phenology cycle in the CLM4 is fully-prognostic, resulting from 

coupling Carbon-Nitrogen (CN) model: the seasonal timing of new vegetation growth and litterfall 

responds to soil and air temperature, soil water availability, and day-length, in varying degrees 

depending on a specified phenology type for each PFT. LAI calculation is based mainly on the specific 

leaf area     (   one-sided leaf area per   ) and the total canopy leaf carbon (  ,        ground 

area) [36]. A linear relationship between     and canopy depth is assumed as: 

               (2) 

where      is     at the top of the canopy, m is a linear coefficient, and x is a parameter describing 

the canopy depth as an overlying leaf area index.      and   are both fixed for each PFT. Total 

canopy leaf carbon    can be found by integrating over the canopy: 

    
 

      
   

                        

 

 

 

 (3) 

Given    calculated from the CLM4,   can be solved as:  

  
                

 
 (4) 

   is a dynamic carbon pool affected by gains from photosynthesis, and losses to litterfall and 

mortality, including from fire [37,38]. In addition to the dynamics of leaf carbon pool, feedbacks 

between carbon cycle and nitrogen cycle are also considered, which would also limit the rate of carbon 

accumulation in canopy leaf carbon [18]. 

2.2. Model Simulation 

In this study the coupled CN version of CLM4 was driven by historical meteorological data 

CRUNCEP, land use and land cover, atmospheric CO2 concentration, and anthropogenic nitrogen 

deposition. Beginning with the steady model state in 1901, CLM4 was run to 2009 with the previously 

mentioned historical forcings. Detailed information about the driver datasets and model settings can be 

referred to [39,40]. The half-degree monthly FPAR output during 2003–2005 was selected for direct 

comparison with all satellite observations due to the availability of remote sensing datasets. The period 
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of 1982–2009 was selected for inter-annual change trend comparison between CLM4 FPAR and 

GIMMS FPAR3g. 

2.3. Observation Data Description 

2.3.1. Moderate Resolution Imaging Spectroradiometer (MODIS) Fraction of Absorbed 

Photosynthetically Active Radiation (FPAR) 

The Moderate Resolution Imaging Spectroradiometer (MODIS) FPAR algorithm is based on 3-D 

radiative transfer theory. Inverse Look-Up-Tables (LUTs) are generated for six major biomes defined 

by MODIS; model configurations for each biome differ from each other by fractional coverage, 

structural characteristics including canopy height, leaf type, and soil color. Measured surface 

reflectances (atmospherically corrected bidirectional reflectances) at a maximum of seven spectral 

bands are used for the inversion [29]. The MODIS daily product is computed daily at 1 km resolution 

globally. The maximum FPAR value (across the eight days) is selected for the eight-day product [21]. 

Based on the eight-day product, Zhao [41] produced an improved product with cloud-contaminated  

pixels gap-filled. 

2.3.2. Fraction of Photosynthetically Active Radiation (FPAR) 3g/Leaf Area Index (LAI) 3g Derived 

from Global Inventory Modeling and Mapping Studies (GIMMS) 

GIMMS FPAR3g/LAI3g is computed based on improved versions of MODIS FPAR/LAI [42,43] 

and GIMMS NDVI3g generated from the Advanced Very High Resolution Radiometeters (AVHRR) 

using an artificial neural network. GIMMS NDVI3g and its long-term (June 1981–2011) global coverage 

at frequent intervals provide a unique opportunity to explore vegetation long-term dynamics [44]. It is 

therefore used as the sole dataset for long-term trend evaluation. However, the AVHRR data lacks 

correction for aerosol scattering and water vapor absorption [45], resulting in possible atmospheric 

artifacts in the GIMMS data sets.  

2.3.3. Joint Research Center (JRC) FPAR 

The Joint Research Center (JRC) generic FPAR algorithm has been used to develop FPAR products 

for both Sea-viewing Wide Field-of-view Sensor (SeaWiFS) and Medium Resolution Imaging 

Spectrometer (MERIS) [30,46]. It is not biome-specific, but defines FPAR as “green” instantaneous 

FPAR under direct illumination. Its input data are top of atmosphere (TOA) bidirectional reflectance 

factors (BRFs) in blue, red, and near-infrared bands. Blue band is used to remove the atmospheric 

effects [47]. For the monthly composite, median values which are the closest to the temporal average 

estimated over the compositing period are selected to generate the statistics [48].  

2.3.4. Site-Level FPAR 

We use data from the Bartlett Experimental Forest flux tower site (44.06°N, 71.29°W, and 272 m 

elevation) in north central New Hampshire, USA. This measured data is available from the AmeriFlux 

Web page [49]. Half hour-averaged measurements from 1 January 2005 to 30 December 2006 were 
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used in this study. The vegetation is primarily deciduous forest [28]. The flux tower is 25 m in height 

and set in a relatively flat area. Quantum sensors are placed above and below the vegetation canopy. 

Above-canopy sensors are located at the top of the tower, sensors facing upward measure the incident 

photosynthetic photon flux density (Qincident) while sensors facing downward measure the 

photosynthetic photon flux density reflected from the canopy (Qreflected). Six below-canopy sensors are 

placed in a circle (radius = 15 m) centered at the base of the tower [32]. They face upward and thereby 

measure the photon flux density transmitted through the canopies or gaps (Qtransmitted). Site-level FPAR 

is calculated by: 

F    
                                 

         
 (5) 

Multiple sites for various plant types are desired to rigorously evaluate the model’s performance. 

However, due to the data availability, Bartlett Experimental Forest flux tower site was initially selected 

in this study to qualitatively diagnose model’s performance in deciduous forest. 

2.4. Assessment of Consistency between Model and Observation Data Sets 

Several analyses were performed over various temporal and geographical extents. Diurnal cycle 

was performed over the Bartlett Experimental Forest flux tower site from 2005 to 2006, seasonal cycle 

and spatial patterns were performed globally from 2003 to 2005, and long-term trends were conducted 

globally over the 28-year period of 1982–2009. 

Prior to the analysis, data were resampled by averaging at 0.5° resolution if needed, grids defined as 

non-vegetated in MODIS, and dominant vegetation distribution was masked in all datasets. To assess 

the consistency between the model simulated FPAR and observations, several sets of analyses  

were performed as follows: 

2.4.1. Diurnal Cycle 

Prior to the analysis, observation on rainy and cloudy days were eliminated, because clouds and 

aerosols control the ratio of diffuse to total incident solar radiation [50], and diffuse radiation is less 

sensitive to the solar angle. Rain and cloud are decided by precipitation measurement and diffuse solar 

radiation (if diffuse PAR > 500 μmol/(m
2
∙s), respectively. To better present the diurnal cycle, half-hourly 

FPAR data were normalized at a daily level by: 

           
          

           
 

(6) 

where            is normalized FPAR on day  , at time  ,            is FPAR on day  , at time  , 

             is maximum FPAR on day  . 

2.4.2. Seasonal Cycle 

FPAR seasonal cycle comparisons are made at two spatial scales: global and aggregated by 

dominant MODIS vegetation types. The MODIS FPAR algorithm uses the MODIS land cover product 

with the International Geosphere Biosphere Program (IGBP) classes [44,51]. The JRC generic FPAR 

algorithm does not consider land cover type [45,46]. The CLM4 has a subgrid system representing 
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vegetation as patches of PFTs that are derived from various datasets including MODIS Vegetation 

Continuous Fields data, AVHRR Continuous Fields Tree Cover Project data, MODIS global land 

cover mapping, Ramankutty and Foley global cropping, and Willmott and Matsuura climate data 

set [52]. As MODIS and CLM4 use different vegetation classification systems, the dominant 

vegetation distribution from MODIS is employed for the comparison of this paper. We define the 

dominant biome type in each half-degree grid as the land cover for the grid [53]. Prior to the analysis, 

monthly FPAR were averaged for each grid over 2003 to 2005. Monthly FPAR data at global and 

biome level were calculated by: 

           
                                  

                     
 

(7) 

where            is FPAR in month   for biome   (or for the global, if    ),              is 

FPAR at computational grid       in month  ,         is the area for the grid      ,           is the 

fraction of land unit at computational grid      . Grids that are not dominated by the target biome were 

defined as            . Correlation coefficients (i.e., correlation and p-value) are calculated based on 

          . Monthly FPAR anomalies at global or biome level were calculated by: 

                                    
(8) 

where              is FPAR anomaly in month   for biome   (or for the global, if    ), 

             is averaged FPAR over the whole time period. 

2.4.3. Long-Term Trends 

Long-term trends are calculated based on GIMMS FPAR3g and CLM4 FPAR from 1982 to 2009 

by linear regression. For each 0.5° pixel, the slope and significance level (indicated by p-level) were 

calculated from time series comprised of 28 annual mean values (one value for each year from 1982 to 

2009). Trends in LAI are also calculated in order to diagnose source discrepancies. , 

2.4.4. Zonal Patterns 

Similar to monthly FPAR, zonal FPAR were also calculated by the grid area and land unit fraction: 

         
                           

                 
 

(9) 

where          is the averaged FPAR for latitude band i.            is FPAR at computational grid 

     ,         is the area for the grid      ,         is the fraction of land unit at computational grid 

     . Zonal FPAR anomalies at global or biome level were calculated by: 

                                
(10) 

where            is FPAR anomaly for computational latitude band  ,                 is the mean 

value for the averaged FPAR of all latitude bands. 
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2.5. The Angular Effect in Fraction of Absorbed Photosynthetically Active Radiation (FPAR) under 

Direct Solar Radiation 

To illustrate the angular effect in FPAR with direct solar radiation, we regard tree crowns as 

spheroids-on-sticks (Figure 1).    and    are the sunlit background portion and the sunlit canopy 

portion, respectively. They correspond to the areal fraction of ground and canopy under direct  

solar radiation. 

Figure 1. Geometry of a spheroid-on-a-stick, with three parameters:  , stem height from 

ground to the bottom of crown, and   and  , the horizontal and vertical radius of the 

spheroid, redrawn from [54]. 

 

According to the Boolean Scene Model introduced in [54], in a sparse random distribution of the 

spheroids, the sunlit background portion is: 

            (11) 

where   
 

 
 is the number of canopies in a unit of surface area, and       is the average areal 

projection of the canopy onto the background at the zenith angle θ. From this expression for   , the 

proportion of sunlit canopy portion can be immediately obtained, as both sum to 1. 

               (12) 

For a single canopy area at vertical angle,          , where r and b are the horizontal and 

vertical radius of the spheroid, respectively. For the off-vertical angle,               . Thus,  

we have: 

                 (13) 

Therefore, as the solar zenith angle decrease, the canopy intercepts less direct solar radiation, 

resulting in the angular effects in FPAR under direct solar radiation. It is important to note that such an 

effect is restricted to sparse vegetation. For a fully-vegetated area under direct solar radiation, the 

angular effect is negligible, because the bare soil is thoroughly covered by the vegetation and thus 

receives little solar radiation, regardless of how the solar zenith angle changes.  
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3. Results  

3.1. Diurnal Cycle 

As illustrated earlier regarding angular effect, a canopy attenuates a larger fraction of the incident 

solar radiation in the morning and a much smaller share at noon. Therefore FPAR is expected to have a 

valley around noon. 

Figure 2 shows the normalized FPAR for each day in 2005 and 2006 from both observations and 

model. From the site-observed FPAR figures (Figure 2(a,b)), we can see the minimum value occurring 

around noon in the early-growing months (March, April and May, MAM), which is only around 30% of 

the maximum FPAR. It verifies the angular effects of FPAR that we illustrated earlier. Minimum value is 

also shown around noon in MAM in the model simulated FPAR (Figure 2(c,d)), but is around 80% of the 

maximum FPAR. Figure 3 shows the monthly gross primary production (GPP) estimation from site 

observations [55]. It shows that the vegetation at the site starts photosynthetic activities in March and 

peaks in July. This peak possibly indicates the fully-grown canopy (i.e., high LAI values). By comparing 

Figures 2 and 3, we notice that the diurnal cycle is more significant before the GPP peak month (usually 

June for this site). One possible reason is that the between-crown gaps have been filled in by growth of 

leaves (high LAI) when GPP peaks. This assertion might explain the inter-annual differences between 

2005 and 2006. Diurnal cycles exist with a clear valley pattern around noon after the GPP peak (July) in 

2005, but not in 2006. Correspondingly, the GPP peak in 2005 is around 0.5 μmol/(m
2
∙s) lower than that 

in 2006 (Figure 3). Since GPP is a good indicator for LAI, the lower GPP in 2005 suggests a lower LAI, 

and thus between-crown gaps cannot be filled by lower LAI canopies. 

Figure 2. Comparisons of fraction of absorbed photosynthetically active radiation (FPAR) 

diurnal cycles between Bartlett Experimental Forest flux tower observation ((a) for 2005 and 

(b) for 2006) and Community Land Model version 4 (CLM4) ((c) for 2005 and (d) for 

2006). Cloudy and rainy days, observations with incident PAR lower than 50 μmol/(m
2
∙s) are 

removed in the site data. For comparison, data sets are normalized to show the diurnal cycle. 
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The CLM4 FPAR diurnal cycle is shown in Figure 2(c,d). The model shows a much weaker diurnal 

cycle in MAM without a valley around noon. This suggests that CLM4 did not adequately simulate the 

solar angular effect, although some sun angle dependence may have been included in the model. As for 

the angular effect we discussed, the solar zenith angle change from 90° in the morning to a minimum 

angle at noon should result in a large change in FPAR. In sum, we have three findings: (1) the site 

level FPAR diurnal cycle shows patterns that we expected when canopies are not fully grown; (2) the 

CLM4 land surface solar radiation partitioning scheme does not adequately reproduce the diurnal cycle 

in FPAR at these times; and (3) though the fractional cover of the canopies do not change, leaf growth 

influences between-crown gaps and as such the angular effect in FPAR.  

Figure 3. The annual cycle of monthly mean gross primary production (GPP) from Bartlett 

Experimental Forest flux tower observations for the year 2005 and 2006. 

 

3.2. Seasonal Cycle 

In an additional global level, we selected ten major biomes among the seventeen vegetation types 

defined by the IGBP to conduct the comparison. Figure 4 shows CLM4 generally captured the 

seasonal variations displayed by satellite-based FPAR. CLM4-FPAR and remote sensing FPAR have 

good correlation over the global and most biomes (Table 1). However, CLM4 FPAR generally has 

smaller seasonality and a shift during peak months. For savannas, CLM4 fails to capture the peak and 

trough months, and seasonality in CLM4 is less pronounced than in the satellite observations 

(Figure 4(i)). Savannas-dominated grids exist in the Sahel region, Southeast Africa and in the western 

part of South America. These areas are characterized by seasonal water availability, with most of their 

rainfall confined to one season. Correspondingly, we can see strong seasonality from the satellite 

observations (Figure 4(i)). However, this discrepancy in seasonality is possibly related to the model 

parameterization of LAI estimation rather than to the land surface solar radiation partitioning scheme. 

It should be noted that the model and remote sensing agree well in that the evergreen broadleaf forest 

retains a rather stable FPAR all year round, though the correlation between them is rather low due to 

discrepancies in anomalies. However, their anomalies vary through a range smaller than 0.05 

(Figure 3(c)), which is consistent with the relatively stable phenology in tropical rainforest.  
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Figure 4. Comparison of 2003 to 2005 averaged seasonal cycle of FPAR anomalies 

between remote sensing and CLM4 FPAR at (a) global level and at biome level: 

(b) evergreen needleleaf forest, (c) Evergreen broadleaf forest is compared based on FPAR 

absolute value due to its special seasonality, (d) deciduous needleleaf forest, (e) deciduous 

broadleaf forest, (f) mixed forests, (g) open shrublands, (h) woody savannas, (i) savannas, 

(j) grassland, (k) croplands.  

 

Table 1. Correlation coefficient γ with P-value between CLM4-FPAR and satellite-observed 

FPAR annual cycle from 2003 to 2005. 

 
GIMMS3g MODIS SeaWiFS MERIS 

 
  p-value   p-value   p-value   p-value 

Global 0.953 3.36E-04 0.942 3.34E-04 0.894 8.65E-06 0.873 9.25E-05 

Evergreen Needle Leaf Forest 0.86 0.66 0.86 3.28E-04 0.934 0.96 0.893 0.44 

Evergreen Broad Leaf Forest 0.14 2.35E-05 −0.860 4.10E-06 −0.016 4.11E-07 0.246 5.25E-06 

Deciduous Needle Leaf Forest 0.919 1.90E-05 0.944 1.91E-04 0.965 1.57E-05 0.941 6.61E-06 

Deciduous Broad Leaf Forest 0.923 1.78E-05 0.875 2.92E-05 0.926 2.09E-05 0.938 4.34E-05 

Mixed Forest 0.924 1.92E-07 0.916 4.78E-07 0.921 1.35E-08 0.908 1.01E-08 

Open Shrublands 0.97 1.96E-02 0.964 2.56E-05 0.982 1.22E-04 0.983 2.55E-04 

Woody Savannas 0.66 0.94 0.918 0.90 0.887 0.28 0.868 0.11 

Savannas 0.024 1.80E-06 0.042 1.51E-06 0.341 1.35E-05 0.487 1.58E-05 

Grassland 0.952 2.07E-06 0.954 1.13E-05 0.928 8.99E-05 0.926 2.43E-04 

Croplands 0.953 1.70E-06 0.942 4.59E-06 0.894 8.83E-05 0.873 2.12E-04 
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In order to identify the reasons for the discrepancies in FPAR seasonality, we compared the 

seasonality of CLM4 LAI and GIMMS LAI3g to various estimates of FPAR (Figure 5). CLM4 LAI 

lacks seasonal variations in comparison with GIMMS LAI3g at the global level (Figure 5(a)), which 

can explain why CLM4 FPAR has fewer seasonal variations. For savannas, significant disagreements 

in FPAR, between model and observations, are also shown to have similar discrepancies in LAI 

(Figure 5(b)). As asserted earlier, the FPAR seasonality could be considered as a manifestation of plant 

phenology. The comparisons between LAI and FPAR, from the model and observations, verify this 

assertion and, hence, suggest that the discrepancies in seasonality between CLM4 FPAR and 

observations are due to problems in the calculation of LAI.  

Figure 5. The annual cycle of monthly mean FPAR and leaf area index (LAI) anomalies 

for (a) the global, and (b) savannas (2003~2005) 

 

3.3. Long-Term Trends 

Figure 6 displays the statistics of the long-term analysis. The color represents the slope of linear 

regression fit for the annual mean FPAR and the black dots are grids exceeding 90% significance. 

GIMMS FPAR3g (Figure 6) shows that Western Europe, Eastern America, the Sahel region, part of 

Eurasia, and the northern high latitudes are the areas with significant increasing trend in FPAR and 

LAI. Among these areas, changes in Western Europe are due to the afforestation of former arable 

land [56], an anthropogenic factor that is already included in the current CLM4. The rest of the areas 

are all transitional ecoregions: the Sahel region is a transition zone of semi-arid grasslands, savannas, 

steppes, and thorn shrublands lying between the Sahara desert and the Sudanian Savannas [57]; 

Eastern America and part of Eurasia are transitional zones of coniferous and broadleaf trees; the 

northern high latitudes are mainly the Arctic tundra ecosystem which is also ecologically transitional 

due to climate change [58]. As the satellite observations shows, these areas are highly sensitive to 

global climate change and thus have significant long-term trends. 

The CLM4 simulations are in broad agreements with the increasing trends illustrated by GIMMS3g 

datasets (Figure 6). However, the model has fewer grid cells exceeding the statistical significance level 

of 90% (Figure 6). Since long-trends are primarily driven by changes in forcing factors (e.g., CO2 

concentration, precipitation, and temperature), these discrepancies suggest that the CLM4 needs to 

improve its correlation between climate and vegetation. Annual changes of vegetation growth possibly 
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caused by other factors such as nitrogen deposition and land use and land cover change are beyond the 

scope of this paper and are detailed in [40]. Although our study does not examine land cover change, 

extensive FPAR increase in the northern high latitudes suggests dynamic vegetation change 

(Figure 6(b)). As several studies asserted, shrub expansion exists in Northern Alaska, Siberia, and the 

Pan-Arctic [59–61]. It would thus be necessary to employ a dynamic vegetation model (e.g., Dynamic 

Global Vegetation Model, DGVM) to reproduce expansions of certain plant types. In sum, we have 

two findings in regards to the CLM4: (1) CLM4 does capture the long trends in FPAR at the global 

level, but has much smaller significance levels due to its excess variability in its annual values; 

(2) discrepancies in the northern high latitudes further suggest that CLM-DGVM is required to fully 

evaluate model’s performance for long-term trends.  

Figure 6. Global distribution of linear regression slopes in (a) GIMMS FPAR3g and 

(b) CLM4 FPAR from 1982 to 2009. Grids with slopes exceeding the 90% confidence 

level are marked with black dots. 

 

3.4. Spatial Patterns 

The zonal anomalies of FPAR from 2003 to 2005 are displayed in Figure 7 and the correlation 

coefficients between CLM4 and RS FPAR are also calculated. CLM4 FPAR has a very similar pattern 

to that of remote sensing observations. Statistics show that they are highly correlated (0.879 for 

GIMMS3g, 0.997 for MODIS and MERIS, and 0.990 for SeaWiFS), and these correlations are all 

significant (    ). They all have peaks around the equator and 25°N, and troughs around 30°S and 

15°N. The difference between FPAR at the equator and the 25°N in CLM4 simulation is around 0.071, 

which is much smaller than that in GIMMS3g (0.203) and MODIS (0.162), and close to that in 

a 

b 
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SeaWiFS (0.113) and MERIS (0.079). Figure 8(g) shows the month of maximum FPAR simulated by 

the CLM4. Compared with remote sensing observations (Figure 8(a–d)), the CLM4 does well in 

capturing the main characteristics of the FPAR peaking in June-July-August (JJA) in the northern 

hemisphere and in December-January-February-March (DJFM) in the southern hemisphere. However, 

the peak months in the CLM4 are generally one or two months earlier. The CLM4 simulations also 

have much less spatial heterogeneity in the month of maximum FPAR. Take north hemisphere for 

instance, satellite observations show FPAR peaks in June for Southern north America and west 

Europe, in July and August for northern north America and most Eurasia. The CLM4, however, 

estimates FPAR in most north hemisphere peaks in June with small high latitude area peaks in July. 

Figure 7. Comparison of zonal mean FPAR between remote sensing observations and 

CLM4 FPAR averaged from 2003 to 2005. Correlation coefficients (i.e., correlation and  

p-value) are calculated between CLM4 zonal mean FPAR and each satellite FPAR dataset. 

 

In the Amazon, CLM4 FPAR and satellite-based FPAR have an interesting discrepancy.  

Satellite-observed FPAR for evergreen broadleaf forest shows weak seasonality (Figure 4(c)), but the 

spatial distribution of month with the maximum FPAR value has an unexpected pattern. Divided by 

the equator, FPAR in the northern part of the Amazon peaks around November, December, and 

January, while in the southern part it peaks around June, July, August, and September 

(Figure 9(a,b,d)). The probability density function of month with maximum FPAR value 

(Figure 9(f,g)) verifies that such differences exist among satellite-based observations. However, CLM4 

FPAR has an opposite temporal-spatial distribution as we can see from Figure 8(g). The probability 

density function of month with maximum FPAR value (Figure 9(f,g)) also verifies such differences 

between the CLM4 FPAR and satellite-based FPAR.  
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Figure 8. Comparison of month of maximum FPAR between RS observations and CLM4 

FPAR averaged from 2003 to 2005, (a) GIMMS3g, (b) MODIS, (c) MERIS, (d) SeaWiFS, 

and (e) CLM4 simulation. 

 

Figure 9. Month of maximum FPAR in the Amazon from (a) GIMMS3g, (b) MODIS, 

(c) MERIS, (d) SeaWiFS, and (e) CLM4 simulation. Probability density function of maximum 

FPAR months in the northern (f) and southern (g) parts of the Amazon, divided by the equator. 
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4. Discussion 

4.1. Problems with the Diurnal Cycle in the CLM4 

Comparison of site level observations and model simulations shows CLM4’s FPAR has a slight 

diurnal cycle (FPAR at noon is around 80% of the maximum) but at a much smaller magnitude than 

site level observation (FPAR at noon is around 30% of the maximum). Sun angle could influence 

radiation transfer process through both between-crown gap probability and within-crown gap 

probability [19]. In order to identify the reasons for the insignificant angular effect in the CLM4, we 

used the 2-stream module from the CLM4 and conducted a sensitivity test in a two-element model that 

is simplified from the current CLM4 land surface scheme. In the two-element model, a grid is set 

consisting of two patches: one is vegetated with 100% canopy coverage, its coverage is set to be   ; 

and the other is bare soil with a fraction of       . Related parameters are set as follows: (1) leaves 

and stems are set as blackbodies with reflectance and transmittance of 0; (2) ground albedo is 0.2 for 

both visual and infrared bands, and for both direct and diffuse radiation; and (3) only direct solar 

radiation is considered. We calculate the fraction of canopy absorbed radiation in incident solar 

radiation for the whole grid under different    and LAI conditions. A 3-D model is used for 

comparison. It is a new framework based on the single bush model [13,62]. A one-layer canopy model 

is constructed that considers shadows, inter-canopy interactions, and the consequences of low sun 

(elevation) angles. It is used to build a three-layer canopy that considers ground shadow, within-crown 

gaps, between-crown gaps, and inter-canopy interactions, and thus is regarded as a benchmark [13,62]. 

Figure 10. FPAR in relation to µ. Blue lines show simulations from the 2-stream solution 

in the CLM4 (blue) and green lines show simulation from the 3D scattering model at  

   = 0.2, 0.4 and 0.8 and LAI = 0.5, 3.0 and 6.0. 
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Experimental results (Figure 10) show the fraction of radiation absorbed by canopy would change 

according to the solar zenith angle when LAI is low (i.e., 0.5). This verifies that the minor diurnal 

cycle in the current CLM4 simulation is attributed to the 2-stream solution, taking into account the 

angular effect inside the canopy layer. Such an angular effect in the canopy radiative transfer process 

only contributes to only a small portion of the overall angular effect (as illustrated by the 3D scattering 

model in Figure 10) Therefore, the problem with the diurnal cycle in the CLM4 is not the radiative 

transfer process within the canopy but rather the radiative transfer process outside of the canopy. 

Next we examine the current CLM4 patch framework. Bare soil and plants are separately allocated 

into different patches. For the patch with a plant type, the canopy fraction is set to be 100%. According 

to this assumption, the plants become “shadowless”; only the soil under the canopy might be blocked 

from solar radiation by the canopy, but the soil between canopies can always receive solar radiation 

without any canopy blocking as allocated in a separate patch. As a result of this “shadowless” canopy 

assumption, the bare soil is 100% exposed to solar radiation, and such a full-exposure in bare soil is 

the reason for the absences of an angular effect in the current CLM4. Therefore, we need to introduce 

several parameters to present such an angular effect. 

We propose a possible solution for this problem in the current CLM4 land surface scheme and 

illustrate it in a two-element model. The solution is based on the boundary condition inferred from the 

Boolean Scene Model: (1) vegetation has 100% coverage over the grid land when the solar zenith angle 

is 90°; and (2) a coverage of (  ) when the solar zenith angle is 0°, in the view of the sun. 

By the view of direct solar radiation, the fraction of vegetation in the grid (  ) should be a function 

of    and the solar zenith angle ( ): 

              (14) 

where       . The fraction of bare soil in the sun’s view should be             , and the fraction 

of sunlit bare soil in total bare soil (   ) is: 

    
            

    
 (15) 

By this function, the bare soil would receive no direct solar radiation when     and would be 

100% sunlit by direct solar radiation when    .  

This solution is a simplified approximation for the angular effect. Figure 11 shows it has good 

approximation when vegetation coverage is high or when LAI is high, compared to the 2D scattering 

model. Larger discrepancies exist when both vegetation coverage and LAI are low. The relationship 

between vegetation coverage and LAI is not considered here but has been suggested by site level 

observations. As analyzed earlier, the inter-annual comparison of site level FPAR suggests that 

vegetation coverage (  ) changes according to LAI. Hence, LAI-   relation should be taken into 

account to implement mathematical representation of an angular effect in the current CLM4 land 

surface solar radiation partitioning scheme. 
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Figure 11. FPAR in relation to µ. Blue lines show simulations from the 2-stream solution 

in the CLM4 (blue), red lines show simulations from the proposed solution in the paper and 

green lines show simulations from the 3D scattering model at    = 0.2, 0.4 and 0.8 and 

LAI = 0.5, 3.0 and 6.0.  

 

4.2. Spatial Patterns of Month with Maximum Fraction of Absorbed Photosynthetically Active 

Radiation (FPAR) in the Amazon 

As previously illustrated, both the northern and southern parts of the Amazon have different peak 

FPAR months opposite to their located hemispheres. The angular effect in FPAR is suspected to be 

one reason for this phenomenon. One major difference between the two regions is the solar zenith 

angle. According to the angular effect, FPAR would decrease as the solar zenith angle increases and 

thus, the FPAR would not peak in local summer months. CLM4’s opposite estimations then can be 

well explained because model does not consider the angular effect in FPAR. However, one weakness 

in this reasoning is that the angular effect is more significant for sparse vegetation, but the Amazon 

rainforest has dense vegetation, and another weakness is that tropical latitudes have relatively muted 

seasonal variation in solar angle. 

In addition to the angular effect, two other possibilities (i.e., cloud contamination and plant 

phenology) are also suspected to contribute to this phenomenon. 

Cloud contamination is suspected to be a reason because remote sensing of the Amazon at visible 

bands has been complicated due to the presence of persistent cloud and aerosols during the rainy 

season. Remote sensing has made much effort in minimizing the cloud influence by: (1) recording 

cloud information into the raw data and pixels of good quality are selected for product generation; and 

(2) cloud-removal procedures to MODIS’s surface reflectance products. However, these procedures 

still cannot totally avoid the potential systematical bias in FPAR. As cloud contamination lowers the 
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FPAR value, we would expect peak months to have the least precipitation in the region. For the 

southern part of the Amazon, remote sensing observations (Figure 9(g)) shows FPAR peaks in June, 

July, August, and September which are the months with much less rainfall (Figure 12). For the northern 

region, satellite data (Figure 9(f)) displays that FPAR peaks in November, December, and January by 

different satellite observations, which are months with less rainfall in the region (Figure 12). Therefore, 

cloud contamination might be the reason for spatial patterns in satellite observations. 

Figure 12. Averaged rain rate in northern and southern Amazon (divided by the equator) 

from the Global Precipitation Climatology Project (GPCP) dataset (2003–2005). 

 

The other possibility is associated with the seasonal cycle of plant phenology. Site level 

measurements show the photosynthesis of plants in the Amazon increases during dry seasons [63,64]. 

The dry season has less rain but offers more solar radiation, plus water is not limited in this region, so 

plants have better conditions for photosynthetic activities resulting in a higher FPAR value for  

light-rich, dryer days. The model might lack of such a complicated mechanism due to its deficiencies 

in calculations of soil moisture or root distribution [65,66].  

4.3. Absolute Value 

The absolute value of CLM4 FPAR is not evaluated due to disagreements among observational 

datasets. Inter-comparison among satellite-based FPAR products (Figure 13) shows discrepancies 

among them, and such disagreements have been noted in many remote sensing evaluation 

papers [28,31,67]. There are many factors contributing to these discrepancies. First, the satellite 

passing time is different for each satellite. We have illustrated how the angular effect in direct solar 

radiation would lead to an FPAR difference. Second, their statistical methods differ. MODIS selects 

the maximum FPAR (across the eight days) for the eight-day product [21] while SeaWiFS and MERIS 

use the median value in generating their products [48]. Last, radiative assumptions are different for 

different retrieval algorithms, though their influences require more study. Therefore, CLM4-FPAR’s 

absolute value is not be evaluated in this study. The difference in the absolute value is removed by 

subtracting the temporal averaged value for evaluation on diurnal and seasonal cycles and spatial 
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patterns. The absolute value is used to calculate linear regression in long-term trend analysis, but does 

not affect the slope which is the key statistical parameter we analyzed. 

Figure 13. Monthly mean FPAR for the global from 2003 to 2005. 

 

4.4. Comparison with Previous Study 

Several studies have compared satellite observations and CLM simulations. Tian et al. [35] 

compared seasonal and spatial variations of FPAR from MODIS and CLM2.0 from 2000 to 2002, and 

attribute FPAR mainly decided by LAI. Mao et al. (2009) compared MODIS GPP with CLM4 GPP 

regarding magnitude, phase, annual cycle, and inter-annual changes. Our study recognizes the role of 

LAI in FPAR simulation and targets the solar radiation scheme, so we identify reasons for 

discrepancies first and then focus on those associated with the target. General agreements in FPAR’s 

seasonal cycle, long-term trends, and spatial patterns are consistent with conclusions in previous GPP 

evaluations [53], though subtle differences exist between discrepancies in FPAR and GPP due to their 

naturally complicated correlations.  

5. Conclusions  

This paper evaluates CLM4 FPAR with both remotely sensed FPAR products and flux tower 

observations. Seasonal cycle, diurnal cycle, long-term trends, and spatial patterns are employed to 

investigate differences of FPAR between CLM4 and observations. The objective is to offer guidance 

for future developments in the CLM4 land surface solar radiation partitioning scheme. 

Our findings show that CLM4 simulation and satellite observations are in broad agreement with 

seasonal cycle, long-term trends, and zonal spatial patterns. These three variables are primarily 

determined by plant phenology, such as LAI, and therefore should be mostly accredited to the CN 

module. Some discrepancies still exist. For example, CLM4 has a systematically weaker seasonality; 

large bias in seasonality was found in certain biome types. We found similar discrepancies between 

CLM4 LAI and GIMMS LAI3g. Since LAI is the primary input for FPAR calculation, these 
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discrepancies between the model and satellite observations might be addressed through the 

improvement of LAI parameterization in CLM4. 

Our study highlights the need for treatment of sun angle effect in the FPAR diurnal cycle in CLM. 

The model currently has plants and bare soil separately allocated into different patches so the plants 

becomes “shadowless”: the soil between canopies would never be blocked from solar radiation by the 

canopy since it is in another patch. Based on the boundary conditions from the Boolean Scene Model, 

a possible solution for this problem is proposed and illustrated with a two-element model that is 

simplified from the CLM4 land surface scheme. We also examined reasons for the spatial patterns of 

peak FPAR months in the Amazon, but tropical rainfall forest could be too dense to be sensitive to the 

angular effect. In addition, two other possibilities (i.e., cloud contamination and higher photosynthesis 

in dry seasons) could also explain the phenomenon. 

We also note with particular interest that the CLM4 simulations generally reproduced the increasing 

trend that inferred from the GIMMS3g data sets for both FPAR and LAI, but with smaller significance 

levels. GIMMS3g data illustrates extensively significant increasing trends in several transitional 

ecoregions, which indicate influences of forcing factor changes on plant phenology. The model, 

however, has only limited grids exceeding the 90% significance level though it reproduces the trends 

over many different areas. A target (i.e., climate-vegetation relations) was hence noted for CLM4 

future development. 
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